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GENERIC LIGHTLIKE SUBMANIFOLDS
OF AN INDEFINITE KAEHLER MANIFOLD WITH
A SEMI-SYMMETRIC NON-METRIC CONNECTION

Abstract. Recently, this author studied lightlike hypersurfaces of
an indefinite Kaehler manifold endowed with a semi-symmetric
non-metric connection in [7]. Further we study this subject. The
object of study in this paper is generic lightlike submanifolds of an
indefinite Kaehler manifold endowed with a semi-symmetric non-
metric connection such that the induced structure tensor field on
the submanifolds is recurrent or Lie recurrent.
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1. Introduction. A lightlike submanifold M of an indefinite almost
complex manifold M, with an indefinite almost complex structure J, is
called generic lightlike submanifold if there exists a screen distribution
S(T'M) of M such that

J(S(TM)*) c S(TM), (1)

where S(T M)t is the orthogonal complement of S(T'M) in the tangent
bundle TM of M, i.e., TM = S(TM) @upp, S(TM)*. The notion of
generic lightlike submanifold was introduced by Jin-Lee [8] at 2011 and
later, studied by several authors (see [3-5]). The geometry of generic
lightlike submanifold is an extension of that of lightlike hypersurface and
half lightlike submanifold of codimension 2. Much of its theory will be
immediately generalized in a formal way to general lightlike submanifolds.

A linear connection V on a semi-Riemannian manifold (M, §) is called
a semi-symmetric non-metric connection if it and its torsion T satisfy

(Vx9)(V,Z) = —0(Y)g9(X, Z) - 0(Z)g(X.Y), (2)
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T(X,7) = (V)X — 0(X)7, (3)

where 6 is a 1-form on M associated with a smooth unit vector field ¢ by
9(X) = g(X,¢). In the followings, we denote by X,Y and Z the smooth
vector fields on M. The notion of semi-symmetric non-metric connection
on a Riemannian manifold was introduced by Ageshe-Chafle [1].

Remark. Denote by V a Levi-Civita connection of a semi-Riemannian
manifold (M, g). It is known [7] that a linear connection V on M is a
semi-symmetric non-metric connection if and only if V satisfies

VeV = VgV +6(V)X. (4)

The object of present study is generic lightlike submanifolds of an in-
definite Kaehler manifold with a semi-symmetric non-metric connection.
First, we study the geometry of two types of generic lightlike submanifolds,
named by recurrent and Lie recurrent, of such an indefinite Kaehler man-
ifold. Next, we characterize generic lightlike submanifolds of an indefinite
complex space form with a semi-symmetric non-metric connection.

2. Semi-symmetric non-metric connections. Let M = (M, g, J)
be an indedinite Kaeler manifold, where g is a semi-Riemannian metric
and J is an indefinite almost complex structure:

J’X = -X, g(JX,JY)=g(X,Y), (VgJ)Y =0. (5)

Replacing the Levi-Civita connection v by the semi-symmetric non-metric
connection V given by (4), the third equation of (5) is reduced to

(V)Y =0(JY)X —0(Y)JX. (6)

Let (M,g) be an m-dimensional lightlike submanifold of an indefi-
nite Kaehler manifold (M, g) of dimension (m + n). Then the radical
distribution Rad(T'M), defined by Rad(TM) = TM NTM*, of M is a
subbundle of the tangent bundle 7'M and the normal bundle TM*, of
rank 7 (1 < r < min{m,n}). In general, there exist two complementary
non-degenerate distributions S(TM) and S(TM*) of Rad(TM) in TM
and TM+* respectively, which are called the screen distribution and the
co-screen distribution of M |2], such that

TM = Rad(TM) ®opp, S(TM), TM* = Rad(TM) @oper, S(TM™),
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where @4, denotes the orthogonal direct sum. Denote by F(M) the
algebra of smooth functions on M and by I'(E) the F(M) module of
smooth sections of a vector bundle E over M. Also denote by (5); the i-th
equation of (5). We use the same notations for any others. Let X,Y, 7
and W be the vector fields on M, unless otherwise specified. We use the
following range of indices:

iy k... e {1,...r}, a,byc,...€ {r+1,...n}

Let tr(T'M) and ltr(TM) be complementary vector bundles to T'M
in TMy and TM* in S(TM)™* respectively and let {Ni, ..., N,} be a
lightlike basis of ltr(T'M),,,, where U is a neighborhood of M, such that

lee>
g(Ni, &) = 053, g(Ni, Nj) =0,
where {1, ..., &} is a lightlike basis of Rad(T'M),. Then we have
TM = TM @ tr(TM) = {Rad(TM) & tr(TM)} Sopn S(TM) =
= {Rad(TM) ® ltr(TM)} ®ortn S(TM) Soper, S(TM™).

A lightlike submanifold M = (M, g, S(TM), S(TM*)) of M is called
(1) r-lightlike submanifold if 1 < r < min{m,n};
(2)

(3) isotropic submanifoldif 1 <r=m <n;
(4) totally lightlike submanifold if 1 <r =m =n.

co-isotropic submanifold if 1 <r =n <m;

The above three classes (2) — (4) are particular cases of (1) as follows:
S(rM+)={0},  S(TM)={0}, S(T'M)=STM")={0}

respectively. The geometry of r-lightlike submanifolds is more general
than that of the other three types. Thus we consider only r-lightlike
submanifolds M, with following quasi-orthonormal field of frames of M:

{&, ..., & Ny, ...,N., Frpq, ..., Fp  Ergq, o B,

where {F,} and {E,} are orthonormal bases of S(T'M) and S(T M%),
respectively. Denote €, = g(E,, E,). Then €,04 = §(Fa, E).



50 Dae Ho Jin

Let P be the projection morphism of 7'M on S(T'M). Then the local
Gauss-Weingarten formulae of M and S(T'M) are given respectively by

VxY = VxY + Y WX, V)N + Y h(X,Y)E,  (7)

=1 a=r+1
VxN; = —ANZ.X*I—ZTU(X)NJ"" Z pia(X)Eq, (8)
7=1 a=r+1
VxEs = A, X+ Xai(X)INi+ > pa(X)Ey;  (9)
=1 b=r+1
VxPY = VXPY +) hi(X,PY)§, (10)
=1
V& = —ALX - Zo—ﬂ 132 (11)

where V and V* are induced linear connections on M and S(T'M) respec-
tively, hf and hS are called the local second fundamental forms on M, h}
are called the local second fundamental forms on S(T'M). A, ,A, and
Ag are called the shape operators, and 7;;, pia, Aais ey and oj; are 1 forms
on M. Using (2), (3) and (7), we see that

r

(Vxg)(Y, 2) = 3 _{h(X,Y)m(Z) + hi(X, Z)m(Y )} =

T(X,Y)=0(Y)X —0(X)Y, (13)
and both hf and h¢ are symmetric, where 7;’s are 1-forms such that
n:(X) = g(X, N;).
In the sequel, denote by «;, 8; and ~, the functions given by
a; = 0(&), Bi = 0(Ny), Yo = 0(Eq).

As R{(X,Y) = g(VxY,&) and €,h3(X,Y) = g(VxY, E,), we know that
hf and h¢ are independent of the choice of S(T'M). The above three types
local second fundamental forms are related to their shape operators by

h{(X.Y) = g(A; X, Y) = Y WX E)m(Y) +aig(X,Y),  (14)

k=1
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ehS(X,Y) = g(A, X,Y) - E}m V) +79(X,Y),  (15)
m@apyy:ﬂAMXJwv+m@wmfyy+&ﬂXJnU. (16)

Applying the operator V y to 9(&.,&) =0,9(&, E,) =0, g(N;, Nj) =0,
G(Ni, Ey) =0, g(E,, Ep) = €dqp and g(N;, &) = 0;; by turns, we have

hf(X7 5]) + hﬁ(Xv él) = 07 hz(Xv gl) = _eaAai(X>7
i(Ay, X) +mi(Ay, X) = =Bim;(X) — Bm(X),

h (17)
g(AEaX7 Nl) = EapiCL(X) - fyani(X)a
€vtab + €ativa = 0, T35(X) = 035(X) + a;mi(X).

Furthermore, using (17);, we see that

Definition 1. We say that a lightlike submanifold of a semi-Riemannian
manifold is irrotational 9] if Vx& € T'(T'M) for all i € {1, --- ,r}.

Remark. From (7) and (17),, the above definition is equivalent to

hﬁ(X, &) =0, ho(X, &) = Aai(X) = 0.

‘3. Structure equations. Let M be a generic lightlike submanifold
of M. From (1) we show that J(Rad(TM)), J(Itr(TM)) and J(S(TM™*))
are subbundles of S(T'M). Thus there exist two non-degenerate almost
complex distributions H, and H with respect to J, i.e., J(H,) = H, and
J(H) = H, such that

S(TM) ={J(Rad(TM)) & J(ltr(TM))} @oren J(S(TM™)) Boper Ho,

H :Rad(TM) Dorth J(Rad<TM)) Dorth Ho.

In this case, the tangent bundle T'M of M is decomposed as follow:
TM = H @ J(ltr(TM)) ®open J(S(TM*Y)). (19)

Consider 7-th local null vector fields U; and V;, (n—r)-th local non-null
unit vector fields W,, and their 1-forms u;, v; and w, defined by

Ui = —JNZ, V; = _‘]517 Wa = _‘]EC“ (20)
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wi(X) =9(X, Vi), vi(X)=g(X,U;), we(X)=¢€,9(X,W,). (21)

Denote by S the projection morphism of 7'M on H and by F' the tensor
field of type (1,1) globally defined on M by F' = J o S. Then X is
expressed as X = SX + >0 u;(X)U; + > we(X)W,. Therefore,

JX =FX + iui(X)Ni + i wa(X)E,. (22)

i=1 a=r+1

Applying J to (22) and using (5)1, (20) and (22), we have

FZX_—XJFZ% VUi + Z Wo (X)W, (23)

=1 a=r+1

In the sequel, we say that F' is the structure tensor field of M.
Applying the operator Vx to (20)1 9 3 and (22) by turns and using (6),
(7)—(11), (14)—(16) and (20)—(22), we have
(XU =5 (A, X0+ (X) = KX V) =00 m(X),
he(X,Ui) = wa(ANiX)Jrﬁzwa( ) =é€a{h; (X, Wa) =0(Wo)n:(X)},
RA(X, V) = hi(X,V)),  hi(X,Vi) = ehi(X, Wa),
enhy (X, W,) = €,h5 (X, W),

Vin = F(ANZX)—FET:T”(X)U]—F i pia(X)Wa+ (25)

j=1 a=r+1
+ BiFX + H(Ul)
ViV, = F(ALX Zaﬂ Wi+ Y B(X,&)U; - (26)
=1

= ) @AW+ i FX +0(V;)X,

a=r+1

VxWa = F(A, X)+ Y Aa(X)Ui+ D pap(X)Wy + (27)
i=1 b=r+1

+ Y. FX +0(W,)X
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(VxF)(Y Zuz Y)A, X + Z wa(Y)A,, X — (28)

a=r+1

—EjthYU—§ hi (X, Y)W,
a=r+1
+9(JY)X—9( VFX

4. Recurrent and Lie recurrent structure tensors.

Definition 2. The structure tensor field F' of M is said to be recurrent [6]
if there exists a 1-form w on M such that

(VxF)Y = w(X)FY.

A generic lightlike submanifold M of an indefinite Kaehler manifold M is
called recurrent if it admits a recurrent structure tensor field F.

Theorem 1. Let M be a recurrent lightlike submanifold of an indefinite
Kaehler manifold M with a semi-symmetric non-metric connection. Then
(1) F is parallel with respect to the induced connection V on M,
(2) M is irrotational and the 1-forms p;, satisfy p;, = 0,
(3) the 1-form 6 vanishes on T M,
(4) H, J(ltr(TM)) and J(S(TM™)) are parallel distributions on M,
(5) M is locally a product manifold M, x M,_, x M*, where M,, M, _,
and M?* are leaves of J(Itr(TM)), J(S(TM*)) and H, respectively.

Proof.
(1) From the above definition and (27), we obtain

FY—ZUZ AX+Zwa Y)A, X—

a=r+1

- Zh" (X, Y)U, Z h(X, Y)W, +0(JY)X —0(Y)FX. (29)

a=r+1

Replacing Y by ; to this and using the fact that F'§; = =V}, we get

D(X)WV; =Y WX, U+ Y WX, §)W, + 6(V)X + o FX. (30)
k=1 b=r+1
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Taking the scalar product with N; to (30), we obtain
0(Vi)ni(X) + a;vi(X) = 0.
Taking X =V; and X = &; to this equation by turns, we have
a; =0, (Vi) =0, (31)

for all 4. Taking the scalar product with U; to (30), we get @ = 0. Thus
F' is parallel with respect to the induced connection V on M.

(2) Taking the scalar product with V; and W, to (30) such that
w = a; = 0(V;) =0, we obtain hf(X,&;) =0 and hi(X,&;) = 0. Thus M
is irrotational by Remark in Section 2.

Replacing Y by W, to (29) such that w = 0, we have

A, X =) WX W)U + > hiy(X, W)Wy — 7. X + 0(W,)FX. (32)
=1 b=r+1

Taking the scalar product with N; and U; to this equation by turns and
using (15), (17)4, we obtain

Eapia(X) = Q(Wa)vi(X)v EahZ<X7 Uz) = _H(Wa)nz<X) (33)

Replacing X by &; to (33)2 and using the fact that hs(&;, U;) = 0, we get
6(W,) = 0. From this result and (33);, we see that p;, = 0. Thus

Q(Wa) - 07 Pia = 07 hZ(Xv UZ) =0. (34)
(3) Replacing Y by U; to (29) such that w = 0, we have

Ay X =D WX UNUe+ Y B(X, U)W, — B X + 6(U)FX.  (35)
k=1 a=r+1
Taking the scalar product with N; and U; to this by turns, we get
nj(Ay, X) = =Bin;(X) — 0(Ui)v;(X), (36)
9(Ay, X, Uj) = —B;(X) — 0(Ui)n; (X).

Taking i = j to (36); and using (17)3, we get 0(U;)v;(X) = 0. It follows
that 6(U;) = 0. Using (16), (36)2 reduces h;(X,U;) = 0. Thus

o(U;) = 0, hi(X,U;) = 0. (37)
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Replacing X by &; to (29) and using M is irrotational, we get

Zuz Y)A, &+ Z wa(Y)A, & +0(JY)E +0(Y)V; = 0.

a=r+1

Taking the scalar product with U; to this equation, we have

n

Zuz 946U + Y walY)g(A,, 6. U) +6(Y) =0 (38)

a=r+1
Taking Y = U; and Y = W, by turns and using (34); and (37);, we get
g(ANié—jan) =0, g(AE,lé—jan) =0.

Consequently, (38) is reduced to #(X) = 0. Thus 6 vanishes on T'M.
(4) Using (2), (11), (14), (15), (22), (26) and (27), we get

(9(Vx&, V)) = —hi(X, V) + aiu;(X),
9(Vx&i, Wa) = —hi(X, W,) + e;qzwaw(X),
9(VxVi, Vi) = hi(X, &) + 0(Vi)uy (X),
9(VxVi, Wa) = =Aai(X) + €af(Vi)wa(X),
9(VxZ,V;) = hi(X, FZ) + 0(Z)u;(X),
(9(VxZ,Wa) = e he(X, FZ) + 0(Z)wa(X)},

for any X € I'(TM) and Z € I'(H,). Taking Y = V; and Y = FZ,
Z € I'(H,) to (29) by turns and using (31) and the facts that 6 = 0 on
TM, u;(FZ) =w,(FZ)=0and JFZ = F?Z = —Z, we have

hi(X,V;) =0, he(X,V5) = hj(X, Wa) =0, (40)
hi(X,FZ) =0, hi(X,FZ) =0. (41)

Using (31), (40), (41) and A\, = 0, (39) are equivalent to
VxY el'(H), VXeI(TM), VY el(H).

It follows that H is a parallel distribution on M.
Applying F' to (32) and (35) and using (34); and (37);, we get

F(ANZ_X) = -G, FX, F(A, X) = —7.FX.
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Using these results together with (34), (37) and A\,; = 0, (25) and (27)
reduce to

VU = inj(X)Uj, VxU; € D(J(1r(TM))),  (42)

ViWo= Y paWs, VW, € T(J(S(TM"))).  (43)
b=r+1
Thus J(Itr(TM)) and J(S(TM*1)) are also parallel distributions on M.

(5) As H, J(ltr(TM)) and J(S(TM™)) are parallel distributions and
satisfy (19), by the decomposition theorem of de Rham [10], M is locally
a product manifold M, x M,_, x M*, where M,, M,_, and M* are leaves
of the distributions J(ltr(T'M)), J(S(TM™*)) and H respectively. [J

Definition 3. The structure tensor field F' of M is said to be Lie recur-
rent [6] if there exists a 1-form ¥ on M such that
(L, F)YY =9(X)FY,
where L, denotes the Lie derivative on M with respect to X, that is,
(L, F)Y =[X,FY] - F[X,Y]. (44)

In the case ¥ =0, i.e., L, F =0, we say that F is Lie parallel. A generic
lightlike submanifold M of an indefinite Kaehler manifold M is called Lie
recurrent if it admits a Lie recurrent structure tensor field F.

Theorem 2. Let M be a Lie recurrent generic lightlike submanifold of
an indefinite Kaehler manifold M with a semi-symmetric non-metric con-
nection. Then

(1) F is Lie parallel,
(2) 7; and py, satisfy 7;;(FX) =0 and p;o(FX) = 0. Moreover,

Tz’j(X) = Zuk(X)g(ANij, NZ)

Proof.
(1) Using (13), (22), (28) and (44), we obtain
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WX)FY = —VpyX + FVy X+

+ Y w(V)A, X+ Y wa(Y)A, X~
i=1

a=r+1

- ihf(X>Y)Ul_ i hZ(X,Y)Wa+

+ {Z@'“i(yH > vawa(Y)}X. (45)
i=1 a=r+1

Replacing Y by &; and Y by V; to (45) respectively, we have

—I(X)V; = Vi, X + FV X~

= D WX Ui~ Y (X &)W, (46)
=1

a=r+1

I(X)E; = —Ve, X + FVy, X~

= D WX VU= Y hi(X V)W (47)
=1

a=r+1

Taking the scalar product with U; to (46) and N; to (47), we get
—6;9(X) = g(Vv, X, U;) — §(Ve, X, Ny),

(48)

respectively. It follows that ¥ = 0. Thus F' is Lie parallel.

(2) Taking the scalar product with N; to (46) such that X = W, and
using (15), (17)4 and (27), we get hi(U;, V;) = pia(&;). Also, taking the
scalar product with W, to (47) such that X = U; and using (25), we have
B(UL V) = —pia(&5). Thus pin(€;) = 0 and (U5, V;) = 0.

Taking the scalar product with U; to (46) with X = W, and using
(15), (17)q,4 and (27), we get €,pia(V;) = Aaj(U;). Also, taking the scalar
product with W, to (46) such that X = U; and using (17), and (25), we
get €apia(V;) = —Ag;(U;). Thus pia(V;) = 0 and A\y;(U;) = 0.

Taking the scalar product with V; to (46) such that X = W, and using
(17)2, (24)4 and (27), we obtain A, (V;) = —A,;(Vi). Also, taking the
scalar product with W, to (46) such that X = V; and using (17)s and
(26), we have A\y;(V;) = Ag;(V;). Thus we obtain A, (V;) = 0.
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Taking the scalar product with W, to (46) such that X = ¢ and
using (11), (14) and (17)2, we get hi(V;, W,) = Aui(§;). Also, taking the
scalar product with V; to (47) such that X = W, and using (27), we have
hf(‘/ﬁ Wa> = _)\ai(fj)‘ Thus /\ai(é'j) =0 and hf(‘/;, Wa) = 0.

Summarizing the above results, we obtain
pia<§j) =0, pia(%‘) =0, )‘az<U ) =0, )‘az(v) =0, )‘ai(fj) =0,
he (Ui, Vi) = B(U;, Wo) = 0, hi(V;, Wa) = h(V;, Vi) = 0. (49)

Taking the scalar product with N; to (45) and using (17)4, we have
—g(Vey X, N) 4+ g(Vy X, U) + > eqwa(Y)pia(X)+

a=r+1

+Zuk {G(Ay X, N) + Bni(X)} = 0. (50)

Taking X = ¢; and Y = Uy, to (50) and using (11) and (14), we have
As h§ is symmetric, applying (24); {take X = U;} to (51), we obtain
hZ(Uh VJ) h (Ulv Uk) - g(A 5]7 ) + 5k - (52)
On the other hand, applying (24); {take X = Uy} to (51), we obtain
h*<Uk7V7) _g(A 5}7 )+ﬁk i
Exchanging ¢ by k and k by i to this equation and using (17)3, we have
hi(Ui, Vi) = G(Ay, & Ni) + Bidw; = —g(Ay, &y Ni) — Bibij.- (53)

Comparing (52) with (53), we obtain

(A 6]7 ) + 5k ij — = 0. (54)
Replacing X by &; to (50) and using (11), (14), (17))s, (49); and (54), we get
hi(X,U;) = 75(FX). (55)

Taking X =V} to (50) and using (17)g, (26) and (49), we have

WA(FX,Up) + (X Zuk (A, Vi, V). (56)
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Taking X = U; to (45) and using (16), (23), (24)1,2 and (25), we get

Zuk AU+Zwa VA, Ui — A, Y —

a=r+1
n

F(A, FY) ZTU (FY)U;j = Y pia(FY)W,+

a=r+1

+ Z Bju; (V) + Z Yawa(Y) }U; — B{F?Y + Y} =0. (57)

a=r+1
Taking scalar product with V; to (57) and using (54), we get
hi(X,U;) = —735(FX).
Comparing this equation with (55), we obtain
73;(FX) =0, hi(X,U;) = 0. (58)

Using (58)a, the equation (56) reduced to

(X Z ur(X)g(Ay, Vi, N). (59)

Taking the scalar product with U; to (57) and then, taking Y = W,
and using (15), (16) and (24),, we have

hi (Wa, Uj) = €ahq (Ui, Uy) = eahy (U, Us) = hi(Uj, Wa). (60)

Taking the scalar product with W, to (57) and using (23), we have

€apia(FY) = —=hi (Y, Wo) + Y ue(Y)hi(Us, Wa) + Y eqwy(Y)hy (Ui, W)
=1 b=r+1

by (15) and (16). Taking the scalar product with U; to (45) such that
X =W, and using (17)4, (23), (24)2 and (60), we get

Eapza<FY> - h* Y W Zuk hk Uza Wa) Z beb(Y)hi(Ui, Wa)'
b=r+1

Comparing the last two equations, we obtain p;,(FY) = 0. O
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5. Indefinite complex space forms.

Definition 4. An indefinite complex space form M(c) is an indefinite
Kaehler manifold of constant holomorphic sectional curvature ¢ such that

RX.Y)Z = Ha(V.2)X = 3(X.2)Y +3(JY.Z)JX~
—g(JX,Z)JY +2g(X,JY)JZ}, (61)
where R is the curvature tensor of the Levi-Civita connection 6 on M.

Let R be the curvature tensor of the semi-symmetric non-metric con-
nection V on M. By directed calculations from (3) and (4), we get

R(X,Y)Z = R(X,Y)Z + (Vg0)(2)Y — (V0)(2)X. (62)

Denote by R and R* the curvature tensors of the induced linear con-
nections V and V* on M and S(T'M) respectively. Using the Gauss-
Weingarten formulae, we obtain Gauss equations for M and S(TM) re-
spectively:

R(X,Y)Z = R(X,Y)Z + i{hf(}(, Z)ALY = h(Y, Z)A, X+

=1

+ Z{hs (X.2)A, Y — K(Y.Z)A, X}+Z{ (Vxh{)(V.2)~

— (Vyhi)(X,Z) + Z[m(X)hﬁ(Y, Z) = mi(Y)hi (X, Z)]+
+Z (XN (Y.2) = Xai(Y) 03 (X,2)] = 0(X)hi(Y.Z)+

n

FOOREXZ) PN+ D {(Txki)(Y, 2) = (i) (X, Z)+

a=r+1
n

- Z pia(X)L(Y, Z) = pia(V)BAX, 2] + D [tea(X)5(Y, Z)—

~ ia(V)B(X, 2)] = 00V, 2) + 00V (X, 2) } By (63)

R(X,Y)PZ = R*(X,Y)PZ+

+ > (W} (X, PZ)ALY — Bi(Y, PZ)Ae, X }+

i=1
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+ Z {(Vxhi)(Y,PZ) = (Vyhi)(X, PZ)+

=1

—{—Z Uzk hk X PZ) _Uzk<X)hZ(Y7 PZ>]_

—O(X)h:(Y, PZ) + 0(Y)hH(X, PZ)}&. (64)

Comparing the tangential, lightlike transversal and radical components
of the two equations (62) and (63) and using (22), we get

R(X,Y)Z =) {hi(Y,2)A X = hi(X, 2)A, Y }+

=1

+ Z {hZ(Y7 Z)AEQX - thL(XJ Z)AEGY}+
a=r+1

+(Vx0)(2)Y — (Vy0)(2) X+
+ Ho(Y.2)X = g(X, 2)Y +§(JY, Z)FX -
~ g(JX, Z)FY +2g(X, JY)FZ}, (65)

<

(Vxh)(Y. Z) = (Vyhi)(X, Z) + {hf;(K Z)m(X) =

— WX, Z)ma(Y)} + Z {ns(v. X) = ha(X, Z2)Aai(Y)} =

— WY, Z)0(X) + 6(Y)RE(X, Z)8(Y) =
= Huw(X)3(IY. 2) = u(Y)3(J X, 2) + 2u(2)3(X. JY )} (66)

(VxB) (Y, PZ) — (Vyhi)(X,PZ)—
— > A (Y, PZ)o(X) — hy(X, PZ)ouw(Y)}—

= > WY, PZ)ni(Ay, X) = hi(X, PZ)n;(A, Y )}~

k=1

LS Y. PZn(A, X) — BX. PZ)n(A,Y)) — K(Y, PZ)(X)+

a=r+1
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+ (X, PZ)0(Y) = (VxO)(PZ)m(Y) + (Vy0)(PZ)n;(X) =
c
= 119V, PZ)ni(X) = g(X, PZ)n,(Y) + 0i(X)g(JY, PZ)—
—0(YV)g(JX, PZ) + 2(PZ)g(X, JY)}. (67)
Theorem 3. Let M be a generic lightlike submanifold of an indefinite

complex space form M (c) with a semi-symmetric non-metric connection.
If one of the following four statements

(1) M is recurrent,

(2) M is Lie recurrent,

(3) Ui is parallel with respect to the connection V, or

(4) V; is parallel with respect to the connection V

is satisfied, then M(c) is flat, i.e., c = 0.

Proof. (1) By Theorem 1, we get p;, =0 and 6 = 0 on T'M, and we have
(34)3, (36) and (37)1,2. From (36); and (37),: 6(U;) = 0, we obtain

ni(ANjX) = —Bini(X). (68)
Applying Vy to 0(U;) = 0 and using (7), (34); and 6;,,, = 0, we have
(Vx0)(U:) = = Bhi (X, U5). (69)
k=1

Applying Vx to (37)s: h}(Y,U;) = 0 and using (42);, we obtain
(Vxhi)(Y,U;) =0.

Taking PZ = U; to (67) and using (34)z, (37)2 (68) and (69), we have
Loy (V) = 0, (X (V) 0V (X) — (XD (V) = 0.

Taking X = ¢ and Y =V}, we have ¢ = 0 and M(c) is flat.

(2) Taking X = &; to (14) and using (18), and hf is symmetric, we get
hi(X, &) = g(Ag €, X). From this result and (17), we obtain g(Af¢; +
+ AZ]@-,X) = 0. As S(T'M) is non-degenerate, we get A;§; = —Ag@-.
Thus AZ ¢ is skew-symmetric with respect to i and j.

In the case M is Lie recurrent, taking Y = U; to (57), we have

ANjUi + 6](]1 - ANin + BZU]
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Applying F' to this equation, we have F(ANj Ui) = F(A,U;). Thus
F <ANZ- U;) is symmetric with respect to ¢ and j. Therefore, we obtain

W&, FIA, U) = (AL F(A, U)) = 0. (70)
From (17)a, (24)4, (49)4 and the fact that h? is symmetric, we get
hi(&, Wa) = €alis(&5, Vi) = €alia(Vi &) = =Ag(Vi) = 0. (71)
Applying Vx to (58)e: hi(Y,U;) = 0 and using (25), we have
(Vxhi)(Y,U;) = —hi(Y, F(A, X))—

C S XORY, W) — Y, FX) — U)X, V).

a=r+1

Substituting this into (66) with Z = U, and using (58)2, we get
hi(X, F(A,Y)) = hi(Y F(Ay X))+

- Z{pm YHE(X, W) — pia(X)RE(Y, Wo) }+

a=r+1

+ Z{)\m VRE(Y,U;) — Aai(Y)RE(X, Uy) Y+

a=r+1

+ Bi{hi (X, FY) = hi(Y, FX)} =
— i{ui(Y)nj( ) = ui(X)n;(Y) + 26;;9(X, JY)}.

Taking Y = U; and X = §; to this equation and using (49)3 5, (58)2, (70)
and (71), we have ¢ = 0. Consequently, M(c) is flat.

(3) As VxU; =0, taking the scalar product with U; to (25), we get
1i(Ay, X) = =Bin; (X) + 0(Ui)v; (X).
Substituting this equation into the left term of (17)3, we have
O(U;)v;(X) +0(Uj)vi(X) = 0.
Taking X = V; to this equation, we obtain
oU) =0, my(AyX) = —Buy(X). (72)
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Applying Vx to 8(U;) = 0 and using (7) and VxU; = 0, we get

(Vx0)(U, Zﬁkhf (X, U;) i Yahi (X, U;). (73)

a=r+1

Taking the scalar product with W, and N; to (25) by turns and using (16)
and (72);, we have

pia =0, hi(X,U;) =0. (74)
From (17)4 and (74);, we see that
0i(Ag, X) = =7ami(X). (75)

Applying Vy to (74), and using the fact that VxU,; = 0, we obtain
(Vxhi)(Y,U;) = 0.

Replacing PZ by U; to (66) and using (72),, (73), (74)2, (75) and the last
equation, we have

S0 = g OmY) + 0¥ );(X) = wi(X)s(¥)} = 0.

Taking X = & and Y =V} to this equation, we have ¢ = 0.

(4) As VxV; = 0, taking the scalar product with V;, W, and N; to
(26) by turns and using (14) and (17), we obtain

(X, &) = —0(Vu;(X),  he(X,&) = —0(Viwa(X),  (76)
hi(X,Uj) = =0(Vi)n; (X).

By using (24)4, (76)3 and the fact that hf is symmetric, we see that
(U, Vi) = €ahip (U, W) = 0. (77)

From (24); and (76)3, we obtain A!(Y,V;) = 0. Applying Vx to this
equation and using the fact that VxV; =0, we get

(Vxh)(Y,V;) = 0.

Taking PZ = V; to (66) and using the last two equations, we obtain
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S LXK V(A Y) — BLY. V(A X))+

Y B Y) RO, X))
— (VxO)(Vi)ui(Y) + (Vy0) (Vy)ui(X) =
= LX) = (X)n(Y) + 20,5(X, JY)).
Taking X = ¢ and Y = U; and using (76) and (77), we get ¢ = 0. O

Theorem 4. Let M be a generic lightlike submanifold of an indefinite
complex space form M (c) with a semi-symmetric non-metric connection.
If W, is parallel with respect to'V and Y, _, Bxhi(W,, Vi) # 0, thenr = 1
and ¢ = 0.

Proof. As VxW, = 0, taking the scalar product with W, to (27), we get
tap(X) = —0(Wa)wy(X).
Substituting this equation into the left term of (17)5, we have
0 (Wa)wp(X) + €.0(Wp)wa(X) = 0.
Replacing X by W, to the last equation, we obtain
O(Wa) =0, fab = 0. (78)

Applying Vx to (W,) = 0 and using (7) and VxW, = 0, we get

(Vx0)(W, ZWXW D whi(X,Wa).  (79)

a=r+1

Taking the scalar product with U;, V; and N; to (27) by turns and using
(15), (17)4 and (78)1, we have

Ni(Ag, X) = —7vami(X),i.e, pia =0, Ay =0, hi(X,U;)=0. (80)
As A\y; =0, from (17)s, we obtain

ha(X, &) = 0. (81)
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From (24)9, (78); and (80)3, we obtain hf(X,W,) = 0. Applying Vy
to this equation and using the fact that VxW, = 0, we get

(Vxhi)(Y, W,) = 0.

Replacing PZ by W, to (67) and using (24)4, (79), (80); and the last two
equations, we have

Zhﬁ (X, Vi A, V) + B (Y Zhs (Y, Vi) {mi(Ay, X)+Bims(X)} =

k=1 k=1

c
= Z{wa(y)nz(X> - wa(X>nz(Y)}
Taking X = & and Y = W, to this and using (81), we have

D (W Vi {m(Ay, ) + B} = =7 (82)

k=1

Comparing the co-screen components of (62) and (63), we obtain

(Vxhe)(Y, Z) = (Vyhg)(X, Z)+

+Z{pm VWY, Z) = pualY (X, Z)}

+ Z {ia(X)BE(Y, Z) — pipa(Y)RE(X, Z)}— (83)

b=r+1

—OXRY, Z) + 0(Y )2 (X, Z)
= Hwa(X)3(IY, 2) — wa(Y)G(IX, Z) + 204(2)5(X, JY )}.
As Agi = gy = 0(W,) = 0 and FW,, = 0, from (27), we have
F(A, X) = —uFX,  F(A, W) =0, (34
Applying Vx to h3(Y,U;) = 0 and using (25) and (80)3, we get
(Vxh$)(Y,Us) = — (Y, F(Ay X)) — B(FX,Y) — (U (X, )

due to p;, = 0. Substituting this into (83) with Z = U; and using the fact
that p;, = pep = 0, we have

ho(X, F(ALY)) = ha(Y, F(Ay X)) + Bithe(X, FY) — hg(FX,Y)} =
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_ i{wa(y)m()() — wa(X)m(Y)}.

Taking X = & and Y = W, to this equation and using (81), we get
c

7

From (5)a, (15), (17)s,4, (22), (84)2 and the fact: p;, = 0, we have

hs(Wa, F(A, &) = Bihi(Vi, W) = —

hZ(WmF(A fz‘))z—%g(A 51', (A W))‘

S W (A ) = — Y RV Ve A, &) —

k=1 k=1

Z (Wa, Vi){ni(Ay 52) + 20}
k=

From the last two equations, we see that

> he(Wa, Vi) {ni(Ay &) + 28k} — Bibs(Wa, Vi) = ——

k=1
Comparing this equation with (82), we obtain

Zﬁk (Wa, Vi) = Bibs(Wa, Vi), Vi
It follow that
r—125k (W, Vi) = 0.

Assume that >, _, frh (Wa,Vk) #0. Thenr =1landi=j =%k = 1.
Thus, from (17)3, we see that

Ui(ANIX) = —Bim(X).
From this result and (82), we obtain ¢ = 0. O

Acknowledgment. In this paper, we studied the geometry of generic
lightlike submanifolds of an indefinite Kaehler manifold with a semi-symmetric
non-metric connection. But the geometry of generic lightlike submani-
folds and several CR-type lightlike submanifolds of an indefinite Kaehler
manifold with a quarter-symmetric non-metric connection are still open
problems. We hope that the publication of this paper will help in solving
the above more general cases.
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