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EXTENSION OF THE REFINED GIBBS’ INEQUALITY

Abstract. In this note, we give an extension of the refined
Gibbs’ inequality containing arithmetic and geometric means.
As an application, we obtain converse and refinement of the
arithmetic-geometric mean inequality.

Key words: arithmetic-geometric mean inequality, Jensen’s ine-
quality, log-function, Gibbs’ inequality

2010 Mathematical Subject Classification: 26D15, 94A15

1. Introduction. Let n ≥ 2 and w1, . . . , wn be non-negative real
numbers such that

∑n
j=1 wj = 1. Let An and Gn denote the weighted

arithmetic and geometric means of the positive real numbers x1, . . . , xn,
that is,

An =

n∑
j=1

wjxj and Gn =

n∏
j=1

x
wj
j .

The arithmetic-geometric mean inequality asserts that

An ≥ Gn.

For more details about the arithmetic-geometric mean inequality the rea-
der is referred to [3]–[8].

It is interesting that some classical inequalities such as arithmetic-
geometric mean inequality (see [9]), the Jensen inequality (see [10]), the
Hölder inequality (see [11]) play an important role in information sciences.

Let pj , qj > 0 (j = 1, . . . , n) and
∑n
j=1 pj =

∑n
j=1 qj . Then,

0 ≤
n∑
j=1

pj log
pj
qj
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with equality if and only if pj = qj (j = 1, . . . , n). This inequality is
known in literature as the Gibbs’ inequality (see [8, p. 382]). The Gibbs’
inequality has many applications in information theory and also in ma-
thematical statistics.

In 2004 Halliwell and Mercer [6] presented the following refinement of
the Gibbs inequality:

Theorem 1. Let pj , qj (j = 1, . . . , n) be positive real numbers satisfying∑n
j=1 pj =

∑n
j=1 qj . Then,

n∑
j=1

qj(qj − pj)2

q2j + M̂j

≤
n∑
j=1

pj log
pj
qj
≤

n∑
j=1

qj(qj − pj)2

q2j + m̂j
(1)

where m̂j = min(p2j , q
2
j ), M̂j = max(p2j , q

2
j ) (j = 1, . . . , n).

In 2014 H. Alzer [2] proved the following refinement of (1):

Theorem 2. Let α, β ∈ R. Then, inequalities

n∑
j=1

qj(qj − pj)2

q2j + m̂α
j M̂

1−α
j

≤
n∑
j=1

pj log
pj
qj
≤

n∑
j=1

qj(qj − pj)2

q2j + m̂β
j M̂

1−β
j

(2)

hold for positive real numbers pj , qj (j = 1, . . . , n) with
∑n
j=1 pj =

∑n
j=1 qj

if and only if α ≤ 1/3 and β ≥ 2/3.

In this note we give an extension of (2) containing arithmetic and
geometric means. As an application, we obtain refinement of the left-hand
inequality in (1) and we also give a converse of the arithmetic-geometric
mean inequality.

2. Main results. In order to prove our main results, we need the
following lemmas.

Lemma 1. (see [2]) (i) If 0 < x ≤ 1, then

x− 1− (x− 1)2

x+ x1/3
≤ log x ≤ x− 1− (x− 1)2

x+ 1
(3)

with equality if and only if x = 1.
(ii) If x > 1, then

x− 1− (x− 1)2

x+ 1
< log x < x− 1− (x− 1)2

x+ x1/3
. (4)
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Lemma 2. Let fa(x) :=
x(x− a)2

a(x2 + max{x2, a2})
+ log x, a > 0. Then fa

is a concave function on (0,+∞).

Proof. If x ≥ a, then fa(x) = (x−a)2
2ax + log x, and consequently,

f ′′a (x) =
a− x
x3

≤ 0.

On the other hand, if 0 < x < a, then fa(x) =
x(x− a)2

a(x2 + a2)
+ log x, which

yields

f ′′a (x) = −a
6 + 7a4x2 − 9a2x4 + x6

x2(x2 + a2)3
= − (a2 − x2)(a4 + 8a2x2 − x4)

x2(x2 + a2)3
< 0.

Therefore, the function fa(x) is concave for x > 0. �

Lemma 3. (see [1]) Let fa be as defined in Lemma 2, k ∈ {2, . . . , n−1},
and

sk := max
1≤µ1<···<µk≤n

[(
k∑
j=1

wµj

)
fAn

( k∑
j=1

wµjxµj

k∑
j=1

wµj

)
−

k∑
j=1

wµjfAn(xµj )

]
.

Then,
0 ≤ s2 ≤ s3 ≤ · · · ≤ sn−1.

First, we give an extension of (2) based on the corresponding result in
[2].

Theorem 3. Let α, β ∈ R and mj = min(x2j , A
2
n), Mj = max(x2j , A

2
n)

(j = 1, . . . , n). Then inequalities

1

An

n∑
j=1

wjxj(xj −An)2

x2j +mα
jM

1−α
j

≤ logAn − logGn ≤
1

An

n∑
j=1

wjxj(xj −An)2

x2j +mβ
jM

1−β
j

(5)
hold if and only if α ≤ 1/3 and β ≥ 2/3.

Proof. We follow the method of proof given in [2].
(Necessity) Since the sums on the left-hand side and on the right-hand
side of (5) are increasing with respect to α and β, respectively, it suffices
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to prove (5) for α = 1/3 and β = 2/3. Therefore, substituting xj/An
instead of x in (3) and (4), then multiplying by wj , and summing, we
obtain

1

An

∑
xj≤An

(
wjxj − wjAn −

wjxj(xj −An)2

x2j +m
2/3
j M

1/3
j

)
=

=
1

An

∑
xj≤An

(
wjxj − wjAn −

wj(xj −An)2

xj + x
1/3
j A

2/3
n

)
≤

≤
∑

xj≤An

wj log
xj
An
≤ 1

An

∑
xj≤An

(
wjxj − wjAn −

wj(xj −An)2

xj +An

)
=

=
1

An

∑
xj≤An

(
wjxj − wjAn −

wjxj(xj −An)2

x2j +m
1/2
j M

1/2
j

)
and

1

An

∑
xj>An

(
wjxj − wjAn −

wjxj(xj −An)2

x2j +m
1/2
j M

1/2
j

)
=

=
1

An

∑
xj>An

(
wjxj − wjAn −

wj(xj −An)2

xj +An

)
<

∑
xj>An

wj log
xj
An

<

<
1

An

∑
xj>An

(
wjxj − wjAn −

wj(xj −An)2

xj + x
1/3
j A

2/3
n

)
=

=
1

An

∑
xj>An

(
wjxj − wjAn −

wjxj(xj −An)2

x2j +m
1/3
j M

2/3
j

)
.

Further, utilizing inequalities m
2/3
j M

1/3
j ≤ m

1/2
j M

1/2
j ≤ m

1/3
j M

2/3
j , we

get

1

An

∑
xj≤An

(
wjxj − wjAn −

wjxj(xj −An)2

x2j +m
2/3
j M

1/3
j

)
≤
∑
xj≤A

wj log
xj
An
≤

≤ 1

An

∑
xj≤An

(
wjxj − wjAn −

wjxj(xj −An)2

x2j +m
1/3
j M

2/3
j

)
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and

1

An

∑
xj>An

(
wjxj − wjAn −

wjxj(xj −An)2

x2j +m
2/3
j M

1/3
j

)
<

∑
xj>An

wj log
xj
An

<

<
1

An

∑
xj>An

(
wjxj − wjAn −

wjxj(xj −An)2

x2j +m
1/3
j M

2/3
j

)
.

Combining this together, we obtain

1

An

n∑
j=1

wjxj(xj −An)2

x2j +m
2/3
j M

1/3
j

≤ logAn − logGn ≤
1

An

n∑
j=1

wjxj(xj −An)2

x2j +m
1/3
j M

2/3
j

,

as desired.
(Sufficiency) Let s, t ∈ R with 1 < t < s+ 1. Set

x1 =
s+ 1− t

s
, x2 = t, xj = 1 (j = 3, . . . , n);

w1 =
s

s+ 1 + (n− 2)t
, w2 =

1

s+ 1 + (n− 2)t
, wj =

t

s+ 1 + (n− 2)t
(j = 3, . . . , n). Now, the same computation as in the proof of Theorem 2
(see [2]), provides that α ≤ 1/3 and β ≥ 2/3. �

Remark. Putting xj =
qj
pj
, wj = pj/

∑n
j=1 qj (j = 1, . . . , n), where∑n

j=1 pj =
∑n
j=1 qj , in (5), we get (2).

By using Theorem 3, we obtain the following consequence.

Theorem 4. The inequality

An −Gn ≤
n∑
j=1

wjxj(xj −An)2

x2j +mβ
jM

1−β
j

(6)

holds for β ≥ 2/3.

Proof. By the mean value theorem and Theorem 3, we have

An −Gn = exp(logAn)− exp(logGn) ≤ An(logAn − logGn) ≤

≤
n∑
j=1

wjxj(xj −An)2

x2j +mβ
jM

1−β
j

,
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which completes the proof. �

Our next result refines sign of the first inequality in (5) for α = 0.

Theorem 5. If C =
1

An

n∑
j=1

wjxj(xj −An)2

x2j +Mj
, then

C ≤ C + s2 ≤ C + s3 ≤ · · · ≤ C + sn−1 ≤ log(An)− log(Gn). (7)

Equality occurs if and only if all xj are equal.

Proof. By Lemma 3 we have

C ≤ C + s2 ≤ C + s3 ≤ · · · ≤ C + sn−1.

Now, we have to prove the last inequality in (7). Let’s choose an arbi-
trary xµj ∈ {x1, . . . , xn}, 1 ≤ µ1 < µ2 < · · · < µn−1 ≤ n, with the
corresponding weights wµj ∈ {w1, . . . , wn}, and let xµn = {x1, . . . , xn} \
{xµ1

, . . . , xµn−1
}. Now, utilizing the first inequality in (5) with α = 0, we

obtain

log(An) = log

wµnxµn +

n−1∑
j=1

wµj

∑n−1
j=1 wµjxµj∑n−1
j=1 wµj

 ≥
≥ 1

An

wµnxµn(xµn −An)2

x2µn + max(x2µn , A
2
n)

+

+
1

An

(∑n−1
j=1 wµj

) ∑n−1
j=1 wµjxµj∑n−1
j=1 wµj

(∑n−1
j=1 wµjxµj∑n−1
j=1 wµj

−An
)2

(∑n−1
j=1 wµjxµj∑n−1
j=1 wµj

)2

+ max

((∑n−1
j=1 wµjxµj∑n−1
j=1 wµj

)2

, A2
n

)+

+ log

xwµnµn

(∑n−1
j=1 wµjxµj∑n−1
j=1 wµj

)∑n−1
j=1 wµj

 =

=
1

An

n∑
j=1

wjxj(xj −An)2

x2j + max(x2j , A
2
n)
− 1

An

n−1∑
j=1

wµjxµj (xµj −An)2

x2µj + max(x2µj , A
2
n)

+
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+ log(Gn)−
n−1∑
j=1

wµj log xµj +

n−1∑
j=1

wµj

 fAn

(∑n−1
j=1 wµjxµj∑n−1
j=1 wµj

)
=

= log(Gn) + C +

n−1∑
j=1

wµj

 fAn

(∑n−1
j=1 wµjxµj∑n−1
j=1 wµj

)
−
n−1∑
j=1

wµjfAn(xµj ).

Since xµj , i = {1, . . . , k} are arbitrary, the last inequality in (7) holds.
The theorem is proved. �

Putting xj =
qj
pj
, wj = pj/

∑n
j=1 qj (j = 1, . . . , n), where

∑n
j=1 pj =

=
∑n
j=1 qj , in Theorem 5, we obtain the following refinement of the first

inequality in (1).

Corollary 1. Let pj , qj (j = 1, . . . , n) be positive real numbers satisfying∑n
j=1 pj =

∑n
j=1 qj . Then

n∑
j=1

qj(qj − pj)2

q2j + M̂j

= Ĉ ≤ Ĉ+ ŝ2 ≤ Ĉ+ ŝ3 ≤ · · · ≤ Ĉ+ ŝn−1 ≤
n∑
j=1

pj log
pj
qj

(8)
where

ŝk = max
1≤µ1<µ2<···<µk≤n

 k∑
j=1

pµj

 f1

(∑k
j=1 qµj∑k
j=1 qµj

)
−

k∑
j=1

pµjf1

(
qµj
pµj

) ,
and M̂j = max(p2j , q

2
j ) (j = 1, . . . , n).
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applications. Information Sciences, 2014, vol. 288, pp. 45–54. DOI:
10.1016/j.ins.2014.07.053

Received October 16, 2016.
In revised form, January 30, 2017.
Accepted January 30, 2017.
Published online April 5, 2017.

National University of Mongolia
P.O. Box 46A/104, Ulaanbaatar 14201, Mongolia
E-mail: V Adiyasuren@yahoo.com, tsbatbold@hotmail.com


