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Abstract. We consider Orlicz spaces of differential forms on a
Riemannian manifold. A Riesz-type theorem about the func-
tionals on Orlicz spaces of forms is proved and other duality
theorems are obtained therefrom. We also extend the results
on the Hölder-Poincaré duality for reduced Lq,p-cohomology by
Gol′dshtein and Troyanov to LΦI ,ΦII -cohomology, where ΦI and
ΦII are N -functions of class ∆2 ∩∇2.
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Introduction. This article is devoted to the study of the dual spaces
of Orlicz spaces of differential forms on an oriented Riemannian mani-
fold X.

Lp-theory of differential forms on Riemannian manifolds has been the
subject of many papers and several books since the beginning of the
1980s. In 1976, Atiyah defined L2-cohomology for a Riemannian manifold
and initiated various applications of L2-methods to the study of noncom-
pact manifolds and quotient spaces of Riemannian manifolds by discrete
groups of isometries. The L2-cohomology of such manifolds was studied
by Gromov, Cheeger–Gromov and others (see, for example, [2, 3, 12]). In
the 1980’s, Goldshtein, Kuz′minov, and Shvedov defined the Lp-de Rham
complex on a Riemannian manifold M for arbitrary p ∈ [1,∞] and began
to investigate its cohomology, which they called the Lp-cohomology of M ;
they obtained many results concerning the density of smooth forms in Lp
(see, for example, [5]); the nontriviality and the Hausdorff property of Lp-
cohomology on important classes of manifolds (see, for instance, [7, 8, 17]),
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duality for Lp-related spaces of differential forms and the induced duali-
ty for Lp-cohomology in [6]; compactly-supported approximation of Lp-
forms (see, for example, [16]). In studying the asymptotic invariants of
infinite groups and manifolds with pinched negative curvature, Gromov
and Pansu also considered Lp-differential forms and lp-simplicial cochains
(see [12, 18, 19]). Gol′dstein and Troyanov obtained deep results about
the Lqp-cohomology of Riemannian manifolds for q 6= p in [9, 10, 11].

Like Orlicz function spaces, the Orlicz spaces LΦ of differential forms
are a natural nonlinear generalization of the spaces Lp. Orlicz spaces of
differential forms on domains in Rn were first considered by Iwaniec and
Martin in [13] and then by Agarwal, Ding, and Nolder in [1] (see also
[4, 14]). In [13], Iwaniec and Martin established a Riesz-type theorem for
an Orlicz space of differential forms on a domain in Rn. Orlicz spaces
of differential forms on a Riemannian manifold were apparently first exa-
mined by Panenko and the author in [15], where de Rham regularization
operators were introduced and studied for Orlicz spaces of differential
forms.

We prove a Riesz-type theorem for Orlicz spaces of differential forms
on a Riemannian manifold and then, using it, describe the dual spaces of
Orlicz–Sobolev-type spaces of differential forms, thus generalizing the re-
sults of Gol′dshtein, Kuz′minov, and Shvedov obtained in [6] for Lp-related
spaces. The so-obtained results are applied for establishing the Hölder–
Poincaré duality for the reduced Orlicz cohomology of X, which extends
the Hölder–Poincaré duality for Lq,p-cohomology proved by Gol′dshtein
and Troyanov in [11].

The structure of the article is as follows: In Section 1, we recall the
main notions and necessary properties of Orlicz function spaces. In Sec-
tion 2, we give the definition of Orlicz spaces of differential forms on a Rie-
mannian manifold. The Riesz-type theorem for Orlicz spaces of differen-
tial forms (Theorem 3.1) is the contents of Section 3. Then, in Section 4,
we examine the structure of the dual spaces to some LΦ-related spaces
of differential forms. Finally, in Section 5, we establish a theorem on the
Poincaré duality for the LΦI ,ΦII

-cohomology of an oriented Riemannian
manifold (Theorem 5.8).

1. N-functions and Orlicz function spaces.

Definition 1.1.

A function Φ : R→ R is called an N -function if

(i) Φ is even and convex;
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(ii) Φ(x) = 0⇐⇒ x = 0;

(iii) lim
x→0

Φ(x)
x = 0; lim

x→∞
Φ(x)
x =∞.

An N -function Φ has left and right derivatives (which can differ only
on an at most countable set, see, for instance, [20, Theorem 1, p. 7]). The
left derivative ϕ of Φ is left continuous, nondecreasing on (0,∞), and such
that 0 < ϕ(t) <∞ for t > 0, ϕ(0) = 0, lim

t→∞
ϕ(t) =∞. The function

ψ(s) = inf{t > 0 : ϕ(t) > s}, s > 0,

is called the left inverse of ϕ.
The functions Φ,Ψ given by

Φ(x) =

|x|∫
0

ϕ(t)dt, Ψ(x) =

|x|∫
0

ψ(t)dt

are called complementary N -functions.
The N -function Ψ complementary to an N -function Φ can also be

expressed as

Ψ(y) = sup{x|y| − Φ(x) : x ≥ 0}, y ∈ R.

N -functions are classified in accordance with their growth rates as
follows:

Definition 1.2. An N -function Φ is said to satisfy the ∆2-condition for
large x (for small x, for all x), which is written as Φ ∈ ∆2(∞) (Φ ∈ ∆2(0),
or Φ ∈ ∆2), if there exist constants x0 > 0, K > 2 such that Φ(2x) ≤
≤ KΦ(x) for x ≥ x0 (for 0 ≤ x ≤ x0, or for all x ≥ 0); and it satisfies
the ∇2-condition for large x (for small x, or for all x), which is denoted
symbolically as Φ ∈ ∇2(∞) (Φ ∈ ∇2(0), or Φ ∈ ∇2) if there are constants
x0 > 0 and c > 1 such that Φ(x) ≤ 1

2cΦ(cx) for x ≥ x0 (for 0 ≤ x ≤ x0,
or for all x ≥ 0).

Henceforth, let Φ be an N -function and let (Ω,Σ, µ) be a measure
space.

Definition 1.3. The set L̃Φ = L̃Φ(Ω) = L̃Φ(Ω,Σ, µ) is defined to be the
set of measurable functions f : Ω→ R such that

ρΦ(f) :=

∫
Ω

Φ(f)dµ <∞.
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Definition 1.4. The linear space

LΦ = LΦ(Ω) = LΦ(Ω,Σ, µ) =

= {f : Ω→ R measurable : ρΦ(af) <∞ for some a > 0}

is called an Orlicz space on (Ω,Σ, µ).
The corresponding Morse–Transue space is the space

MΦ = MΦ(Ω) = MΦ(Ω,Σ, µ) =

= {f : Ω→ R measurable : ρΦ(af) <∞ for all a > 0}.

For an Orlicz space LΦ = LΦ(Ω,Σ, µ), the N -function Φ is called ∆2-
regular if Φ ∈ ∆2(∞) when µ(Ω) < ∞ or Φ ∈ ∆2 when µ(Ω) = ∞ or
Φ ∈ ∆2(0) for µ the counting measure on countable Ω.

Let Ψ be the complementary N -function to Φ.
Below we as usual identify two functions equal outside a set of measure

zero.
If f ∈ LΦ then the functional ‖ · ‖Φ (called the Orlicz norm) defined

by

‖f‖Φ = ‖f‖LΦ(Ω) = sup

{∣∣∣∣∫
Ω

fg dµ

∣∣∣∣ : ρΨ(g) ≤ 1

}
is a seminorm. It becomes a norm if µ satisfies the finite subset property
(see [20, p. 59]): if A ∈ Σ and µ(A) > 0 then there exists B ∈ Σ, B ⊂ A,
such that 0 < µ(B) <∞.

The equivalent gauge (or Luxemburg) norm of a function f ∈ LΦ is
defined by the formula

‖f‖(Φ) = ‖f‖L(Φ)(Ω) = inf

{
k > 0 : ρΦ

(
f

k

)
≤ 1

}
.

This is a norm without any constraint on the measure µ (see [20, p. 54,
Theorem 3]).

We will need the following familiar assertion (see [20, item (ii), p. 57]):

Lemma 1.5. Let

0 ≤ f1 ≤ f2 ≤ · · · ≤ fm ≤ . . .
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be an increasing sequence of nonnegative measurable functions in the Or-
licz space LΦ(Ω) ((Ω,Σ, µ) is a measure space) and let fm → f a.e. Then
limm→∞ ‖fm‖(Φ) ≤ ‖f‖(Φ) ≤ ∞.

2. Orlicz spaces of differential forms. Let X be a Riemannian
manifold of dimension n. Given x ∈ X, denote by (ω(x), θ(x)) the scalar
product of exterior k-forms ω(x) and θ(x) on TxX. This gives a function
x 7→ (ω(x), θ(x)) on X.

Let Φ : R → R and Ψ : R → R be two complementary N -functions.
Denote by L̃Φ(X,Λk) the class of all measurable k-forms ω such that

ρΦ(ω) :=

∫
X

Φ(|ω(x)|)dµX <∞.

Here dµX stands for the volume element of the Riemannian manifold X.
We will identify k-forms differing on a set of measure zero.

Given a (not necessarily orientable) Riemannian manifoldX, introduce
the space LΦ(X,Λk) as the class of all measurable k-forms ω satisfying
the condition

ρΦ(αω) <∞ for some α > 0.

The corresponding Morse–Transue space MΦ(X,Λk) is defined as the
class of all measurable k-forms ω such that

ρΦ(αω) <∞ for all α > 0.

Obviously, L̃Φ(X,Λk) ⊂ LΦ(X,Λk).
As in the case of Orlicz function spaces, the space LΦ(X,Λk) is en-

dowed with two equivalent norms: the gauge norm

‖ω‖(Φ) = inf

{
K > 0 : ρΦ

(
ω

K

)
≤ 1

}
and the Orlicz norm

‖ω‖Φ = sup

{∣∣∣∣∫
X

(ω(x), θ(x)) dµX

∣∣∣∣ : θ ∈ L̃Ψ(X,Λk), ρΨ(θ) ≤ 1

}
.

As in the case of function spaces, it can be proved that LΦ(X,Λk) endowed
with one of these norms is a Banach space.

Obviously, the gauge norm of a k-form ω is nothing but the gauge
norm of its modulus function |ω|. The same holds for the Orlicz norm
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([15, Lemma 2.1]). Moreover, similarly to the case of Orlicz function
spaces ([20, Proposition 10, p. 81]), we have

Lemma 2.1. The Orlicz and gauge norms of a k-form ω ∈ LΦ(X,Λk)
can be calculated by the formulas

‖ω‖Φ = Sω := sup
θ∈MΨ(X,Λk),
‖θ‖(Ψ)≤1

∣∣∣∣∫
X

(ω(x), θ(x))dµX

∣∣∣∣
and

‖ω‖(Φ) = Tω := sup
θ∈MΨ(X,Λk),
‖θ‖Ψ≤1

∣∣∣∣∫
X

(ω(x), θ(x))dµX

∣∣∣∣.
Proof. For θ ∈MΨ(X,Λk) with ‖θ‖(Ψ) ≤ 1 we have∣∣∣∣∫

X

(ω(x), θ(x))dµX

∣∣∣∣ ≤ ∫
X

|ω(x)||θ(x)|dµX ≤

≤ sup
g∈MΨ(X),
‖g‖(Ψ)≤1

∣∣∣∣∫
X

|ω(x)|g(x)dµX

∣∣∣∣ = ‖ |ω| ‖Φ.

The last equality here holds by [20, Proposition 10, p. 81].
Thus,

Sω = sup
θ∈MΨ(X,Λk),
‖θ‖(Ψ)≤1

∣∣∣∣∫
X

(ω(x), θ(x)) dµX

∣∣∣∣ ≤ ‖ |ω| ‖Φ.
On the other hand, let (gm)m∈N be a sequence of functions in MΨ(X)

with ‖gm‖(Ψ) ≤ 1 such that∣∣∣∣∣∣
∫
X

|ω(x)|gm(x)dµX

∣∣∣∣∣∣→ ‖ |ω| ‖Φ as m→∞.

Since ∣∣∣∣∣∣
∫
X

|ω(x)|gm(x)dµX

∣∣∣∣∣∣ ≤
∫
X

|ω(x)||gm(x)|dµX ≤ ‖ |ω| ‖Φ,
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we also have ∫
X

|ω(x)||gm(x)|dµX → ‖ |ω| ‖Φ as m→∞.

Consider the sequence (θm)m∈N of k-forms θm defined by

θm(x) =

{
|gm(x)| ω(x)

|ω(x)| if ω(x) 6= 0,

0 otherwise.

Then ‖θm‖(Ψ) = ‖gm‖ ≤ 1 and∣∣∣∣∣∣
∫
X

(ω(x), θm(x))dµX

∣∣∣∣∣∣ =

∣∣∣∣∫
X

|ω(x)||gm(x)|dµX
∣∣∣∣→ ‖ |ω| ‖Φ

as m→∞. Therefore,

‖ |ω| ‖Φ ≤ sup
θ∈MΨ(X,Λk),
‖θ‖(Ψ)≤1

∣∣∣∣∫
X

(ω(x), θ(x))dµX

∣∣∣∣ = ‖ω‖Φ.

Thus, we get the desired equality for the Orlicz norm.
For the gauge norm, the equality ‖ω‖(Φ) = ‖|ω‖|(Φ) is obvious, and

one must only prove that

Tω = ‖|ω|‖(Φ),

which is done in the same manner as for the Orlicz norm with the use of
[20, Proposition 10, p. 81]. �

Below, when this does not lead to confusion, we use the abbreviations

LΦ = (LΦ, ‖ · ‖Φ), L(Φ) = (LΦ, ‖ · ‖(Φ));

MΦ = (MΦ, ‖ · ‖Φ), M (Φ) = (MΦ, ‖ · ‖(Φ)).

3. The Riesz theorem. Let X be an oriented n-dimensional Rie-
mannian manifold.

For a k-form ω on X, let ∗ω be the Hodge dual of ω (an (n−k)-form).
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The bilinear function

〈ω, θ〉 =

∫
X

ω ∧ θ (1)

defines a pairing between LΦ(X,Λk) and L(Ψ)(X,Λk) (and between
L(Φ)(X,Λk) and LΨ(X,Λk)). The integral on the right-hand side of (1)
exists because

ω ∧ θ = (−1)kn−k(ω, ∗θ)dµX ,

|(ω, ∗θ)X | ≤ |ω|X | ∗ θ|X = |ω|X |θ|X .

Hence, we obtain two versions of the Hölder inequality:

|〈ω, θ〉| ≤ ‖ω‖Φ‖θ‖(Ψ) (2)

and
|〈ω, θ〉| ≤ ‖ω‖(Φ)‖θ‖Ψ. (3)

Assign to each form θ ∈ L(Ψ)(X,Λn−k) the functional

Fθ(ω) =

∫
X

ω ∧ θ. (4)

By (2) and (3), we have

|Fθ(ω)| ≤ ‖ω‖Φ‖θ‖(Ψ); |Fθ(ω)| ≤ ‖ω‖(Φ)‖θ‖Ψ. (5)

Theorem 3.1. If Φ is an N -function then the correspondence θ 7→ Fθ
yields isometric isomorphisms

L(Ψ)(X,Λn−k)
∼=→ (MΦ(X,Λk))′; LΨ(X,Λn−k)

∼=→ (M (Φ)(X,Λk))′.

Proof. Let us prove the first isomorphism.
By (5), ‖Fθ‖ ≤ ‖θ‖(Ψ). Show that an arbitrary continuous func-

tional F ∈ (MΦ(X,Λk))′ is representable uniquely in the form (4). Let
h : V → Rn, V ⊂ X be a local chart of X and let U be an open set
with compact closure clX U ⊂ V ; then U is endowed with two metrics:
the metric ρ of the Riemannian manifold X and the metric ρ̄ induced
by h from the standard metric on Rn. It is not hard to see that the
LΦ-spaces (MΦ-spaces) of k-forms on U LΦ(U,Λk, ρ) and L(Φ)(U,Λk, ρ)
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(MΦ(U,Λk, ρ) and M (Φ)(U,Λk, ρ)) corresponding to these metrics coin-
cide and have equivalent norms. Making use of the Riesz theorem on
the general form of a linear functional on the function space MΦ, we, in-
volving the coordinate representation of differential forms, conclude that
every functional f ∈ (MΦ(U,Λk, ρ̄))′ is uniquely representable in the form

f(α) =

∫
X

α ∧ θf , θf ∈ L(Ψ)(U,Λn−k, ρ̄).

By the equivalence of the norms in MΦ(U,Λk, ρ) and MΦ(U,Λk, ρ̄), the sa-
me holds for functionals in MΦ(U,Λk, ρ). Therefore, for F ∈(MΦ(X,Λk))′

and an open set U with compact closure, there is a unique form θU ∈
∈ L(Ψ)(U,Λn−k) such that

F (ω) =

∫
U

ω ∧ θU for every ω ∈MΦ(U,Λk).

Given two sets U1 and U2 as above, the forms θU1
and θU2

coincide
on U1 ∩ U2 by the uniqueness of θU1∩U2

. Thus, all forms θU defined for
different U agree with each other and thus define an (n−k)-form θ on X.
The form θ belongs to L(Ψ)(X,Λn−k) locally, satisfies the condition

F (ω) =

∫
X

ω ∧ θ for all ω ∈MΦ(X,Λk) with compact support,

and is defined by this condition uniquely.

Consider a compact set Y ⊂ X. Let g ∈ MΦ(X) be a function with
compact support contained in Y having ‖g‖Φ ≤ 1. Let βg be the k-form
on X defined by the formula

βg(x) =

{
(−1)k(n−k) g(x)

|θ(x)| (∗θ(x)) if x ∈ Y and θ(x) 6= 0;

0 otherwise.

We have

F (βg) =

∫
Y

βg∧θ = (−1)k(n−k)

∫
Y

g(x)

|θ(x)|
(∗θ(x))∧θ(x) =

∫
Y

g(x)|θ(x)|dµX .
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Since ‖g‖Φ ≤ 1, this gives∣∣∣∣∣∣
∫
Y

g(x)|θ(x)|dµX

∣∣∣∣∣∣ = |F (βg)| ≤ ‖F‖.

Hence, using Lemma 2.1, we obtain

‖θ|Y ‖(Ψ) = ‖ |θ|Y | ‖(Ψ) = sup
g∈MΦ(Y ); ‖g‖Φ≤1

∣∣∣∣∣∣
∫
Y

g(x)|θ(x)|dµX

∣∣∣∣∣∣ ≤ ‖F‖.
Let Y1 ⊂ Y2 ⊂ · · · ⊂ Ym ⊂ · · · ⊂ X be an exhaustion of X by

compact sets and let θm be the restriction of θ to Ym. Put fm = |θm|.
Then the sequence {fm}m∈N satisfies the conditions of Lemma 1.5. Since
‖fm‖(Ψ) ≤ ‖F‖, the function lim

m→∞
fm = |θ| lies in L(Ψ)(X), and so θ ∈

∈ L(Ψ)(X,Λn−k) and

‖θ‖(Ψ) = lim
m→∞

‖θm‖(Ψ) ≤ ‖F‖. (6)

The functionals F and Fθ coincide on the set of forms in MΦ(X,Λk)
having compact support, which is, as in the case of Orlicz function spaces,
dense in MΦ(X,Λk). Thus,

F (ω) = ω ∧ θ

for all ω ∈ MΦ(X,Λk). Combining (2) and (6), we infer that ‖Fθ‖ =
= ‖θ‖(Ψ).

Let us now establish the second isomorphism

LΨ(X,Λn−k)
∼=→ (M (Φ)(X,Λk))′.

Let F ∈ (M (Φ)(X,Λk))′. Then, as above, we see that there exists
a unique (n−k)-form θ belonging to LΨ locally that satisfies the condition

F (ω) =

∫
X

ω ∧ θ for all ω ∈M (Φ)(X,Λk) with compact support.

Using Lemma 2.1, we verify in the same manner as for ‖ · ‖Ψ that, given
any compact set Y ⊂ X,

‖θ|Y ‖Ψ ≤ ‖F‖.
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Because of the inequalities

‖ · ‖(Ψ) ≤ ‖ · ‖Ψ ≤ 2‖ · ‖(Ψ),

we have
‖θ|Y ‖(Ψ) ≤ ‖F‖.

Taking an exhaustion Y1 ⊂ Y2 ⊂ · · · ⊂ Ym ⊂ · · · ⊂ X of X by compact
sets, we as above conclude that θ ∈ LΨ.

Now, the functionals F and Fθ coincide on the dense set of forms with
compact support in M (Φ)(X,Λk) and hence on M (Φ)(X,Λk). By Lem-
ma 2.1,

‖F‖ = ‖Fθ‖ = sup
θ∈MΨ(X,Λk),
‖θ‖(Φ)≤1

∣∣∣∣∫
X

ω ∧ θ
∣∣∣∣ = ‖θ‖Φ.

The theorem is completely proved. �

4. The dual spaces to LΦ-related spaces of differential forms.
Throughout this section, X is an oriented smooth Riemannian manifold of
dimension n and (Φ1,Ψ1) and (Φ2,Ψ2) are pairs of conjugate N -functions.

Introduce some spaces of differential forms.
For A ∈ {L,M} and 〈Φi〉 ∈ {Φi, (Φi)}, denote by Ak〈Φ1〉,〈Φ2〉(X) the

space AΦ1(X,Λk)⊕AΦ2(X,Λk+1) with the norm

‖(α, β)‖〈Φ1〉,〈Φ2〉 = ‖α‖〈Φ1〉 + ‖β‖〈Φ2〉.

Given (α, β) ∈Mk
〈Φ1〉,〈Φ2〉(X) and (ω, θ) ∈ Ln−k−1

〈Ψ2〉,〈Ψ1〉
(X), where

〈Ψi〉 =

{
(Ψi) if 〈Φi〉 = Φi,

Ψi if 〈Φi〉 = (Φi),

we put
〈(α, β), (ω, θ)〉 = (−1)k〈α, θ〉+ 〈β, ω〉. (7)

Theorem 3.1 implies that the pairing (7) defines an isometric isomorphism

(Mk
〈Φ1〉,〈Φ2〉(X))′ ∼= Ln−k−1

〈Ψ2〉,〈Ψ1〉
(X).

Moreover,

|〈(α, β), (ω, θ)〉| ≤ ‖(α, β)‖〈Φ1〉,〈Φ2〉 · ‖(ω, θ)‖〈Ψ2〉,〈Ψ1〉.
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A differential (k + 1)-form θ ∈ L1
loc(X,Λk+1) on X is called the weak

exterior differential (or derivative) of a k-form ω ∈ L1
loc(X,Λk) (which is

written as dω = θ) if, ∫
X

θ ∧ u = (−1)k+1

∫
X

ω ∧ du

for any u ∈ Dn−k−1(X), where Dl(X) is the set of smooth l-forms on X
with compact support included in IntX.

Let Φ1 and Φ2 be N -functions. For 0 ≤ k ≤ n, put

Ωk〈Φ1〉,〈Φ2〉(X) =
{
ω ∈ L〈Φ1〉(X,Λk) : dω ∈ L〈Φ2〉(X,Λk+1)

}
.

This is a Banach space with the norm

‖ω‖〈Φ1〉,〈Φ2〉 = ‖ω‖〈Φ1〉 + ‖dω‖〈Φ2〉.

From now on we assume that Φ1,Φ2 ∈ ∆2 ∩ ∇2, and hence also
Ψ1,Ψ2 ∈ ∆2 ∩∇2.

If Φ ∈ ∆2∩∇2 then, as is well known, the spaces LΦ and MΦ coincide
and hence, by Theorem 3.1, the space LΦ is reflexive. Thus, there is no
need in the spacesM∗∗,∗. We will often assume that the space Ωk〈Φ1〉,〈Φ2〉(X)

is embedded in Lk〈Φ1〉,〈Φ2〉(X) by identifying a form α ∈ Ωk〈Φ1〉,〈Φ2〉(X) with

the pair (α, dα) ∈ Lk〈Φ1〉,〈Φ2〉(X).

Given a subspace H ⊂ Lk〈Φ1,Φ2〉, denote by H⊥ the annihilator of H

in Ln−k−1

〈Ψ2〉,〈Ψ1〉
(X) with respect to the pairing (7). Since this pairing satisfies

〈(α, β), (ω, θ)〉 = (−1)k(n−k−1)〈(ω, θ), (α, β)〉,

there is no difference between the pairings between Lk〈Φ1〉,〈Φ2〉(X) and

Ln−k−1

〈Ψ2〉,〈Ψ1〉
(X) and between Ln−k−1

〈Ψ2〉,〈Ψ1〉
(X) and Lk〈Φ1〉,〈Φ2〉(X).

The definition of Ωk〈Φ1〉,〈Φ2〉(X) implies that

Ωk〈Φ1〉,〈Φ2〉(X)=(Dn−k−1(X))⊥.

Put Ωk〈Φ1〉,〈Φ2〉,0(X)=(Ωn−k−1

〈Ψ2〉,〈Ψ1〉
(X))⊥. Since Dn−k−1(X)⊂Ωn−k−1

〈Ψ2〉,〈Ψ1〉
(X),

we have Ωk〈Φ1〉,〈Φ2〉,0(X) ⊂ Ωk〈Φ1〉,〈Φ2〉(X).
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Observe that if Ωk〈Φ1〉,〈Φ2〉,0(X) = Ωk〈Φ1〉,〈Φ2〉(X) then Ωn−k−1

〈Ψ2〉,〈Ψ1〉,0
(X) =

= Ωn−k−1

〈Ψ2〉,〈Ψ1〉
(X).

Lemma 4.1. The following hold for Φ1,Φ2 ∈ ∆2 ∩∇2:
(1) Smooth forms constitute a dense set in Ωk〈Φ1〉,〈Φ2〉(X).

(2) Smooth forms with compact support constitute a dense set
in Ωk〈Φ1〉,〈Φ2〉,0(X).

Proof. Item (1) stems from the only theorem of [15] about the properties
of the de Rham regularization operators in Orlicz spaces of differential
forms. Prove (2). Denote the closure ofDk(X) in L〈Φ1〉,〈Φ2〉(X) byDk(X).
Then, by [21, Theorem 4.7],

Dk(X) = ((Dk)⊥)⊥ =
(

Ωk〈Ψ2〉,〈Ψ1〉
(X)

)⊥
= Ωk〈Φ1〉,〈Φ2〉,0(X).

�

Lemma 4.2. If Φ1,Φ2 ∈ ∆2 ∩ ∇2 and a form ω ∈ Ωk〈Φ1〉,〈Φ2〉(X) has

compact support then ω ∈ Ωk〈Φ1〉,〈Φ2〉,0(X).

Proof. Suppose that ω ∈ Ωk〈Φ1〉,〈Φ2〉(X) has compact support. Assume

first that θ is a smooth (n − k − 1)-form. By Lemma 4.1, there exists
a sequence {ωj} of smooth forms with compact support such that ωj → ω
in norm as j →∞. Then

〈(ω, dω), (θ, dω)〉 = lim
j→∞
〈(ωj , dωj), (θ, dθ)〉 =

= lim
j→∞

∫
X

[
(−1)kωj ∧ dθ + dωj ∧ θ

]
= lim
j→∞

d(ωj ∧ θ) = 0. (8)

The last equality in (8) is due to the Stokes theorem. Now, let θ be
an arbitrary form in Ωn−k−1

〈Ψ2〉,〈Ψ1〉
(X). By Lemma 4.1, there is a sequence

{θj} of smooth forms converging to θ in norm as j →∞. Then

〈(ω, dω), (θ, dω)〉 = lim
j→∞
〈(ω, dω), (θj , dθj)〉 = 0.

Thus, θ ∈ Ωk〈Φ1〉,〈Φ2〉,0(X). �

Each pair of forms (ω, θ) ∈ Ln−k
〈Ψ2〉,〈Ψ1〉

(X) defines by (7) a conti-

nuous linear functional on Lk〈Φ1〉,〈Φ2〉(X) and hence on Ωk〈Φ1〉,〈Φ2〉(X) and
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Ωk〈Φ1〉,〈Φ2〉,0(X). On the last two spaces, this functional is defined by the
formula

F (α) =

∫
X

[(−1)kα ∧ θ + dα ∧ ω]. (9)

Theorem 4.3. If Φ1,Φ2 ∈ ∆2 ∩ ∇2 and Ψ1,Ψ2 are the correspon-
ding complementary functions then any continuous linear functional on
Ωk〈Φ1〉,〈Φ2〉(X) (on Ωk〈Φ1〉,〈Φ2〉,0(X)) can be represented in the form (9).

A pair of forms (ω, θ) defines the zero functional on Ωk〈Φ1〉,〈Φ2〉(X) (on

Ωk〈Φ1〉,〈Φ2〉,0(X)) if and only if ω ∈ Ωn−k−1

〈Ψ2〉,〈Ψ1〉,0
(X) and θ = dω (ω ∈

∈ Ωn−k−1

〈Ψ2〉,〈Ψ1〉
(X) and θ = dω). The norm of the functional (9) on

Ωk〈Φ1〉,〈Φ2〉(X) (on Ωk〈Φ1〉,〈Φ2〉,0(X)) has the form

‖F‖ = inf
{
‖θ + dβ‖〈Ψ1〉 + ‖ω + β‖〈Ψ2〉 : β ∈ Ωn−k−1

〈Ψ2〉,〈Ψ1〉,0
(X)

}
(
‖F‖ = inf

{
‖θ + dβ‖〈Ψ1〉 + ‖ω + β‖〈Ψ2〉 : β ∈ Ωn−k−1

〈Ψ2〉,〈Ψ1〉
(X)

} )
.

Proof. In accordance with [21, Theorem 4.9], if H is a closed subspace
in a Banach space Y then Y ′/H⊥ = H ′, where the isomorphism is induced
by the canonical pairing between Y and Y ′. Therefore,

(
Ωk〈Φ1〉,〈Φ2〉(X)

)′
= Ln−k−1

〈Ψ2〉,〈Ψ1〉
(X)

/(
Ωk〈Φ1〉,〈Φ2〉(X)

)⊥
=

= Ln−k−1

〈Ψ2〉,〈Ψ1〉
(X)

/
Ωn−k−1

〈Ψ2〉,〈Ψ1〉,0
(X) ;

(
Ωk〈Φ1〉,〈Φ2〉,0(X)

)′
= Ln−k−1

〈Ψ2〉,〈Ψ1〉
(X)

/(
Ωk〈Φ1〉,〈Φ2〉,0(X)

)⊥
=

= Ln−k−1

〈Ψ2〉,〈Ψ1〉
(X)

/
Ωn−k−1

〈Ψ2〉,〈Ψ1〉
(X) .

�

Theorem 4.4. If Φ1,Φ2 ∈ ∆2 ∩∇2 and Ψ1,Ψ2 are their complementary
N -functions then the dual of the space Ωk〈Φ1〉,〈Φ2〉(X) is isomorphic to the

completion of Dn−k(X) with respect to the norm

‖ω‖ = inf
{
‖ω + dθ‖〈Ψ1〉 + ‖θ‖〈Ψ2〉 : θ ∈ Dn−k−1(X)

}
. (10)
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This isomorphism is given by the action

〈α, ω〉 = (−1)k
∫
X

α ∧ ω. (11)

Proof. Consider the embedding j : L〈Ψ1〉(X,Λn−k) → Ln−k−1

〈Ψ2〉,〈Ψ1〉
(X) de-

fined by j(ω) = (0, ω). Let

π : Ln−k−1

〈Ψ2〉,〈Ψ1〉
(X)→ Ln−k−1

〈Ψ2〉,〈Ψ1〉
(X)

/
Ωn−k−1

〈Ψ2〉,〈Ψ1〉,0
(X)

be the canonical projection. It is not hard to see that π ◦ j is a monomor-
phism. Since the set S = {(ω, θ) : ω ∈ Dn−k−1(X), θ ∈ Dn−k(X)} is

dense in Ln−k−1

〈Ψ2〉,〈Ψ1〉
(X), π(S) is dense in Ln−k−1

〈Ψ2〉,〈Ψ1〉
(X)

/
Ωn−k−1

〈Ψ2〉,〈Ψ1〉,0
(X) .

Let ω ∈ Dn−k−1(X), θ ∈ Dn−k(X). Since (ω, dω) ∈ Ωn−k−1

〈Ψ2〉,〈Ψ1〉,0
(X), we

have π(ω, θ) = π(0, θ− dω) = π ◦ j(θ− dω). Hence, the set π ◦ j(Dn−k) is

dense in Ln−k−1

〈Ψ2〉,〈Ψ1〉
(X)

/
Ωn−k−1

〈Ψ2〉,〈Ψ1〉,0
(X) . Moreover,

‖π ◦ j(ω)‖
Ln−k−1

〈Ψ2〉,〈Ψ1〉
(X)

/
Ωn−k−1

〈Ψ2〉,〈Ψ1〉,0
(X)

=

= inf
{
‖ω + dθ‖〈Ψ1〉 + ‖θ‖〈Ψ2〉 : θ ∈ Ωn−k−1

〈Ψ2〉,〈Ψ1〉,0
(X)

}
.

By Lemma 4.1(2), the set Dn−k−1(X) is dense in Ωn−k−1

〈Ψ2〉,〈Ψ1〉,0
(X). Hence,

‖π ◦ j(ω)‖
Ln−k−1

〈Ψ2〉,〈Ψ1〉
(X)

/
Ωn−k−1

〈Ψ2〉,〈Ψ1〉,0
(X)

=

= inf
{
‖ω + dθ‖〈Ψ1〉 + ‖θ‖〈Ψ2〉 : θ ∈ Dn−k−1(X)

}
.

Thus, the space Ln−k−1

〈Ψ2〉,〈Ψ1〉
(X)

/
Ωn−k−1

〈Ψ2〉,〈Ψ1〉,0
(X) is isomorphic to the com-

pletion of Dn−k(X) with respect to the norm (10). Now, in view of [21,
Theorem 4.9], ifH is a closed subspace in a Banach space Y then (Y/H)′ =
= H⊥, where the isomorphism is induced by the canonical pairing be-

tween Y and Y ′. Thus,
(
Ln−k−1

〈Ψ2〉,〈Ψ1〉
(X)

/
Ωn−k−1

〈Ψ2〉,〈Ψ1〉,0
(X)

)′
=

=
(

Ωn−k−1

〈Ψ2〉,〈Ψ1〉,0
(X)

)⊥
= Ωk〈Φ1〉,〈Φ2〉(X), and the first claim of the theo-

rem is established.
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Further, since

〈(α, dα), (0, ω)〉 = (−1)k
∫
X

α ∧ ω,

the form α ∈ Ωk〈Φ1〉,〈Φ2〉(X) acts at the forms π ◦ j(ω), ω ∈ Dn−k(X), by
the formula

〈α, π ◦ j(ω)〉 = (−1)k
∫
X

α ∧ ω.

The theorem is proved. �

5. Hölder–Poincaré duality for LΦI ,ΦII
-cohomology. Let X be

an oriented Riemannian manifold of dimension n.
Given N -functions ΦI and ΦII , consider the spaces

Zk〈ΦII〉(X) = {ω ∈ L〈ΦII〉(X,Λk) : dω = 0};

Bk〈ΦI〉,〈ΦII〉(X) = {ω ∈ L〈ΦII〉(X,Λk) :

ω = dβ for some β ∈ L〈ΦI〉(X,Λk−1)}.

Denote by B
k

〈ΦI〉,〈ΦII〉(X) the closure of Bk〈ΦI〉,〈ΦII〉(X) in

L〈ΦII〉(X,Λk). The quotient spaces

Hk
〈ΦI〉,〈ΦII〉(X) := Zk〈ΦII〉(X)/Bk〈ΦI〉,〈ΦII〉(X)

and

H
k

〈ΦI〉,〈ΦII〉(X) := Zk〈ΦII〉(X)/B
k

〈ΦI〉,〈ΦII〉(X)

are called the kth L〈ΦI〉,〈ΦII〉-cohomology and the kth reduced L〈ΦI〉,〈ΦII〉-
cohomology of the Riemannian manifold X, the latter cohomology being
a Banach space.

If ΦI = ΦII = Φ then we use the notations Ωk〈Φ〉(X), Hk
〈Φ〉(X), and

H
k

〈Φ〉(X) instead of Ωk〈Φ〉,〈Φ〉(X), Hk
〈Φ〉,〈Φ〉(X), and H

k

〈Φ〉,〈Φ〉(X) respec-

tively. Thus, the L〈Φ〉-cohomology Hk
〈Φ〉(X) (respectively, the reduced

L〈Φ〉-cohomology H
k

〈Φ〉(X)) is the kth cohomology (respectively, the kth
reduced cohomology) of the cochain complex {Ω∗〈Φ〉(X), d}.
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The kth interior reduced L〈ΦI〉,〈ΦII〉-cohomology of a Riemannian ma-
nifold X is the Banach space

H
k

〈ΦI〉,〈ΦII〉,0(X) = Zk〈ΦI〉,〈ΦII〉,0(X)
/
dDk−1(X) ,

where dDk−1(X) is the closure of dDk(X) in L〈ΦII〉(X,Λk) and

Zk〈ΦI〉,〈ΦII〉,0(X) = Ker
{
d : Ωk〈ΦI〉,〈ΦII〉 → Ωk+1

〈ΦII〉,〈ΦII〉

}
∩Dk(X)

Ωk
〈ΦI〉,〈ΦII〉 .

Thus, a k-form θ belongs to Zk〈ΦI〉,〈ΦII〉,0(X) if and only if θ ∈
∈ L〈ΦI〉(X,Λk), dθ = 0, and there is a sequence is a weakly closed forms
θj ∈ Dk(X) such that

‖θj − θ‖〈ΦI〉 → 0 and ‖dθj‖〈ΦII〉 → 0 as j →∞.

The quotient (semi)norm on each of the above-introduced cohomolo-
gy spaces depends on the choice of the norm on LΦI and LΦII but the
resulting topology does not.

From now on, we assume all N -functions under consideration to belong
to ∆2 ∩∇2.

In [11], Gol′dshtein and Troyanov realized the kth Lq,p-cohomology
as the kth cohomology of some Banach complex. Here we apply this
approach to L〈ΦI〉,〈ΦII〉-cohomology.

Fix an (n+ 1)-tuple of N -functions F = {Φ0,Φ1, . . . ,Φn} and put

ΩkF (X) = ΩkΦk,Φk+1
(X); Ωk(F)(X) = Ωk(Φk),(Φk+1)(X).

Use the unified notation Ωk〈F〉(X) for ΩkF (X) and Ωk(F)(X). Since the

weak exterior differential is a bounded operator d : Ωk〈F〉(X)→ Ωk+1
〈F〉 (X),

we obtain a Banach complex

0→ Ω0
〈F〉(X)→ Ω1

〈F〉(X) → · · · → Ωk〈F〉(X)→ · · · → Ωn〈F〉(X)→ 0.

The L〈F〉-cohomology Hk
〈F〉(X) (respectively, the reduced L〈F〉-cohomology

H
k

〈F〉(X)) of X is the kth cohomology (respectively, the kth reduced co-
homology) of the Banach complex (Ω∗〈F〉, d).
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The above-defined cohomology spaces Hk
〈F〉(X) and H

k

〈F〉(X) in fact
depend only on Φk−1 and Φk:

Hk
〈F〉(X) = Hk

〈Φk−1〉,〈Φk〉(X) = Zk〈Φk〉(X)
/
Bk〈Φk−1〉,〈Φk〉 ;

H
k

〈F〉(X) = H
k

〈Φk−1〉,〈Φk〉(X) = Zk〈Φk〉(X)
/
B
k

〈Φk−1〉,〈Φk〉 .

Denote by Ωk〈F〉,0(X) the closure of Dk(X) in Ωk〈F〉(X). The interior
reduced L〈F〉-cohomology of X is the reduced cohomology of the Banach
complex

0→ Ω0
〈F〉,0(X)→ Ω1

〈F〉,0(X)→ · · · → Ωk〈F〉,0(X)→ · · · → Ωn〈F〉,0(X)→ 0;

H
k

〈F〉,0(X) = H
k

〈Φk〉,〈Φk+1〉,0(X) = Zk〈Φk〉,〈Φk+1〉,0(X)

/
dDk−1(X)

LΦk (X,Λk)

.

The dual of an (n + 1)-tuple of N -functions F = {Φ0,Φ1, . . . ,Φn} is
the (n+ 1)-tuple F ′ = {Ψ0,Ψ1, . . . ,Ψn}, where Ψk and Φn−k are comple-
mentary N -functions for all k. Henceforth, we assume all N -functions to
belong to the class ∆2 ∩∇2.

Fix an (n + 1)-tuple of N -functions F = {Φ0,Φ1, . . . ,Φn} and let
F ′ = {Ψ0,Ψ1, . . . ,Ψn} be its dual (n + 1)-tuple. For −1 ≤ k ≤ n,
introduce the vector spaces

Pk〈F〉(X) = Lk〈Φk〉,〈Φk+1〉(X) = L〈Φk〉(X,Λk)⊕ L〈Φk+1〉(X,Λk+1)

(here L〈Φk〉(X,Λk) = 0 for k = −1, n + 1). If (α, β) ∈ P〈F〉(X) with

α ∈ L〈Φk〉(X,Λk) and β ∈ L〈Φk+1〉(X,Λk+1) then P〈F〉(X) is endowed
with the norm

‖(α, β)‖P〈F〉(X) = ‖α‖〈Φk〉 + ‖β‖〈Φk+1〉.

Let dP : Pk〈F〉(X)→ Pk+1
〈F〉 (X) be defined as

dP(α, β) = (β, 0).

The so-obtained Banach complex
(
P∗〈F〉(X), dP

)
has trivial cohomology.

Lemma 5.1. Let F = {Φ0,Φ1, . . . ,Φn} be an (n+1)-tuple of N -functions
and let F ′ = {Ψ0,Ψ1, . . . ,Ψn} be its dual (n+ 1)-tuple. Then the spaces
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Pk〈F〉(X) and Pn−k−1

〈F ′〉
(X) (here, as above, the bar changes the type of the

norm) are dual with respect to the pairing

〈(α, β), (ω, θ)〉 =

∫
X

(
(−1)kα ∧ ω + β ∧ θ

)
. (12)

Lemma 5.1 easily follows from Theorem 4.3.

Lemma 5.2. The operators

d : Pk−1

〈F ′〉
(X)→ Pk〈F ′〉(X) and d : Pn−k−1

〈F〉 (X)→ Pn−k〈F〉 (X)

are adjoint.

Proof. If (α, β) ∈ Pk−1

〈F ′〉
(X) and (ω, θ) ∈ Pn−k−1

〈F〉 (X) then

〈d(α, β), (ω, θ)〉 = 〈(β, 0), (ω, θ)〉 =

∫
X

(−1)kβ ∧ θ,

〈(α, β), d(ω, θ)〉 = 〈(α, β), (θ, 0)〉 =
∫
X

β ∧ θ. �

Put

Σk〈F〉(X) =
{

(ω, dω) ∈ Pk〈F〉(X) : ω ∈ Ωk〈F〉(X)
}

;

Σk〈F〉,0(X) =
{

(ω, dω) ∈ Pk〈F〉(X) : ω ∈ Ωk〈F〉,0(X)
}
.

Clearly, these spaces form Banach complexes Σ〈F〉(X) and Σ〈F〉,0(X)
which are isomorphic to Ω〈F〉(X) and Ω〈F〉,0(X) respectively.

Introduce the following quotient complex of P〈F ′〉(X):

A∗〈F ′〉(X) = P∗〈F ′〉(X)
/

Σ∗〈F ′〉,0(X) .

What was said above implies:
Proposition 5.3. The graded vector space A∗

〈F ′〉
(X) possesses the fol-

lowing properties:

(1) A∗
〈F ′〉

(X) is a Banach space with respect to the norm

‖(ω, θ)‖A = inf
{
‖ω + ρ‖〈Ψk〉 + ‖θ + dρ‖〈Ψk+1〉

}
.
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(2) Ak
〈F ′〉

(X) is dual to Σn−k−1
〈F〉 (X) with respect to the pairing (12).

(3) The differential dP : Pk
〈F ′〉

(X) → Pk+1

〈F ′〉
(X) induces a differential

dA : Ak
〈F ′〉

(X) → Ak+1

〈F ′〉
(X) and (A∗

〈F ′〉
(X), dA) is a Banach com-

plex.

(4) The operators dA : Ak−1

〈F ′〉
(X) → Ak

〈F ′〉
(X) and dΣ : Σn−k−1

〈F〉 (X) →
→ Σn−k〈F〉 (X) are adjoint up to sign with respect to the pairing (12).

Examine the cohomology of the Banach complex (A∗
〈F ′〉

(X)(X), dA).

If we put

Zk
(
A∗〈F ′〉(X)

)
= Ker dA : Ak〈F ′〉(X)→ Ak+1

〈F ′〉
(X)

and
Bk
(
A∗〈F ′〉(X)

)
= Im dA

(
Ak−1

〈F ′〉
(X)

)
and denote by B

k
(
A∗
〈F ′〉

(X)
)

the closure of Bk
(
A∗
〈F ′〉

(X)
)

then the

cohomology and the reduced cohomology of A∗
〈F ′〉

(X) are the spaces

Hk
(
A∗〈F ′〉(X)

)
= Zk

(
A∗〈F ′〉(X)

)/
Bk
(
A∗〈F ′〉(X)

)
;

H
k
(
A∗〈F ′〉(X)

)
= Zk

(
A∗〈F ′〉(X)

)/
B
k
(
A∗〈F ′〉(X)

)
.

We will need the following assertion [11, Lemma 3.1]:

Lemma 5.4. Let I : Y0 × Y1 → R be a duality between two reflexive
Banach spaces. Let B0, B1, A0, A1 be linear subspaces such that

B0 ⊂ A0 = B⊥1 ⊂ Y0; B1 ⊂ A1 = B⊥0 ⊂ Y1.

Then the pairing Ī : (A0/B0)× (A1/B1)→ R (with the bars standing for
closures) is well-defined and induces duality between A0/B0 and A1/B1.

Lemma 5.5. The pairing (12) induces a pairing between the reduced
cohomologies of A∗

〈F ′〉
(X) and Σ∗〈F〉(X).

Proof. We have

Bk−1(A∗〈F ′〉(X)) ⊂ Zk−1(A∗〈F ′〉(X)) =
(
Bn−k(Σ∗〈F〉(X))

)⊥
⊂ Ak−1

〈F ′〉
(X)),
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and, similarly,

Im dn−k−1
Σ ⊂ Ker dn−kΣ =

(
Im dk−2

A
)⊥ ⊂ Σn−k〈F〉 (X),

where the equalities are due to the fact that dΣ and dA are adjoint ope-
rators. It remains to apply Lemma 5.4 with X0 = Ak−1

〈F ′〉
and X1 =

= Σn−k〈F〉 (X). �

Lemma 5.6. The reduced cohomology of the Banach complex
(A∗
〈F ′〉,0

(X), dA) is isomorphic to the interior cohomology of X up to

a shift:

H
k

〈F ′〉(X) ∼= H
k−1

(
A∗〈F ′〉(X)

)
.

The isomorphism is induced by the mapping j : Zk
〈F ′〉,0

(X) → Pk−1

〈F ′〉
(X),

j(β) = (0, β).

Proof. Every element in Ak−1

〈F ′〉
(X) is represented by an element (α, β) ∈

∈ Pk−1

〈F ′〉
(X) modulo Σk−1

〈F ′〉,0
(X); thus, (α, β) and (α1, β1) represent one

element in Ak−1

〈F ′〉
(X) if and only if α − α1 = ω and β − β1 = dω, where

ω ∈ Σk−1

〈F ′〉,0
(X).

Further, (α, β) ∈ Pk−1

〈F ′〉
(X) represents an element of Zk−1

(
A∗
〈F ′〉

(X)
)

whenever dP(α, β) = (β, 0) ∈ Σk
〈F ′〉,0

(X), that is, β ∈ Zk
〈F ′〉,0

(X). Thus,

Zk−1
(
A∗〈F ′〉(X)

)
=
{

(α, β) ∈ Pk−1

〈F ′〉
(X) : β ∈ Zk〈F ′〉,0(X)

}/
Σk−1

〈F ′〉,0
(X).

Similarly, (α, β) represents an element in Bk−1
(
A∗
〈F ′〉

(X)
)

if there is

(γ, δ) ∈ Pk−2

〈F ′〉
(X) with (α, β) = dA(γ, δ) = (δ, 0) modulo Σk−1

〈F ′〉,0
(X),

which means that β = dω ∈ Bk
〈F ′〉,0

(X). Thus,

Bk−1
(
A∗〈F ′〉(X)

)
=
{

(α, β) ∈ Pk−1

〈F ′〉
(X) : β ∈ Bk〈F ′〉,0(X)

}/
Σk−1

〈F ′〉,0
(X)

and

B
k−1

(
A∗〈F ′〉(X)

)
=
{

(α, β) ∈ Pk−1

〈F ′〉
(X) : β ∈ Bk〈F ′〉,0(X)

}/
Σk−1

〈F ′〉,0
(X).
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Therefore,

Hk−1
(
A∗〈F ′〉(X)

)
=

{
(α, β) ∈ Pk−1

〈F ′〉
(X) : β ∈ Zk

〈F ′〉,0
(X)

}
{

(α̃, β̃) ∈ Pk−1

〈F ′〉
(X) : β̃ ∈ Bk

〈F ′〉,0
(X)

} =

=

{
(0, β) ∈ Pk−1

〈F ′〉
(X) : β ∈ Zk

〈F ′〉,0
(X)

}
{

(0, β̃) ∈ Pk−1

〈F ′〉
(X) : β̃ ∈ Bk

〈F ′〉,0
(X)

} .
Thus, the embedding j : Zk

〈F ′〉,0
(X) → Pk−1

〈F ′〉
(X), j(β) = (0, β), induces

an algebraic isomorphism j∗ : Hk
〈F ′〉,0

(X)
∼=→ Hk−1

(
A∗
〈F ′〉

(X)
)

. We also

have the relation

H
k−1

(
A∗〈F ′〉(X)

)
=

{
(0, β) ∈ Pk−1

〈F ′〉
(X) : β ∈ Zk

〈F ′〉,0
(X)

}
{

(0, β̃) ∈ Pk−1

〈F ′〉
(X) : β̃ ∈ Bk〈F ′〉,0(X)

} .
The quotient on the right-hand side is endowed with the natural quo-

tient norm and j induces an isometric isomorphism j̄∗ : H
k

〈F ′〉,0(X)
∼=→

∼=→ H
k−1

(
A∗
〈F ′〉

(X)
)

. �

Thus, we have

Theorem 5.7. Let X be a smooth n-dimensional oriented Riemannian
manifold and let F = (Φ0,Φ1, . . .Φn) and F ′ = (Ψ0,Ψ1, . . . ,Ψn) be dual
sequences of N -functions with Φi ∈ ∆2 ∩ ∇2. Then the Banach spaces

H
k

〈F〉(X) and H
n−k
〈F ′〉,0(X) are dual with respect to the pairing 〈ω, θ〉 =

=
∫
X

ω ∧ θ for ω ∈ Zk〈F〉(X) and θ ∈ Zn−k
〈F ′〉,0

(X).

This gives the following duality theorem for LΦI ,ΦII
-cohomology:

Theorem 5.8. Let X be an oriented n-dimensional Riemannian mani-
fold. If ΦI ,ΦII are N -functions belonging to ∆2 ∩ ∇2 and ΨI and ΨII

are their respective complementary N -functions then H
k

ΦI ,ΦII
(X) is iso-

morphic to the dual of H
n−k
(ΨII),(ΨI),0(X) and H

k

(ΦI),(ΦII)(X) is isomorphic

to the dual of H
n−k
ΨII ,ΨI ,0(X). The dualities are given by the pairing

〈[ω], [θ]〉 =

∫
X

ω ∧ θ.
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Proof. The theorem results from Theorem 5.7 by considering any se-
quence of N -functions (Φ0, . . . ,Φn) with Φk−1 = ΦI and Φk = ΦII and
its dual sequence. �
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