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AN IMPROPER INTEGRAL, THE BETA FUNCTION,

THE WALLIS RATIO, AND THE CATALAN NUMBERS

Abstract. In the paper we present closed and unified expres-
sions for a sequence of improper integrals in terms of the beta
function and the Wallis ratio. Hereafter, we derive integral rep-
resentations for the Catalan numbers originating from combina-
torics.
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1. Introduction. In mathematics, a closed form is a mathematical
expression that can be evaluated in a finite number of operations. It may
contain constants, variables, four arithmetic operations, and elementary
functions, but, usually, not limit.

Let a be a positive number. For n ≥ 0, define

In =

a∫
−a

xn
√
a+ x

a− x
dx. (1)

In [1, Section 3], Dana-Picard and Zeitoun computed I0 = aπ and found
a closed form of In for n ∈ N in three steps:

1) establishing a formula of recurrence between In and In+1 in terms of

Sn =

π/2∫
−π/2

sinn θ dθ; (2)
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2) establishing an equation for In in terms of Sn;

3) establishing different expressions for odd values and even values of n.

Consequently, they deduced an integral representation of the Catalan
numbers which originate from combinatorics and number theory.

The aim of this note is to discuss again the sequence In, to present
closed and unified expressions for the sequence In in terms of the beta
function and the Wallis ratio, to derive integral representations for the
Catalan numbers, and to correct some errors and typos found in [1, Sec-
tion 3].

2. Closed and unified expressions for In. The sequence In can
be computed by several methods shown below.

Theorem 1. For n ∈ N, the sequence In can be computed by

In = an+1π

[
1 + (−1)n

n

1

B
(
1
2 ,

n
2

) +
1 + (−1)n+1

n+ 1

1

B
(
1
2 ,

n+1
2

)], (3)

where

B(p, q) =

1∫
0

tp−1(1− t)q−1 dt =

∞∫
0

tp−1

(1 + t)p+q
dt =

Γ(p)Γ(q)

Γ(p+ q)
(4)

and

Γ(z) =

∞∫
0

tz−1e−t dt

for Re(p),Re(q) > 0, and Re(z) > 0 denote the Euler integrals of the
second kind (or, say, the classical beta and gamma functions), respectively.

Proof. Using properties of definite integral we can write, by the straight-
forward computation:

In =

0∫
−a

xn
√
a+ x

a− x
dx+

a∫
0

xn
√
a+ x

a− x
dx =

=

0∫
a

(−y)n

√
a+ (−y)

a− (−y)
d(−y) +

a∫
0

xn
√
a+ x

a− x
dx =
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=

a∫
0

(−1)nyn
√
a− y
a+ y

dy +

a∫
0

xn
√
a+ x

a− x
dx =

=

a∫
0

xn
[
(−1)n

√
a− x
a+ x

+

√
a+ x

a− x

]
dx =

=

a∫
0

xn
(a+ x) + (−1)n(a− x)√

a2 − x2
dx =

=

a∫
0

xn
a[1 + (−1)n] + x[1− (−1)n]√

a2 − x2
dx =

= a[1 + (−1)n]

a∫
0

xn√
a2 − x2

dx+ [1− (−1)n]

a∫
0

xn+1

√
a2 − x2

dx.

In [6, Theorem 3.1], it was obtained that

a∫
0

xn√
a2 − x2

dx =
√
π an

Γ
(
n
2 + 1

2

)
nΓ
(
n
2

)
for a > 0 and n ≥ 0. Accordingly, considering

Γ

(
1

2

)
=
√
π , (5)

we acquire

In = a[1 + (−1)n]
√
π an

Γ
(
n
2 + 1

2

)
nΓ
(
n
2

) +

+ [1− (−1)n]
√
π an+1 Γ

(
n+1
2 + 1

2

)
(n+ 1)Γ

(
n+1
2

) =

=
√
π an+1

(
[1 + (−1)n]

Γ
(
n+1
2

)
nΓ
(
n
2

) + [1− (−1)n]
Γ
(
n
2 + 1

)
(n+ 1)Γ

(
n+1
2

)) =

= an+1π

[
1 + (−1)n

n

Γ
(
n+1
2

)
Γ
(
1
2

)
Γ
(
n
2

) +
1− (−1)n

n+ 1

Γ
(
n
2 + 1

)
Γ
(
1
2

)
Γ
(
n+1
2

)] =
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= an+1π

[
1 + (−1)n

n

1

B
(
1
2 ,

n
2

) +
1 + (−1)n+1

n+ 1

1

B
(
1
2 ,

n+1
2

)].
The proof of Theorem 1 is complete. �

Theorem 2. For n ≥ 0, the sequence In can be computed by

In =
1

2
an+1

(
[1 + (−1)n]B

(
1

2
,
n+ 1

2

)
+

+
[
1 + (−1)n+1

]
B

(
1

2
,
n+ 2

2

))
. (6)

Proof. Changing the variable of integration by x = at in (1) gives

In =

1∫
−1

(at)n
√
a+ at

a− at
a dt = an+1

1∫
−1

tn
√

1 + t

1− t
dt =

= an+1

( 0∫
−1

tn
√

1 + t

1− t
dt+

1∫
0

tn
√

1 + t

1− t
dt

)
=

= an+1

[ 1∫
0

(−s)n
√

1− s
1 + s

ds+

1∫
0

tn
√

1 + t

1− t
dt

]
=

= an+1

1∫
0

tn
[
(−1)n

√
1− t
1 + t

+

√
1 + t

1− t

]
dt =

= an+1

1∫
0

tn
[
(−1)n

1− t√
1− t2

+
1 + t√
1− t2

]
dt =

= an+1

(
[1 + (−1)n]

1∫
0

tn√
1− t2

dt+ [1− (−1)n]

1∫
0

tn+1

√
1− t2

dt

)
=

= an+1

(
[1 + (−1)n]

π/2∫
0

sinn s√
1− sin2 s

cos s ds+
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+ [1− (−1)n]

π/2∫
0

sinn+1 s√
1− sin2 s

cos s ds

)
=

= an+1

(
[1 + (−1)n]

π/2∫
0

sinn s ds+ [1− (−1)n]

π/2∫
0

sinn+1 s ds

)
.

Further making use of the formula

π/2∫
0

sint x dx =
1

2
B

(
t+ 1

2
,

1

2

)
, t > −1,

in [6, Remark 6.4] yields

In = an+1

(
[1 + (−1)n]

1

2
B

(
1

2
,
n+ 1

2

)
+ [1− (−1)n]

1

2
B

(
1

2
,
n+ 2

2

))
=

=
1

2
an+1

(
[1 + (−1)n]B

(
1

2
,
n+ 1

2

)
+
[
1 + (−1)n+1

]
B

(
1

2
,
n+ 2

2

))
.

The proof of Theorem 2 is complete. �

Corollary. For m ≥ 0, the sequences I2m and I2m+1 can be closedly
computed by

I2m = πa2m+1 (2m− 1)!!

(2m)!!

and

I2m+1 = πa2(m+1) (2m+ 1)!!

(2m+ 2)!!
,

where the double factorial of negative odd integers −2n− 1 is defined by

(−2n− 1)!! =
(−1)n

(2n− 1)!!
= (−1)n

2nn!

(2n)!
, n ≥ 0.

Proof. From the recurrence relation

Γ(x+ 1) = xΓ(x), x > 0 (7)

and the identity (5), we obtain

Γ

(
m+

1

2

)
=

(2m− 1)!!

2m
Γ

(
1

2

)
=

(2m− 1)!!

2m
√
π .
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By this equality and the last expression in (4), we derive

B

(
1

2
,
n

2

)
=

Γ
(
1
2

)
Γ
(
n
2

)
Γ
(
n+1
2

) =



Γ
(
1
2

)
Γ(m)

Γ
(
m+

1

2

) , n = 2m

Γ
(
1
2

)
Γ
(
m+

1

2

)
Γ(m+ 1)

, n = 2m+ 1

=

=



√
π (m− 1)!

(2m− 1)!!

2m
√
π

, n = 2m

√
π

(2m− 1)!!

2m
√
π

m!
, n = 2m+ 1

=


2

(2m− 2)!!

(2m− 1)!!
, n = 2m;

π
(2m− 1)!!

(2m)!!
, n = 2m+ 1.

Substituting this into (6) reveals

I2m =
1

2
a2m+1

[
2B

(
1

2
,

2m+ 1

2

)]
= a2m+1π

(2m− 1)!!

(2m)!!
,

I2m+1 =
1

2
a2(m+1)

[
2B

(
1

2
,

2m+ 3

2

)]
= a2(m+1)π

(2m+ 1)!!

(2m+ 2)!!
.

The proof of Corollary is complete. �

3. Integral representations for the Catalan numbers. The
Catalan numbers Cn for n ≥ 0 form a sequence of natural numbers that
occur in various counting problems in combinatorial mathematics. The
nth Catalan number can be expressed in terms of the central binomial
coefficients

(
2n
n

)
by

Cn =
1

n+ 1

(
2n

n

)
. (8)

Theorem 3. For n ≥ 0 and a > 0, the Catalan numbers Cn can be
represented by

Cn =
1

π

4n

n+ 1

1

a2n+1

a∫
−a

x2n
√
a+ x

a− x
dx =

=
1

π

22n+1

n+ 1

1

a2n

a∫
0

x2n√
a2 − x2

dx =
1

π

22n+1

n+ 1

π/2∫
0

sin2n x dx

(9)
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and

Cn=
1

π

22n+1

2n+ 1

1

a2n+2

a∫
−a

x2n+1

√
a+ x

a− x
dx =

=
1

π

22n+2

2n+ 1

1

a2n+2

a∫
0

x2n+2

√
a2 − x2

dx =
1

π

22n+2

2n+ 1

π/2∫
0

sin2n+2 x dx.

(10)

Proof. From the recurrence relation (7) and the identity (5), it is not
difficult to show that the Catalan numbers Cn can be expressed in terms
of the gamma function Γ by

Cn =
4nΓ(n+ 1/2)√
π Γ(n+ 2)

, n ≥ 0.

This implies that

Cn =
1

π

4n

n+ 1
B

(
1

2
, n+

1

2

)
. (11)

Taking n = 2p in (6) and utilizing (11) leads to

I2p = a2p+1B

(
1

2
,

2p+ 1

2

)
= a2p+1π

p+ 1

4p
Cp,

which is equivalent to

Cn =
4n

n+ 1

1

a2n+1π
I2n =

1

π

4n

n+ 1

1

a2n+1

a∫
−a

x2n
√
a+ x

a− x
dx.

The first formula in (9) thus follows.
By a similar argument to the deduction of (11), we can discover

Cn =
4n+1

(2n+ 1)(2n+ 2)

1

B
(
1
2 , n+ 1

) , n ≥ 0.

Employing this identity and setting n = 2p+ 1 in (3) figures out

I2p+1 = a2p+2 2π

2p+ 2

1

B
(
1
2 , p+ 1

) = a2p+2 2π

2p+ 2

(2p+ 1)(2p+ 2)

4p+1
Cp
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which can be rearranged as

Cp =
1

a2p+2

1

π

22p+1

2p+ 1
I2p+1 =

1

π

1

a2p+2

22p+1

2p+ 1

a∫
−a

x2p+1

√
a+ x

a− x
dx.

The first formula in (10) is thus proved.
The rest integral representations follow from techniques used in the

proofs of Theorems (1) and (2) and from changing variable of integra-
tion. �

4. Remarks. Finally, we state several remarks on our main results.

Remark 1. The expressions in Corollary and the integral representa-
tion (9) correct [1, Proposition 3.1 and Corollary 3.2], respectively.

Remark 2. Since

B

(
1

2
,
t+ 1

2

)
B

(
1

2
,
t

2

)
=

2π

t

for t > 0, formulas (3) and (6) can be transferred to each other. However,
formula (6) looks simpler.

Remark 3. Considering (8), we can rewrite the integral representations
in (9) and (10) as

(
2n

n

)
=

1

π

4n

a2n+1

a∫
−a

x2n
√
a+ x

a− x
dx =

=
1

π

22n+1

a2n

a∫
0

x2n√
a2 − x2

dx =
1

π
22n+1

π/2∫
0

sin2n x dx

and (
2n

n

)
=

1

π

22n+1(n+ 1)

2n+ 1

1

a2n+2

a∫
−a

x2n+1

√
a+ x

a− x
dx =

=
1

π

22n+2(n+ 1)

2n+ 1

1

a2n+2

a∫
0

x2n+2

√
a2 − x2

dx =
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=
1

π

22n+2(n+ 1)

2n+ 1

π/2∫
0

sin2n+2 x dx.

for n ≥ 0.

Remark 4. It is well known that the Wallis ratio is defined by

Wn =
(2n− 1)!!

(2n)!!
=

(2n)!

22n(n!)2
=

1√
π

Γ
(
n+ 1/2

)
Γ(n+ 1)

, n ≥ 0.

As a result, we have

I2m = πa2m+1Wm, m ≥ 0,

I2m+1 = πa2m+2Wm+1, m ≥ 0.

The Wallis ratio has been studied and applied by many mathemati-
cians. For more information, please refer to the survey article [5] and the
paper [11], for example, and plenty of literature therein.

Remark 5. In [2] the formula

π/2∫
0

sint x dx =

√
π

2

Γ
(
t+1
2

)
Γ
(
t+2
2

) , t > −1 (12)

was stated. See also [5, p. 16, Eq. (2.18)]. In [3, p. 142, Eq. 5.12.2], the
formula

π/2∫
0

sin2a−1 θ cos2b−1 θ dθ =
1

2
B(a, b), Re(a),Re(b) > 0 (13)

was listed. By (12) or (13), we find that the quantity Sn defined in (2) is

Sn =

0∫
−π/2

sinn x dx+

π/2∫
0

sinn x dx =

=

π/2∫
0

(−1)n sinn x dx+

π/2∫
0

sinn x dx =
1 + (−1)n

2
B

(
n+ 1

2
,

1

2

)
.
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Remark 6. In [9, Theorem 2.3] the integral formulas

b∫
a

(
b− t
t− a

)λ
dt = (b− a)

λπ

sin(λπ)
,

b∫
a

(
b− t
t− a

)λ
1

t
dt =

π

sin(λπ)

[(
b

a

)λ
− 1

]
,

b∫
a

(
b− t
t− a

)λ
1

tk+1
dt =

π

sin(λπ)

(
b

a

)λ
1

ak

k∑
`=0

〈λ〉`
`!

(
k − 1

`− 1

)(
1− a

b

)`
for b > a > 0, k ∈ N, and λ ∈ (−1, 1) \ {0} were derived, where

〈x〉n =


n−1∏
k=0

(x− k), n ≥ 1

1, n = 0

is called the falling factorial. In [9, Remark 4.4], the integral formula

b∫
a

(
b− t
t− a

)λ
1

t
ln
b− t
t− a

dt =

=


π

sin(λπ)

{(
b

a

)λ
ln
b

a
− π cot(λπ)

[(
b

a

)λ
− 1

]}
, λ 6= 0

1

2

(
ln
b

a

)2

, λ = 0

was concluded from [9, Theorem 2.3]. By comparing the forms of these in-
tegrals and In, we naturally propose a problem: can one closedly compute
the integrals

b∫
a

(
b− t
t− a

)λ
tα dt and

b∫
a

tα
(
b− t
t− a

)λ
ln
b− t
t− a

dt

for λ ∈ (−1, 1) and

α ∈

{
R, b > a > 0

N, b > 0 > a
?
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Remark 7. An anonymous reviewer points out that the Catalan num-
bers Cn emerge frequently in probability, for example, in the closed dis-
tribution of the first return to zero of the symmetric coin tossing random
walk, where

T0 = inf{k > 0 : Sk = 0}, Sk =

k∑
j=1

Xj , and Xj =

{
1, p = 1

2

−1, p = 1
2

has distribution

P (T0 = 2n+ 2) =

(
2n

n

)
1

n+ 1

1

2n+1
, n = 0, 1, 2, . . .

Remark 8. In recent years, the Catalan numbers Cn have been analyt-
ically generalized and studied in the papers [10, 12]. For more informa-
tion, please refer to the survey articles [7, 8] and closely-related references
therein.

Remark 9. This paper is a slightly revised version of the preprint [4].

Acknowledgement. The author thanks Mr. Qing Zou at University of
Iowa and other three anonymous reviewers for their careful corrections to
and valuable comments on the original version of this paper.
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