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Abstract. This paper demonstrates a study on some significant
latest innovations in the approximation techniques to find the
approximate solutions of Caputo fractional Volterra – Fredholm
integro-differential equations. To apply this, the study uses Ado-
mian decomposition method and modified Laplace Adomian de-
composition method. A wider applicability of these techniques is
based on their reliability and reduction in the size of the compu-
tational work. This study provides analytical approximate to de-
termine the behavior of the solution. It proves the existence and
uniqueness results and convergence of the solution. In addition,
it brings an example to examine the validity and applicability of
the proposed techniques.
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1. Introduction. In this paper, we consider the Caputo fractional
Volterra – Fredholm integro-differential equations of the form:

cDαy(x) = g(x) +a(x)y(x) +

x∫
0

K1(x, t)F1(y(t))dt+

1∫
0

K2(x, t)F2(y(t))dt,

(1)
with the initial conditions

y(i)(0) = δi, i = 0, 1, · · · , n− 1, (2)
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where n − 1 < α ≤ n, n ∈ N, y : [0, 1] −→ R is the continuous function
to be determined, g, a : [0, 1] −→ R and Ki : [0, 1]× [0, 1] −→ R, i = 1, 2,
are continuous functions. Fi : R −→ R, i = 1, 2, are Lipschitz continuous
functions. The fractional derivative cDα is understood here in the Caputo
sense.

The fractional integro-differential equations have attracted much more
interest of mathematicians and physicists because they provide an effi-
ciency for the description of many practical dynamical problems arising
in engineering and scientific disciplines such as, physics, biology, elec-
trochemistry, chemistry, economy, electromagnetic, control theory and
viscoelasticity [3, 19, 20]. In recent years, numerous papers have been
concentrating on the development of numerical and analytical techniques
for fractional integro-differential equations. There are many approaches
for seeking exact solutions of linear and nonlinear equations, for example,
Al-Samadi and Gumah [3] applied the homotopy analysis method for frac-
tional SEIR epidemic model, Jafarian et al. [14] applied successfully arti-
ficial neural networks approach to solve fractional order Volterra integro-
differential equations. Also, some comparisons had been made between
this iterative approach and another traditional technique. The obtained
results reveal that this method is very effective, Momani [19] and Qaralleh
[20] applied Adomian polynomials to solve fractional integro-differential
equations and systems of fractional integro-differential equations, Ka-
dem and Kilicman [15] utilized the HPM and VIM methods for integro-
differential equation of fractional order with initial-boundary conditions,
Yang [21] used the hybrid of block pulse function and Chebyshev poly-
nomials to solve nonlinear Fredholm fractional integro-differential equa-
tions, Yang and Hou [22] applied the Laplace decomposition method to
solve the fractional integro-differential equations, Mittal and Nigam [18]
utilized the Adomian decomposition method to approximate solutions of
fractional integro-differential equations, and Ma and Huang [17] applied
hybrid collocation method to study integro-differential equations of frac-
tional order. Moreover, properties of the fractional integro-differential
equations have been studied by several authors [4, 12, 16].

The main objective of the present paper is to study the behavior of
the solution that can be formally determined by such analytical appro-
ximation methods as the Adomian decomposition method and the mo-
dified Laplace Adomian decomposition method. Moreover, we prove the
convergence and uniqueness solution of the fractional Volterra – Fredholm
integro-differential equation.
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The rest of the paper is organized as follows. In section 2 some pre-
liminaries and basic definitions related to fractional calculus and Laplace
transform are recalled. In section 3 Adomian decomposition method is
constructed for solving fractional Volterra – Fredholm integro-differential
equations. In section 4 modified Laplace Adomian decomposition method
is constructed for solving Volterra – Fredholm integro-differential equa-
tions of fractional order. In section 5 the convergence and uniqueness of
the solution are proved. In section 6 the analytical example is presented
to illustrate the accuracy of these methods. Finally, a brief conclusion is
given in section 7.

2. Preliminaries. The mathematical definitions of fractional
derivative and fractional integration are the subject of several different ap-
proaches. The most frequently used definitions of the fractional calculus
involve the Riemann – Liouville fractional derivative, Caputo derivative,
Riesz derivative and Grünewald – Letnikov fractional derivative [6, 8, 16,
18, 22]. In our work the Caputo’s definition of fractional derivative has
been used.

Definition 1. The Riemann – Liouville fractional integral of order α > 0
of a function f is defined as

Jαf(x) =
1

Γ(α)

x∫
0

(x− t)α−1f(t)dt, x > 0, α ∈ R+,

J0f(x) = f(x),

where R+ is the set of positive real numbers.

Definition 2. The fractional derivative of f(x) in the Caputo sense is
defined by

cDαf(x) = Jn−αDnf(x) =

=


1

Γ(n− α)

x∫
0

(x− t)n−α−1 d
nf(t)

dtn
dt, n− 1 < α < n,

dnf(x)

dxn
, α = n,

where the parameter α is the order of the derivative and is allowed to be
real or even complex.
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In this paper only real and positive α will be considered. Hence, we
have the following properties:

• JαJvf = Jα+vf, α, v > 0.

• Jαxβ =
Γ(β + 1)

Γ(α+ β + 1)
xα+β , α > 0, β > −1, x > 0.

• JαDαf(x) = f(x)−
n−1∑
k=0

f (k)(0+)
xk

k!
, x > 0, n− 1 < α ≤ n.

Definition 3. The Riemann – Liouville fractional derivative of order α> 0
is normally defined as

Dαf(x) = DnJn−αf(x), n− 1 < α ≤ n. (3)

Definition 4. The Laplace transform of a function f(x), is defined as

L[f(x)] = F (s) =

+∞∫
0

f(x)e−sxdx,

where x > 0, s can be either real or complex.

Definition 5. Given two functions f and g, we define, for any x > 0,

(f ∗ g)(x) =

x∫
0

f(t)g(x− t)dt.

The function f ∗ g is called the convolution of f and g.

Theorem 1. The Laplace transform of the Caputo derivative is defined by

L[cDαf(x)] = sαF (s)−
n−1∑
k=0

sα−k−1f (k)(0), n− 1 < α ≤ n. (4)

3. Adomian Decomposition Method. Consider the equation (1)
where cDα is the operator defined as (3). Operating with Jα on both
sides of the equation (1), we get [1, 2, 5, 7, 18]

y(x) =

n−1∑
k=0

y(k)(0+)
xk

k!
+ Jα(g(x))+
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+ Jα
(
a(x)y(x) +

x∫
0

K1(x, t)F1(y(t))dt+

1∫
0

K2(x, t)F2(y(t))dt

)
.

Adomian decomposition method defines the solution y(x) by the series

y =

∞∑
n=0

yn (5)

and the nonlinear functions F1 and F2 are decomposed as

F1 =

∞∑
n=0

An, F2 =

∞∑
n=0

Bn, (6)

where An, Bn are the Adomian polynomials given by

An =
1

n!

[
dn

dφn
F1

( n∑
i=0

φiyi

)]
φ=0

, (7)

Bn =
1

n!

[
dn

dφn
F2

( n∑
i=0

φiyi

)]
φ=0

. (8)

The Adomian polynomials were introduced in [1, 2, 10, 11, 13] as:

A0 = F1(y0),

A1 = y1F
′

1(y0),

A2 = y2F
′

1(y0) +
1

2
y21F

′′

1 (y0),

A3 = y3F
′

1(y0) + y1y2F
′′

1 (y0) +
1

3
y31F

′′′

1 (y0),

.

.

.

and

B0 = F2(y0),

B1 = y1F
′

2(y0),

B2 = y2F
′

2(y0) +
1

2
y21F

′′

2 (y0),
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B3 = y3F
′

2(y0) + y1y2F
′′

2 (y0) +
1

3
y31F

′′′

2 (y0),

.

.

.

The components y0, y1, y2, . . . are determined recursively by

y0 =

n−1∑
k=0

y(k)(0+)
xk

k!
+ Jαg(x),

yk+1 = Jα
(
a(x)y(x) +

x∫
0

K1(x, t)Akdt+

1∫
0

K2(x, t)Bkdt

)
.

Having defined the components y0, y1, y2, . . . , the solution y in a series
form defined by (5) follows immediately. It is important to note that the
decomposition method suggests that the 0th component y0 is to be defined
by the initial conditions and the function g(x) as described above. The
other components, namely y1, y2, . . ., are derived recurrently.

4. Modified Laplace Adomian Decomposition Method. We
consider the fractional Volterra – Fredholm integro-differential equation
(1). We apply the Laplace transform to both sides [8, 9, 22]:

L [cDαy(x)] = L[g(x)] + L[a(x)y(x)] +

+ L
[ x∫

0

K1(x, s)F1(y(s))ds+

1∫
0

K2(x, s)F2(y(s))ds

]
.

Using the differentiation property of Laplace transform (4), we get

sαL[y(x)]− y0 = L[g(x)] + L[a(x)y(x)] +

+ L
[ x∫

0

K1(x, s)F1(y(s))ds+

1∫
0

K2(x, s)F2(y(s))ds

]
,

where y0 =
m−1∑
k=0

xα−k−1y(k)(0). Thus, the given equation is equivalent to

L[y(x)] =
y0
sα

+
1

sα
L[g(x)] +

1

sα
L [a(x)y(x)] +
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+
1

sα
L
[ x∫

0

K1(x, s)F1(y(s))ds+

1∫
0

K2(x, s)F2(y(s))ds

]
. (9)

Substituting (5) and (6) into (9), we have

L
[ ∞∑
n=0

yn(x)
]

=
y0
sα

+
1

sα
L [g(x)] +

1

sα
L[a(x)y(x)] +

1

sα
L ×

×
[ x∫

0

K1(x, s)

∞∑
n=0

Ands+

1∫
0

K2(x, s)

∞∑
n=0

Bnds

]
. (10)

Matching both sides of (10) yields the following iterative algorithm:

L[y0(x)] =
y0
sα

+
1

sα
L
[
g(x)

]
,

L[y1(x)] =
1

sα
L
[
a(x)y(x) +

x∫
0

K1(x, s)A0ds+

1∫
0

K2(x, s)B0ds

]
,

L[y2(x)] =
1

sα
L
[
a(x)y(x) +

x∫
0

K1(x, s)A1ds+

1∫
0

K2(x, s)B1ds

]
,

.

.

.

L[yn+1(x)] =
1

sα
L
[
a(x)y(x) +

x∫
0

K1(x, s)Ands+

1∫
0

K2(x, s)Bnds

]
.

The solution y(x) is defined by the series

y(x) =

∞∑
n=0

yn(x). (11)

5. Uniqueness and Convergence. In this section we present an exis-
tence and uniqueness results of equation (1) with the initial condition (2)
and prove it. Before starting and proving the main results, we introduce
the following hypotheses:
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(A1) There exist two constants LF1
, LF2

> 0 such that, for any y1 and
y2 ∈ C(J,R)

|F1(y1(x))− F1(y2(x))| ≤ LF1
|y1 − y2|

and

|F2(y1(x))− F2(y2(x))| ≤ LF2
|y1 − y2| .

(A2) There exist two functions K∗1 ,K
∗
2 ∈ C(D,R+), where C(D,R+) is

the set of all positive functions, continuous on D = {(x, t) ∈ R×R :
0 ≤ t ≤ x ≤ 1}, such that

K∗1 = sup
x∈[0,1]

x∫
0

|K1(x, t)| dt <∞, K∗2 = sup
x∈[0,1]

1∫
0

|K2(x, t)| dt <∞.

(A3) The two functions a, g : J → R are continuous.

Lemma 1. If y0 ∈ C(J,R), then y(x) ∈ C(J,R+) is a solution of the
problem (1) – (2) iff y satisfies

y(x) =
1

Γ(α)

x∫
0

(x− s)α−1a(s)y(s)ds+
1

Γ(α)

x∫
0

(x− s)α−1g(s)ds+

+
1

Γ(α)

x∫
0

(x− s)α−1
[ s∫

0

K1(s, τ)F1(y(τ))dτ +

+

1∫
0

K2(s, τ)F2(y(τ))dτ

]
ds+ y0

for x ∈ J.

Our first result is based on the Banach contraction principle.

Theorem 2. Assume that (A1), (A2) and (A3) hold. If(
‖a‖∞ +K∗1LF1

+K∗2LF2

Γ(α+ 1)

)
< 1, (12)

then there exists a unique solution y(x) ∈ C(J) of (1) – (2).
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Proof. By Lemma 1 we know that y is a solution of (1) – (2) iff it satisfies

y(x) =
1

Γ(α)

x∫
0

(x− s)α−1a(s)y(s)ds+
1

Γ(α)

x∫
0

(x− s)α−1g(s)ds+

+
1

Γ(α)

x∫
0

(x− s)α−1
[ s∫

0

K1(s, τ)F1(y(τ))dτ +

+

1∫
0

K2(s, τ)F2(y(τ))dτ

]
ds+ y0.

Let the operator T : C(J,R)→ C(J,R) be defined by

(Ty)(x) =
1

Γ(α)

x∫
0

(x− s)α−1a(s)y(s)ds+
1

Γ(α)

x∫
0

(x− s)α−1g(s)ds+

+
1

Γ(α)

x∫
0

(x− s)α−1
[ s∫

0

K1(s, τ)F1(y(τ))dτ +

+

1∫
0

K2(s, τ)F2(y(τ))dτ

]
ds+ y0.

We can see that, if y ∈ C(J,R) is a fixed point of T , then y is a solution
of (1) – (2).

Now we prove that T has a fixed point y in C(J,R). For that, let
y1, y2 ∈ C(J,R) be such that for any x ∈ [0, 1]

y1(x) =
1

Γ(α)

x∫
0

(x− s)α−1a(s)y1(s)ds+
1

Γ(α)

x∫
0

(x− s)α−1g(s)ds+

+
1

Γ(α)

x∫
0

(x− s)α−1
[ s∫

0

K1(s, τ)F1(y1(τ))dτ +

+

1∫
0

K2(s, τ)F2(y1(τ))dτ

]
ds+ y0,
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y2(x) =
1

Γ(α)

x∫
0

(x− s)α−1a(s)y2(s)ds+
1

Γ(α)

x∫
0

(x− s)α−1g(s)ds+

+
1

Γ(α)

x∫
0

(x− s)α−1
[ s∫

0

K1(s, τ)F1(y2(τ))dτ +

+

1∫
0

K2(s, τ)F2(y2(τ))dτ

]
ds+ y0.

Consequently, we get

|(Ty1)(x)− (Ty2)(x)| ≤

≤ 1

Γ(α)

x∫
0

(x− s)α−1 |a(s)| |y1(s)− y2(s)| ds+
1

Γ(α)
×

×
x∫

0

(x− s)α−1


s∫
0

|K1(s, τ)| |F1(y1(τ))− F1(y2(τ))| dτ+

+
1∫
0

|K2(s, τ)| |F2(y1(τ))− F2(y2(τ))| dτ

 ds ≤

≤
‖a‖∞

Γ(α+ 1)
|y1(x)− y2(x)|+ K∗1LF1

Γ(α+ 1)
|y1(x)− y2(x)|+

+
K∗2LF2

Γ(α+ 1)
|y1(x)− y2(x)| =

=

(
‖a‖∞ +K∗1LF1

+K∗2LF2

Γ(α+ 1)

)
|y1(x)− y2(x)| .

From the inequality (12) we have

‖Ty1 − Ty2‖∞ ≤ ‖y1 − y2‖∞ .

So, T is a contraction map. By the Banach contraction principle, we
conclude that T has an unique fixed point y in C(J,R). �

Theorem 3. Suppose that (A1) – (A3) and (12) hold. If the series solu-

tion y(x) =

∞∑
i=0

yi(x) and ‖y1‖∞ <∞, obtained by the m-order deforma-

tion, is convergent, then it converges to the exact solution of the fractional
Volterra – Fredholm integro-differential equation (1) – (2).
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Proof. Denote as (C[0, 1], ‖ · ‖∞) the Banach space of all continuous
functions on J, with |y1(x)| ≤ ∞ for all x in J .

Frist we define the sequence of partial sums sn. Let sn and sm be

arbitrary partial sums with n ≥ m. We are to prove that sn =

n∑
i=0

yi(x)

is a Cauchy sequence in this Banach space:

‖sn − sm‖∞ = max
∀x∈J

|sn − sm| = max
∀x∈J


n∑
i=0

yi(x)−
m∑
i=0

yi(x)

 =

= max
∀x∈J


n∑

i=m+1

(
1

Γ(α)

x∫
0

(x− t)α−1
[
a(t)yi(t)+

+

t∫
0

K1(t, s)Ai(s)ds+

1∫
0

K2(t, s)Bi(s)ds

]
dt

) =

= max
∀x∈J

 1

Γ(α)

x∫
0

(x− t)α−1
[
a(t)

n−1∑
i=m

yi(t)+

+

t∫
0

K1(t, s)

n−1∑
i=m

Ai(s)ds+

1∫
0

K2(t, s)

n−1∑
i=m

Bi(s)ds

]
dt

 .

From (5) and (6), we have

n−1∑
i=m

Ai = F1(sn−1)− F1(sm−1),

n−1∑
i=m

Bi = F2(sn−1)− F2(sm−1),

n−1∑
i=m

yi = y(sn−1)− y(sm−1).
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So,

‖sn − sm‖∞ = max
∀x∈J

∣∣∣∣∣∣ 1

Γ(α)

x∫
0

(x− t)α−1
[
a(t)(y(sn−1)− y(sm−1)) +

+

t∫
0

K1(t, s)(F1(sn−1)− F1(sm−1))d s+

+

1∫
0

K2(t, s)(F2(sn−1)− F2(sm−1))d s

]
d t

∣∣∣∣∣∣ ≤
≤ max

∀x∈J

 1

Γ(α)

x∫
0

|x− t|α−1
[
|a(t)||y(sn−1)− y(sm−1)|+

+

t∫
0

|K1(t, s)||(F1(sn−1)− F1(sm−1))|d s+

+

1∫
0

|K2(t, s)||(F2(sn−1)− F2(sm−1))|d s
]
d t

 ≤
≤ 1

Γ(α+ 1)

[
‖a(t)‖∞‖sn−1 − sm−1‖∞ +K∗1LF1

×

× ‖sn−1 − sm−1‖∞ +K∗2LF2
‖sn−1 − sm−1‖∞

]
=

=

(
‖a‖∞ +K∗1LF1

+K∗2LF2

Γ(α+ 1)

)
‖sn−1 − sm−1‖∞ =

= δ‖sn−1 − sm−1‖∞,

where

δ =

(
‖a‖∞ +K∗1LF1

+K∗2LF2

Γ(α+ 1)

)
.

Let n = m+ 1, then

‖sn − sm‖∞ ≤ δ‖sm − sm−1‖∞ ≤ . . . ≤ δm‖s1 − s0‖∞,
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so,

‖sn − sm‖∞ ≤
n∑

k=m+1

‖sk − sk−1‖∞ ≤

≤ (δm + δm+1 + · · ·+ δn−1)‖s1 − s0‖∞ ≤
≤ δm(1 + δ + δ2 + · · ·+ δn−m−1)‖s1 − s0‖∞ ≤

≤ δm
(

1− δn−m

1− δ

)
‖y1‖∞.

Since 0 < δ < 1, we have (1− δn−m) < 1, then

‖sn − sm‖∞ ≤
δm

1− δ
‖y1‖∞.

As |y1(x)| <∞, then ‖sn − sm‖∞ −→ 0 when m −→∞.

We conclude that sn is a Cauchy sequence in C[0, 1], so y = lim
n→∞

yn.

Then, the series converges and the proof is completed. �

6. Illustrative Example. In this section, we present the analytical
techniques based on the Adomian decomposition method and the modi-
fied Laplace Adomian decomposition method to solve Caputo fractional
Volterra – Fredholm integro-differential equation.
Example. Consider the following Caputo fractional Volterra – Fredholm
integro-differential equation.

cD0.75[y(t)] =
6t2.25

Γ(3.25)
− t2et

5
y(t) +

t∫
0

etsy(s)ds+

1∫
0

(4− s−3)y(s)ds, (13)

with the initial condition y(0) = 0 and the exact solution y(t) = t3.
Firstly, we apply the Adomian decomposition method.

Applying the operator J0.75 to both sides of (13),

y(t) =

m−1∑
k=0

dy(0)

dtk
tk

k!
+

6

Γ(3.25)
J0.75

[
t2.25

]
− 1

5
J0.75

[
t2ety(t)

]
+

+ J0.75

[ t∫
0

etsy(s)ds+

1∫
0

(4− s−3)y(s)ds

]
.
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Then,

y0(t) =

m−1∑
k=0

dy(0)

dtk
tk

k!
+

6

Γ(3.25)
J0.75t2.25 =

= 0 +
6

Γ(3.25)

Γ(9/4 + 1)

Γ(9/4 + 3/4 + 1)
t(9/4+3/4) = t3,

y1(t) = J0.75

[
−t2ety0(t)

5
+

t∫
0

etsy0(s)ds+

1∫
0

(4− s−3)y0(s)ds

]
=

= −1

5
J0.75

[
t2ety0(t)

]
+ J0.75

[ t∫
0

ets4ds+

1∫
0

(4− s−3)s3ds

]
=

= −1

5
J0.75

[
t2ety0(t)

]
+ J0.75

[
1

5
ett5 + 0

]
=

= −1

5
J0.75

[
t2ety0(t)

]
+

1

5
J0.75

[
ett2y0(t)

]
= 0,

.

.

.

yn(t) = 0.

Therefore, the obtained solution is

y(t) = t3.

Secondly, the modified Laplace Adomian decomposition method.

We apply the Laplace transform to both sides of (13).

L
[
cD0.75y(t)

]
= L

[(
− t2et

5

)
y(t)

]
+ L

[
6t2.25

Γ(3.25)

]
+

+ L
[ t∫

0

etsy(s)ds+

1∫
0

(4− s−3)y(s)ds

]
.

Using the property of Laplace transform and the initial condition, we get

s
3
4L [y(t)] = L

[(
− t2et

5

)
y(t)

]
+ L

[
6t2.25

Γ(3.25)

]
+
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+ L
[ t∫

0

etsy(s)ds+

1∫
0

(4− s−3)y(s)ds

]
,

L
[
y(t)

]
=

1

s
3
4

L
[(
− t

2et

5

)
y(t)

]
+

1

s
3
4

L
[

6t2.25

Γ(3.25)

]

+
1

s
3
4

L
[ t∫

0

etsy(s)ds+

1∫
0

(4− s−3)y(s)ds

]
.

Substituting (5) and (6) into the above equation, we obtain

L
[ ∞∑
n=0

yn(t)

]
=

1

s
3
4

L
[

6t2.25

Γ(3.25)

]
+

1

s
3
4

L
[(
− t

2et

5

) ∞∑
n=0

yn(t)

]
+

+
1

s
3
4

L
[ t∫

0

ets

∞∑
n=0

Ands+

1∫
0

(
4− s−3

) ∞∑
n=0

Bnds

]
.

By matching both sides of above equation, we have the following rela-
tion:

L [y0(t)] =
1

s
3
4

L
[

6t2.25

Γ(3.25)

]
,

L [y1(t)] =
1

s
3
4

L
[
−t2ety0(t)

5
+

t∫
0

etsA0ds+

1∫
0

(4− s−3)B0ds

]
,

.

.

.

L [yn+1(t)] =
1

s
3
4

L
[
−t2etyn(t)

5
+

t∫
0

etsAnds+

1∫
0

(4− s−3)Bnds

]
.

Applying inverse Laplace transform to above equations, we get

y0(t) = t3,

y1(t) = L−1
[

1

s
3
4

L
[
−t2ety0(t)

5
+

t∫
0

ets4ds+

1∫
0

(4− s−3)s3ds

]]
= 0
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.

.

.

yn(t) = 0.

Therefore, the obtained solution is y(t) = t3.
7. Conclusion. In this paper, Adomian decomposition method

and modified Laplace Adomian decomposition method have been success-
fully applied to find the approximate solution of the fractional Volterra –
Fredholm integro-differential equation. The reliability of the methods
and reduction in the size of the computational work give these methods a
wider applicability. The methods are very powerful and efficient in finding
analytical as well as numerical solutions for wide classes of linear and non-
linear fractional Volterra – Fredholm integro-differential equations. They
provide more realistic series solutions that converge very rapidly in real
physical problems. Finally, the behavior of the solution can be formally
determined by analytical approximate. The proposed methods can be
applied to other nonlinear fractional differential equations, systems of dif-
ferential and integral equations.
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