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STRUCTURE OF KELLER MAPPINGS,
TWO-DIMENSIONAL CASE

Abstract. A Keller map is a polynomial mapping f : Rn → Rn

(or Cn → Cn) with the Jacobian Jf ≡ const 6= 0. The Jacobian
conjecture was first formulated by O. N. Keller in 1939. In the
modern form it supposes injectivity of a Keller map. Earlier, in
the case n = 2, the author gave a complete description of Keller
maps with deg f ≤ 3. This paper is devoted to the description of
Keller maps for which deg f ≤ 4. Significant differences between
these two cases are revealed, which, in particular, indicate the
irregular structure of Keller maps even in the case of n = 2.
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Let us denote the set of all polynomial mappings f = (f1, . . . , fn) :
Rn → Rn (or Cn → Cn) of degree m ∈ N by Pn(m): fk is a polynomial
of n variables of degree deg fk ≤ m for each k = 1, . . . , n. As usual, Df is
for the Jacobi matrix and Jf for the Jacobian. The Jacobian Conjecture
(JC) formulated by Keller [3] in 1939 in its modern form is:

If f is a polynomial mapping and Jf ≡ const 6= 0 then f is injective
in Rn (Cn).

The proof of the conjecture would allow to use it widely in a number
of branches of mathematics. Beside the one given above, other equivalent
formulations also exist. Many publications are devoted to this conjecture:
see, e.g., [1], [2], [4], [6], [11]. In particular, in [10] the conjecture is proved
for m = 2 for any n. In [5] it is checked for f ∈ P2(100). However, it has
not been proved neither to be true nor to be false for the general case of
any n. It is included in the list of ”Mathematical Problems for the Next
Century” [8].
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A polynomial map f is called a Keller map if Jf ≡ const 6= 0. It is
obvious that it is enough to prove the JC for the Keller mappings with
Jf ≡ 1 and Df(0) = I (I is for the identity matrix, f(0) = 0). Therefore
these properties are assumed in the sequel.

As the conjecture has neither been proved nor rejected for many years,
it seems important to try to describe Keller mappings or their subclasses
and then apply criteria or sufficient conditions of injectivity. Besides,
Keller mappings for which the JC is true (see, e.g., [1]) are widely used
in applications, which also make such study important.

In [9] Keller mappings were completely described for n = 2 and m = 3:
Theorem A. [9] Let G ∈ P2(3), G(0) = 0, DG(0) = I. Then JG(x, y) ≡ 1
if and only if G = A−1 ◦ g ◦A, where g(x, y) = (U(x, y), V (x, y)),

U(x, y) = x+α2(x+y)2+α3(x+y)3, V (x, y) = y−α2(x+y)2−α3(x+y)3,

α2 and α3 are arbitrary fixed constants, A is a linear homogeneous nonde-
generate mapping.

Injectivity of such mappings G ∈ P2(3) follows from injectivity of
Keller mappings from P2(100) proved in [5]. Subclasses of Keller mappings
where JC is true were described for any n and m in [7].
Theorem B. [7] Let g(X) = (g1, . . . , gn) ∈ Pn(m), where X = (x1, . . . ,
xn), and for k = 1, . . . , n

gk(X) = xk + γk[α2(x1 + . . .+ xn)2 + α3(x1 + . . .+ xn)3 + . . .+

+αm(x1 + . . .+ xn)m],

αj , j = 1, . . . ,m, and γk are arbitrary fixed constants with
n∑
k=1

γk = 0.

Then g is a Keller map and g is injective.
Note that for n ≥ 3 (but not for n = 2!) [7] gave wider compared

to theorem B subclasses of Keller mappings. Also note that in the case
n = 2, m = 3 the mappings g from Theorems A and B coincide. This
gave birth to the conjecture (see [9]) that all Keller mappings in P2(m)
have the form G = A−1 ◦ g ◦A, where g(x, y) = (u(x, y), v(x, y)),

u(x, y) = x+

m∑
k=2

αk(x+ y)k, v(x, y) = y −
m∑
k=2

αk(x+ y)k, (1)

α2, . . . , αm are arbitrary fixed constants, A is from Theorem A.
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This conjecture is indirectly supported by
Theorem C. With X = (x, y) ∈ R2, consider f(X) = (u(X), v(X)),
where u and v are as in (1) and

h(X) = (u(X) + w(X), v(X) +W (X)),

where W and w are homogeneous polynomials of degree (m+ 1) of x and
y. If Jh(X) ≡ 1, then h = A−1 ◦ F ◦A, where A is a linear homogeneous
nondegenerate mapping and

F (X) = (u(X) + αm+1(x+ y)m+1, v(X)− αm+1(x+ y)m+1),

for some constant αm+1. The Jacobian conjecture is true for the mapping
h.

This article is devoted to description of Keller mappings in P2(4). The
structure of Keller mappings in P2(m) turned out to change when m = 2, 3
changes to m = 4. P2(4) contains new Keller mappings beside those of
form (1). The following main result is proved:

Theorem 1. The class of Keller mappings f ∈ P2(4) with deg f = 4
contains not only mappings G of form (1) but also polynomial mappings

Φa,b,d(x, y) = (Φ1,Φ2), where a 6= 0 6= b, d is any number, d 6= a2

2b
,

Φ1 = x+
1

2a
(ax+ by)2,

Φ2 = y − 1

2b
[(ax+ by)2 + x2(2bd− a2)]+

+x(ax+ by)2
(
a

2b
− d

a

)
+

(
1

8b
− d

4a2

)
(ax+ by)4.

Also it contains mappings Fc,s(x, y) = (F1, F2) with c 6= 0 6= s,

F1 = x+ cy2, F2 = y − sx2 − 2csxy2 − c2sy4.

In particular, this theorem rejects the conjecture from [9] mentioned
above about the structure of Keller mappings in P2(m). The case turnes
out to be much more complicated.

Definition 1. Let f, h ∈ Pn(m), f(0) = h(0) = 0, Df(0) = Dg(0) = I.
Mappings f and h are equivalent (denoted by f ≈ h) if a linear non-
degenerate mapping A exists, such that f = A−1 ◦ h ◦A.
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Theorem 2 below answers the question if equivalent mappings exist in
classes {Φa,b,d} and {Fc,s} and how many different (i.e., non-equivalent)
mappings are there.

Theorem 2. Consider mappings {Φa,b,d} and {Fc,s} defined in Theo-

rem 1. Then for any a 6= 0 6= b, c 6= 0 6= s and any d 6= a2

2b

Fc,s ≈ Φ1,1,1 =


x +

1

2
(x + y)2

y − 1

2
[(x + y)2 + x2]− 1

2
x(x + y)2 − 1

8
(x + y)4

 ≈ Φa,b,d.

Join Theorems 1 and 2 to see that beside familiar Keller mappings
of form (1) P2(4) contains at least one non-equivalent to then mapping
Φ1,1,1.

Remark. Proofs of Theorems 1 and 2 are valid both in the real and in
the complex case, as well as Theorems A and B.

Proof of Theorem 1. Let f = (f1, f2) ∈ P2(4) be a Keller mapping,
f(0) = 0, Df(0) = I, deg f = 4. Then

f1 = x+l(x, y)+l(2)(x, y)+w(x, y), f2 = y+L(x, y)+L(2)(x, y)+W (x, y),

where l and L are homogeneous polynomials of degree 2, l(2) and L(2)

of degree 3, w and W of degree 4. Compare the highest degrees in the
identity Jf ≡ 1 to obtain Wxwy − wxWy ≡ 0. This identity implies the
equality

w = λW (2)

with some constant λ.
Identities w ≡ 0 and W ≡ 0 can not be valid simultaneously, because

deg f = 4, equality (2) holds for w ≡ 0 and W 6≡ 0 with λ = 0 (in the
symmetrical case w 6≡ 0 and W ≡ 0 the similar equality W = δw holds).
Therefore, we can assume that w 6≡ 0 and W 6≡ 0.

Denote

w(x, y) =

4∑
k=0

akx
ky4−k = y4

4∑
k=0

akt
k = y4p(t),
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W (x, y) =

4∑
k=0

bkx
ky4−k = y4

4∑
k=0

bkt
k = y4q(t), t =

x

y
. (3)

Then
wx = y3p′(t), wy = y3(4p(t)− tp′(t)),

Wx = y3q′(t), Wy = y3(4q(t)− tq′(t)).

Without loss of generality wx 6≡ 0 6≡Wx; otherwise pass to the equivalent
mapping A−1 ◦ f ◦ A ≈ f that satisfies these inequalities. Rewrite the
equality Wxwy − wxWy ≡ 0 in the form

Wy

Wx
=
wy
wx

=⇒ 4q(t)− tq′(t)
q′(t)

=
4p(t)− tp′(t)

p′(t)
=⇒ q′(t)

q(t)
=
p′(t)

p(t)
.

Therefore, p(t) = λq(t), λ = const, i.e., w = λW .
Compare the fifth degree in equality Jf ≡ 1 to obtain the equation

Wy(l(2) − λL(2))x +Wx(λL(2) − l(2))y ≡ 0.

It is obvious that this identity holds if l(2) ≡ λL(2). This is assumed
further in this article leaving the other case l(2) 6≡ λL(2) outside. So,

f(X) =

(
x+ l + λL(2) + λW
y + L+ L(2) +W

)
.

If λ 6= 0, pass from the mapping f to the equivalent mapping

F = A ◦ f ◦A−1 =

(
x+ l̃

y + L̃+ L̃(2) + W̃

)

with matrix A =

(
1 (−λ)
0 1

)
. Here l̃ and L̃ are polynomials of degree 2,

deg L̃(2) = 3, deg W̃ = 4. Compare the fourth, third, second, and first
degrees in the equality

JF =

∣∣∣∣∣ (1 + l̃x) l̃y

(L̃x + L̃
(2)
x + W̃x) (1 + L̃y + L̃

(2)
y + W̃y)

∣∣∣∣∣ ≡ 1

to get, respectively, the equations

l̃xW̃y − l̃yW̃x = 0, (4)
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W̃y + l̃xL̃
(2)
y − l̃yL̃(2)

x = 0, (5)

L̃(2)
y + l̃xL̃y − l̃yL̃x = 0, (6)

L̃y + l̃x = 0. (7)

Rewrite W̃ (x, y) as

W̃ = y4q̃(t), l̃ ≈ y2
2∑
k=0

ckt
k = y2r(t)

similarly to (3). Note that l̃ 6≡ 0; otherwise equality JF ≡ 1 yields 0 =

= L̃y = L̃
(2)
y = W̃y, i.e., L̃, L̃(2), W̃ depend only on x. Pass from F to the

equivalent mapping F1 = A−1 ◦F ◦A with matrix A =

(
1 1
0 1

)
and check

that F1 coincides with g from (1). So, the case l̃ ≡ 0 gives no new Keller
mappings beside those listed in (1).

Only one of the two possibilities holds: either l̃x 6≡ 0 6≡ W̃x or l̃y 6≡ 0 6≡
6≡ W̃y. Otherwise if l̃x ≡ 0 then (4) and the condition l̃ 6≡ 0 imply W̃x ≡ 0.

But then the symmetrical condition l̃y 6≡ 0 6≡ W̃y holds because W 6≡ 0.

So in the sequel l̃x 6≡ 0 6≡ W̃x can be assumed to hold. Rewrite (4) in the

form
W̃y

W̃x

=
l̃y

l̃x
. Then

4q̃

q̃′
=

2r

r′
⇒ q̃ = µr2(t), µ = const, follows in the

same way as in consideration of the equation Wxwy − wxWy = 0; then

W̃ (x, y) = y4q̃(t) = µl̃2(x, y), W̃x = 2µl̃x l̃, W̃y = 2µl̃y l̃.

Now (5) can be rewritten as

l̃y(2µl̃ − L̃(2)
x ) + l̃xL

(2)
y = 0. (8)

Denote l̃x = ax + by; then l̃ =
a

2
x2 + bxy + cy2 (here a, b, c are

constants). This together with (7) implies

L̃ = −axy − b

2
y2 − dx2, d = const.

From (6) derive L̃
(2)
y = (l̃x)2 + l̃yL̃x = (ax+ by)2 − (bx+ 2cy)(ay + 2dx).
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First consider the case b 6= 0, when

L̃(2) =
1

3b
(ax+ by)3 −

[
2ac

3
y3 + 2bdx2y +

(
ab

2
+ 2cd

)
xy2
]

+ ux3,

u = const. Taking this last equality into account, rewrite (8) in the form

(bx+ 2cy)
[
2µ
(a

2
x2 + bxy + cy2

)
− a

b
(ax+ by)2 + 4bdxy+

+
(ab

2
+2cd

)
y2−3ux2

]
+(ax+by)[(ax+by)2−(bx+2cy)(ay+2dx)] = 0⇐⇒

⇐⇒ (bx+ 2cy)
[
2µ
(a

2
x2 + bxy + cy2

)
− a

b
(ax+ by)2 + 4bdxy+

+
(ab

2
+ 2cd

)
y2 − (ax+ by)(ay + 2dx)− 3ux2

]
+ (ax+ by)3 = 0. (9)

Compare coefficients at equal powders in (9) to obtain the following equa-
tions:

x3 : µab− 2abd− 3nu = 0, (10)

x2y : 2µb2 + 2acµ− 2a3
c

b
+ 2b2d− 4cad− 6cu = 0, (11)

xy2 : 6µbe+
3

2
ab2 − 6a2c+ 6bcd = 0, (12)

y3 : 4c2µ− 3abc+ 4c2d+ b3 = 0. (13)

From (10) we determine

3u = a(µ− 2d). (14)

Substitute (14) into (11) to get µ =
a3

b3
c− d.

Now (12) and (13) can be rewritten as the system of equations{
ab4 + 4a3c2 − 4a2b2c = 0,
4a3c3 + b6 − 3ab4c = 0.

Substract the first equation from the second one multiplied on c to obtain{
a(b4 − 4acb2 + 4a2c2) = 0,
b2(b4 − 4acb2 + 4a2c2) = 0,
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i.e., b2 = 2ac. So, a 6= 0 and c =
b2

2a
.

Now we see that in the considered case the Jacobian JF ≡ 1 if and
only if for any d

a 6= 0 6= b, c =
b2

2a
, µ =

a3c

b3
− d =

a2

2b
− d, 3u = a

(a2
2b
− 3d

)
. (15)

So

l̃ =
a

2
x2 + bxy +

b2

2a
y2 =

1

2a
(ax+ by)2,

L̃ = −
(
dx2 + axy +

b

2
y2
)

= − 1

2b
[(ax+ by)2 + x2(2bd− a2)],

L̃(2) =
1

3b
(ax+ by)3 −

[2ac

3
y3 + 2bdx2y +

(ab
2

+ 2cd
)
xy2
]

+ ux3 =

=
1

3b
(ax+ by)3 −

[b2
3
y3 + 2bdx2y +

(ab
2

+
db2

a

)
xy2
]

+
(a3

6b
− ad

)
x3 =

=
1

3b
(ax+ by)3 − b2

3
y3 − ab

2
xy2 +

a3

6b
x3 − dx

(
2bxy +

b2

a
y2 + ax2

)
=

=
a3

2b
x3 + a2x2y +

abxy2

2
− dx

a
(ax+ by)2 = (ax+ by)2x

( a
2b
− d

a

)
.

W̃ = µ(l̃)2 =
( 1

8b
− d

4a2

)
(ax+ by)4.

Let us show that the polynomial mapping

F = Φa,b,d =

(
x+ l̃

y + L̃+ L̃(2) + W̃

)

is not equivalent to the mapping g from (1) for all a, b, d (a 6= 0 6= b).
Assume that this is not true, so a mapping g and a matrix A from

(17) exist, such that

g(AX) = A(Φa,b,d(X)). (16)

For the polynomial mapping f of deg f = m denote

f =

m∑
k−0

[f ]k,
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where [f ]k are homogeneous mappings of degree k. Let the matrix

A =

(
α β
γ δ

)
,

(
x1
y1

)
:= AX =

(
αx+ βy
γx+ δy

)
, detA 6= 0. (17)

z1 := x1 + y1. Then (16) implies A[Φa,b,d(X)]4 = [g(AX)]4, i.e.,

A

(
0( 1

8b
− d

4a2

)
(ax+ by)4

)
=

 β
( 4

8b
− d

4a2

)
(ax+ by)4

δ
( 1

8b
− d

4a2

)
(ax+ by)4

 =

= α4z
4
1

(
1
−1

)
,

α4 is the constant from (1). Then

δ = −β, ax+ by = η(α+ γ)x, η = const;

this is possible only if b = 0 which contradicts the current assumption
b 6= 0. So, the mappings Φa,b,d with parameters defined in (15) are new
polynomial mappings with JF ≡ 1, not equivalent to the mappings G =
= A−1 ◦ g ◦A from (1).

Now we need to consider the case b = 0. Then L̃(2) has the form

L̃(2) = a2x2y −
(2ac

3
y3 + 2cdxy2

)
+ ux3

and (8) can be written down as

2cy
[
2µ
(a

2
x2 + cy2

)
− 2a2xy+ 2cdy2− ax(ay+ 2dx)− 3ux2

]
+ (ax)3 = 0.

(18)
Equation a = 0 corresponds to equation (10).

Keeping this in mind, rewrite (18):

2cy
[
2µcy2 + 2cdy2 − 3ux2

]
= 0.

This equality is equivalent to one of the two conditions holding:

i) c = 0 or ii)

{
2c(µ+ d) = 0,
3u = 0.

i) Let c = 0. Then l̃ ≡ 0 and W̃ ≡ 0; this contradicts the assumptions
of Theorem 1: deg f = 4. So, c 6= 0.
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ii) In this case a = b = 0 = u, c 6= 0, µ = −d; then l̃ = cy2,

L̃ = −dx2, L̃(2) = −2cdxy2, W̃ = −dc2y4 with d 6= 0, otherwise W̃ = 0.
Therefore,

F = Fc,d =

(
x+ cy2

y − dx2 − 2cdxy2 − dc2y4
)
, c 6= 0 6= d.

Let us show that the mappings Fc,d and g from (1) are significantly
different, i.e., g 6≈ Fc,d. To do this assume the contrary and consider the
equality [A−1 ◦ Fc,d ◦A]4 = [g]4 using notation (17):

A−1
(

0
−dc2y41

)
=

(
α4

−α4

)
(x+ y)4;

This implies (γx+ δy) = η(x+ y), η = const, i.e., γ = δ = η. Then(
0
−dc2η4(x+ y)4

)
=

(
α β
γ γ

)(
1
−1

)
α4(x+ y)4.

Finally dc2 = 0 and we have got a contradiction with the condition
c 6= 0 6= d. Therefore, g 6≈ Fc,d. Theorem 1 is proved. �

Proof of Theorem 2. Show that Fc,s ≈ Φ1,1,1 for any c 6= 0 6= s, i.e., a
matrix A (see (17)) exists, such that AΦ1,1,1(X) = Fc,s(AX).

AΦ1,1,1(X) = AX+A


1

2
(x+ y)2 − 1

−1

2
[(x+ y)2 + x2]− 1

2
(x+ y)2x− 1

8
(x+ y)4

 ;

Fc,s(AX) = AX+

+

(
c(γx+ δy)2

−s(αx+ βy)2 − 2cs(αx+ βy)(γx+ δy)2 − c2s(γx+ δy)4

)
.

Compare the first coordinates in the equality [AΦ1,1,1(X)]4 = [Fc,s(AX)]4

to obtain β
(
− 1

8

)
(x + y)4 = 0, i.e., β = 0. Comparing the second

coordinates yields

−1

8
δ(x+ y)4 = −c2s(γx+ δy)4 =⇒ γ = δ = 8c2sδ4, δ =

1

2
3
√
c2s

.
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Comparing the first coordinates of the identity [AΦ1,1,1(X)]2 = [Fc,s(AX)]2
obtain α = 2cδ2. The second coordinates give the relation

δ = 2sα2 = 2s · 4c2δ4 ⇐⇒ 1 = 8c2sδ3

we already have. The same equality appears if we consider the identity
[AΦ1,1,1(X)]3 = [Fc,s(AX)]3 :

−δ
2

(x+ y)2x = −2csαδ2x(x+ y)2 ⇐⇒ δ = 4csαδ2 = 8c2sδ4.

So, for any c 6= 0 6= s a matrix A from (17) exists and

β = 0, γ = δ =
1

2
3
√
c2s

, α = 2cδ2 =
1

2
3
√
cs2

,

i.e., Fc,s ≈ Φ1,1,1.
To complete the proof of Theorem 2 it is enough now to show that

Φ1,1,1 ≈ Φa,b,d for any a 6= 0 6= b, d 6= a2

2b
: we need to find a matrix B

with detB 6= 0 such that Φ1,1,1(BX) = BΦa,b,c(X). Let us show that the
matrix

B =

(
4aδ2 0
2δa(1− 2δ) 2bδ

)
, δ =

3

√
bd

4a2
− 1

8

satisfies this condition. The condition of equivalence of the mappings
implies δ 6= 0. Evaluate

Φ1,1,1(BX) = BX +

(
2δ2(ax+ by)2

−2δ2(ax+ by)2 − 8a2δ4x2

)
+

+

(
0
−8δ4ax(ax+ by)2 − 2δ4(ax+ by)4

)
,

BΦa,b,d(X) = BX +B


1

2a
(ax+ by)2

− 1

2b
[(ax+ by)2 + (2bd− a2)x2]

+

+B

(
0

x(ax+ by)2
( a

2b
− d

a

)
+
( 1

8b
− d

4a2

)
(ax+ by)4

)
.
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The condition [Φ1,1,1(BX)]4 = [BΦa,b,d(X)]4 is equivalent to the equality

−2δ4 = 2bδ
( 1

8b
− d

4a2

)
⇐⇒ δ3 =

bd

4a2
− 1

8
.

Compare the first coordinates in the condition

[Φ1,1,1(BX)]2 = [BΦa,b,d(X)]2

to get the obvious equality 2δ2 =
4aδ2

2a
; the second coordinates give an-

other obvious equality

−2δ2(ax+ by)2 − 8a2δ4x2 = δ(1− 2δ)(ax+ by)2 − δ[(ax+ by)2+

+(2bd− a2)x2] ⇐⇒ 8a2δ3 = (2bd− a2).

To complete the proof, we need now only to check the identity

[Φ1,1,1(BX)]3 = [BΦa,b,d(X)]3

for the second coordinates:

−8aδ4x(ax+ by)2 = 2bδ
( a

2b
− d

a

)
x(ax+ by)2 ⇐⇒ δ3 =

db

4a2
− 1

8
.

Therefore, for any a 6= 0 6= b, d 6= a2

2b
, c 6= 0 6= s the relation

Φa,b,d ≈ Φ1,1,1 ≈ Fc,s holds. Theorem 2 is proved. �
The next statement declares existence of equivalent Keller mappings

g of form (1): a subclass of P2(4) of different (pairwise non-equivalent)
mappings of form (1) is constructed.

Proposition. Any mapping g = gα2,α3,α4
∈ P2(4) of form (1) with

α2 6= 0 6= α3 defines a constant s =
α4α2

α2
3

such that gα2,α3,α4 ≈ g1,1,s.

Proof. Choose arbitrary constants α2 6= 0, α3 6= 0, and α4 in the mapping
g = gα2,α3,α4 ∈ P2(4). Let us prove that a constant s and a matrix A
from (17) exist, such that

gα2,α3,α4
(AX) = Ag1,1,s(X),

i.e.,

gα2,α3,α4
(AX) = AX +

(
α2[(α+ γ)x+ (β + δ)y]2+
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+α3[(α+ γ)x+ (β + δ)y]3 + α4[(α+ γ)x+ (β + δ)y]4
)(

1
−1

)
=

= Ag1,1,s(X) = AX + [(x+ y)2 + (x+ y)3 + s(x+ y)4]

(
α− β
γ − δ

)
.

Compare coefficients in this equality to get the folowing equations:

α− β = −(γ − δ)⇐⇒ α+ γ = β + δ,

α2(α+ γ)2 = α− β, α3(α+ γ)3 = (α− β), α4(α+ γ)4 = s(α− β).

Denote λ = α + γ = β + δ and rewrite these equations in the form
α2λ

2 = α − β, α3λ
3 = α − β, α4λ

4 = s(α − β). Then the values of λ
and s can be determined:

λ = α2/α3 6= 0, s =
α4λ

4

α− β
=
α4λ

4

α2λ2
=
α4λ

2

α2
=
α4α2

α2
3

.

The elements of the matrix A are constructed as follows: choose any α
and γ = λ − α, β = α − α2λ

2, δ = λ − β = λ − α + α2λ
2. Check that

detA 6= 0:

detA = αδ − βγ = α(λ− α+ α2λ
2)− (α− α2λ

2)(λ− α) = λ3α2 6= 0.

The proposition is proved. �

Remark. Note that in the Proposition the constant s significantly de-
pends on the chosen α2, α3, α4.
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