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Abstract. We derive formulas that generalize contiguity relations
of Gauss hypergeometric functions to the case of hypergeometric
functions satisfying differential equations of arbitrary order and also
of solution matrices of their corresponding homogeneous differential
equations.
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1. Introduction. Let A be the set of all algebraic numbers,
Z+ = N ∪ {0}, Z− = Z \ N, δji be the Kronecker delta, C(z) be the
set of all rational functions with coefficients from C, C[z±1] be the ring
C[z, z−1], M(q,K) be the set of all q × q matrices with elements from a
ring K and GL(q,K) be the general linear group in M(q,K).

The functions

lϕq(z) = lϕq(~ν;~λ; z) = l+1Fq

(
1, ν1, . . . , νl
λ1, . . . , λq

∣∣∣∣ z) =
∞∑
n=0

(ν1)n . . . (νl)n
(λ1)n . . . (λq)n

zn,

where 0 6 l 6 q, (ν)0 = 1, (ν)n = ν(ν + 1) . . . (ν + n− 1), ~λ ∈ (C \ Z−)q,
~ν = (ν1, . . . , νl) ∈ Cl are called generalized hypergeometric functions (see
[1, 2, 6, 8, 9]).

The function lϕq(~ν;~λ; z) satisfies the (generalized) hypergeometric diffe-
rential equation

L(~ν;~λ; z) y = (λ1 − 1) . . . (λq − 1) (1)

(see [8], Chap. 5, §1, formula (5)), where

L(~ν;~λ; z) ≡
q∏
j=1

(δ + λj − 1)− z
l∏

k=1

(δ + νk), δ = z
d

dz
.

c©Petrozavodsk State University, 2018

http://creativecommons.org/licenses/by/4.0/


40 V.A. Gorelov

The properties of the functions

lFq−1(~ν;~λ; z) = lFq−1

(
ν1, . . . , νl
λ2, . . . , λq

∣∣∣∣ z) =
∞∑
n=0

(ν1)n . . . (νl)n
n!(λ2)n . . . (λq)n

zn

satisfying homogeneous linear differential equations were studied most
minutely. We assume that the vector ~λ related to the function lFq−1(~ν;~λ;z)
contains a component equal to 1, and this component is automatically
moved to the first position.

A lot of functions used in mathematics are hypergeometric (ez, Gauss
hypergeometric functions, Kummer functions) or can be easily expressed
using them (sin z, cos z, sinh z, cosh z, Bessel functions, "incomplete"
gamma-function and some other special functions).

Description of algebraic properties of the generalized hypergeometric
functions and solutions of the generalized hypergeometric equations in gen-
eral is still far from completion despite long history of their investigation.
They are interesting for calculus in the broad sense of the word and for
applications. The Siegel-Shidlovskii method (see, for example, [8]), is one
of the main methods in the theory of transcendental numbers; it permits
to establish the transcendency and the algebraic independence of the val-
ues of entire functions of some class that contains the functions lϕq(αzq−l)
(α ∈ A) if these functions are algebraically independent over C(z).

The simplest identities between hypergeometric functions were found
by Euler and Gauss. In particular, Gauss found (see, for example, [6],
Sec. 6.2.2) linear equations for his hypergeometric function 2F1; these
equations bind this function with the so-called contiguous functions. If ϕ
is a hypergeometric function, then the functions

ϕ(νk±) = ϕ(ν1, . . . , νk ± 1, . . . , νl;λ1, . . . , λq; z)

and ϕ(λk±) (which are defined similarly) are said to be contiguous to ϕ.
Functions, whose parameters differ from those of the original hypergeo-
metric function by integer values, are said to be associated with ϕ.

For the vectors ~µ = (µ1, . . . , µn), ~η = (η1, . . . , ηn) we shall write
~µ ∼ ~η if there exists a permutation π of the numbers 1, . . . , n such
that µi − ηπ(i) ∈ Z, i = 1, . . . , n. We shall also use the notation
γ~µ + β = (γµ1 + β, . . . , γµn + β), where γ, β ∈ C. The expression
(~ν;~λ) ∼ γ(~µ; ~η) + β means that ~ν ∼ γ~µ + β, ~λ ∼ γ~η + β. Equation
1 is said to be linearly reducible (linearly homogeneously reducible) if
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it has a solution y 6≡ 0 such that y, y′, . . . , y(q−1) are linearly dependent
with 1 (linearly dependent) over C(z), and linearly irreducible (linearly
homogeneously irreducible) otherwise (see [8], Chap. 10, §1).

One can notice that contiguous functions and their derivatives are
expressed as linear combinations (nonhomogeneous in general) with coef-
ficients from C(z) of the functions ϕ, ϕ′, . . . , ϕ(q−1) (see [1], §§2.5, 3.7; [4],
formula (19); [6], Secs. 5.2.2, 7.3.2; [8], Chap. 10, formula (47); [10], for-
mula (12)). In [1, 4, 6, 8, 10] the cases q = l = 2, λ1 = 1; q = l, λ1 = 1;
q = 2, l = λ1 = 1; l = 0; l = 0, q/2 ∈ N are considered correspon-
dingly. The coefficient of ϕ(νk±) (or ϕ(λk±)) can be identically zero
for certain admissible values of the parameters of the functions. The
corresponding differential equations are linearly reducible in such cases.
For νi 6∈ Z−, the conditions (found by Salikhov, see [7], Theorem 8)
νi − λj ∈ Z, 1 6 i 6 l, 1 6 j 6 q or the existence of a divisor d > 1

of the numbers l and q such that (~ν;~λ) + 1/d ∼ (~ν;~λ) are necessary and
sufficient for linear reducibility.

The author [5] has made an attempt to give a compact description
of contiguity relations for arbitrary generalized hypergeometric functions
(see [5], Lemma 12). However, the statement of this lemma can not be
transferred to hypergeometric functions with finite radii of convergence of
their power series (i. e., when l = q), and the proof in some cases was not
correct. The contiguity relations can be written as ~ϕ1 = Ω~ϕ + ~c, where
~f = (f, f ′, . . . , f (q−1))T , Ω ∈ M(q,C(z)), ~c ∈ (C(z))q, ϕ = lϕq(~ν;~λ; z),
ϕ1 is the function ϕ(νk±) or ϕ(λk±), the symbol T means transposition.
If

~ϕ(ν±) = Ων±~ϕ+ ~cν±, ~ϕ(λ±) = Ωλ±~ϕ+ ~cλ±,

then it is easy to see that Ων− = Ω−1ν+(ν−), ~cν− = −Ων−~cν+(ν−), Ωλ+ =
= Ω−1λ−(λ+), ~cλ+ = −Ωλ+~cλ−(λ+). The parameter ν (and also λ) in this
notation is arbitrarily taken from the set {ν1, . . . , νl} (or {λ1, . . . , λq}).
The symbol Ων+(ν−) designates the matrix which is obtained from Ων+ by
the substitution ν → ν−1 in its entries, where ν is the chosen parameter.
The symbols Ωλ−(λ+), ~cν+(ν−), ~cλ−(λ+) are defined similarly.

2. Main results. We present an algorithm for finding contiguity
relations and also their generalizations to the case of associated functions
and solution matrices Φi of their corresponding homogeneous differential
equations L(~νi;~λi; z)y = 0 in the proof of the following theorem. The
matrix Φ for the equation L(~ν;~λ; z)y = 0 is a solution matrix of the
corresponding first order vector equation. In this theorem we also solve the
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problem of cogradience (see definition in [3], Sec. 1) of the hypergeometric
equations, whose parameters differ by integer values.

Theorem 1. Suppose that ~νi ∈ Cl, ~λi ∈ (C \ Z−)q, q > max(2, l),
ϕi = lϕq(~νi;~λi; z), the equation L(~νi;~λi; z)y = 0 is linearly homogeneously
irreducible, Φi is an arbitrary solution matrix of this equation, for i = 1, 2,
and (~ν1;~λ1) ∼ (~ν2;~λ2). Then there exist matrices

Ω ∈ GL(q,C[z±1, (1− z)−ε]), C ∈ GL(q,C)

and a vector ~c ∈ (C[z±1,(1− z)−ε])q, ε = δlq such that

~ϕ1 = Ω~ϕ2 + ~c, Φ1 = ΩΦ2C.

The proof of the Theorem 1 requires the following lemma.

Lemma 1. [5, lemma 1] The function (or, for l > q, the formal power
series) zγlϕq(~ν;~λ;αzp), where ~ν ∈ Cl, ~λ ∈ (C\Z−)q, α, γ ∈ C, l, q ∈ Z+,
l + q 6= 0, p ∈ Z, satisfies the differential equation(

q∏
i=1

(δ + p(λi − 1)− γ)− αpq−lzp
l∏

i=1

(δ + pνi − γ)

)
y = pqzγ

q∏
i=1

(λi − 1),

the empty product of brackets equals 1.

Corollary 1. If λi−λk /∈ Z, i 6= k, and q > max(1, l), then the functions

z(1−λk)plFq−1(~ν + 1− λk;~λ+ 1− λk;αzp), k = 1, . . . , q (2)

constitute the fundamental system of solution of the equation

L(~ν;~λ;αzp)y = 0,

where

L(~ν;~λ;αzp) ≡
q∏
i=1

(δ + p(λi − 1))− αpq−lzp
l∏

i=1

(δ + pνi),

is obtained from L(~ν;~λ; z)y = 0 by the substitution z → αzp.

Proof of the Corollary 1. By the Lemma 1, the functions

z(1−λk)plϕq(~ν + 1− λk;~λ+ 1− λk;αzp), k = 1, . . . , q,
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satisfy the equation L(~ν;~λ;αzp)y = 0, are linearly independent over C,
and can be written as (2), because the k-th component of the vector
~λ+ 1− λk equals 1. �

As it follows from the Lemma 1, the equation L(~ν;~λ;αzp)y = 0 for
q > l has the form

(1− αzp)εzqy(q) +
(

(λ1 + · · ·+ λq − q)p+ (q − 1)
q

2
− ε1αpzp−

−εα
(

(ν1 + · · ·+ νq)p+ (q − 1)
q

2

)
zp
)
zq−1y(q−1)+ (3)

+ · · ·+ pq((λ1 − 1) . . . (λq − 1)− αν1 . . . νlzp)y = 0,

where ε = δlq, ε1 = δl+1
q . The Wronskian of this equation equals

W = cz−(λ1+···+λq−q)p−(q−1)q/2(1− αzp)(λ1+···+λq−ν1···−νq−q)εeαzpε1 , (4)

where c ∈ C \ {0}.
Proof of the Theorem 1. We start with the following remark. Suppose
that Ψ is a solution matrix of some linear homogeneous system ~y ′ = A~y,
Ω = Ω(z) and C are arbitrary non-singular matrices of the same size
as A = A(z), C does not depend on z. Elementary calculations show
that Ψ1 = ΩΨC is a solution matrix of the system ~y ′ = A1~y, where
A1 = (Ω′ + ΩA)Ω−1. On the other hand, if Ψ1 is a solution matrix of the
system ~y ′ = A1~y, then, setting Ψ2 = Ω−1Ψ1, we obtain

Ψ′2 = (Ω−1Ψ1)
′ = −Ω−1Ω′Ω−1Ψ1 + Ω−1A1Ψ1 = AΩ−1Ψ1 = AΨ2,

whence Ψ2 = ΨC and Ψ1 = ΩΨC. If ~ψ, ~ψ1 are arbitrary solutions of linear
systems ~y ′ = A~y+~c and ~y ′ = A1~y+~c1 respectively, where ~ψ1 = Ω~ψ+~c2,
then we obtain A1 = (Ω′+ΩA)Ω−1 again. Hence, the equality ~ψ1 =Ω~ψ+~c2
for some solutions of initial systems implies the equality Ψ1 = ΩΨC for
arbitrary solution matrices of the homogeneous systems that correspond
to the initial ones. If Ω ∈ M(q,C(z)), ~c,~c1,~c2 ∈ (C(z))q, then in the
case of linear irreducibility (or linear homogeneous irreducibility of the
corresponding homogeneous systems) matrices Ω and A1 are determined
uniquely, and Ω is always non-singular.

To prove the theorem, it suffices to restrict ourselves to the case in
which ν1,j = ν2,j = νj, λ1,t = λ2,t = λt for all parameters except the one
whose values differ by 1. Assume that this parameter is νk, 1 6 k 6 l.
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Suppose that νk = ν2,k = ν1,k − 1. Differentiating the identity

νkϕ2(νk+) = (δ + νk)ϕ2 = νkϕ2 + zϕ′2

(see [6], Sec. 5.2.2), q − 1 times, we find

νk~ϕ1 = Ω̄~ϕ2 + (0, . . . , 0, bz1−q(1− z)−ε)T ,

where b = (λ1 − 1) . . . (λq − 1), Ω̄ is such a matrix that its j-th row for
j 6= q contains only two nonzero entries: aj, j = νk + j − 1 and aj,j+1 = z,
while the entries in the q-th row are already obtained from the coefficients
of the equation L(~ν2;~λ2; z)y = b and, by (3), belong to C[z±1, (1 − z)−ε].
From the linear irreducibility of the equations under consideration the
inequalities νk 6= 0 and |Ω̄| 6≡ 0 follow. Aforesaid means that Φ1 = Ω̄Φ2C,
and from here, taking equality (4) and inclusion |Ω̄| ∈ C[z±1, (1 − z)−ε]
into account, we obtain |Ω̄| = azn(1−z)mε, a ∈ C\{0}, n,m ∈ {0, 1,−1},
Ω̄ ∈ GL(q,C[z±1, (1− z)−ε]).

From here, in the case of an increase (and, hence, also a decrease) of
νk by 1, the assertion of the theorem holds.

If ν1,j = ν2,j = νj, λ1,t = λ2,t = λt for all parameters except λk,
1 6 k 6 q, similar arguments and the identity

(λk − 1)ϕ(λk−) = (λk − 1)ϕ+ zϕ′

are used. The theorem is proved. �
3. Examples. We obtain

Ων+ =
1

ν

(
ν z
ν ν − λ+ 1 + z

)
; Ωλ− =

1

λ− 1

(
λ− 1 z
ν z

)
by the algorithm presented in the proof of the Theorem 1 for Kummer
functions

Aλ,ν(z) = 1ϕ2(ν; 1, λ; z) = 1F1

( ν
λ

∣∣∣ z) =
∞∑
n=0

(ν)n
n!(λ)n

zn,

while for Gauss hypergeometric functions

2ϕ2(ν, µ; 1, λ; z) = 2F1

( ν, µ
λ

∣∣∣ z) =
∞∑
n=0

(ν)n(µ)n
n!(λ)n

zn
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we obtain, similarly,

Ων+ =
1

ν(1− z)

(
ν(1− z) z(1− z)
νµ ν − λ+ 1 + µz

)
;

Ωλ− =
1

(λ− 1)(1− z)

(
(λ− 1)(1− z) z(1− z)

νµ (ν + µ− λ+ 1)z

)
.

The proved Theorem 1 can be easily generalized to the case of functions
lϕq(~ν;~λ; αzp) by means of the substitution z → αzp. Here α ∈ C, p ∈ N.
For example, for functions

Kλ, µ(z) = 0ϕ2(λ+ 1, µ+ 1;−z2/4) =
∞∑
n=0

(−1)n

(λ+ 1)n(µ+ 1)n

(z
2

)2n
,

introduced by Shidlovskii (see [8], Chap. 6, §5]), we obtain

Ωλ− =
1

2λz

(
2λz z2

−z2 − 4λµ −2µz

)
; ~cλ− =

2µ

z

(
0
1

)
.
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