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A NEW CHARACTERIZATION OF HOLOMORPHIC
FUNCTIONS IN THE UNIT DISK

Abstract. We study the conditions under which a function sa-
tisfying a weighted Morera property for all hyperbolic circles of a
fixed radius is holomorphic. We show that one of such conditions
is the restriction on a speed of decrease of the difference between
the function and its Cauchy type integral.
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1. Introduction and the statement of the main result. Let
C be the complex plane, D = {z ∈ C : |z| < 1}, T = {z ∈ C : |z| = 1},
D = D∪T. By the classical Cauchy theorem, the necessary and sufficient
condition of a function f ∈ C(D) to be holomorphic in D is

f(z) =
1

2πi

∫
T

f(ζ)

ζ − z
dζ for all z ∈ D. (1)

Other holomorphy tests which are based on the Cauchi integral formula
can be found in [3]. Another characterization of holomorphic functions is
related with the well-known Morera property which has been studied in
many contexts and generality (we refer the reader to [1], [7]–[9], [11], [12]
for an account of considerable amount of research).

Throughout what follows G is the conformal automorphism group of
the disk D. We denote by gA the image of a set A ⊂ D under the map
g ∈ G. For % ∈ (0, 1) we set γ% = {z ∈ C : |z| = %}.

Let f ∈ C(D) and let E ⊂ (0, 1) be a given set. Assume that∫
γ%

f(gz) dz = 0 (2)
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for all g ∈ G, % ∈ E. For which E does this imply that f is holomorphic?
One of the results in [2] states that f is holomorphic if and only if the
equations

P−1z

(
1 + %2

1− %2

)
= 0 (% ∈ E)

have no common solution z ∈ C. Here and below P νz is the associated
Legendre function of the first kind (see [4, Ch. 3, Sect. 3.2]). Also, there
is a nonconstant radial real analytic (so nonholomorphic) function on D
satisfying (2) for one fixed % ∈ (0, 1) and all g ∈ G.

In this paper we present a new aspect: we study the case when an
assumption of type (1) is replaced by an upper bound of the difference

f(z)− 1

2πi

∫
T

f(ζ)

ζ − z
dζ

as |z| → 1, and assumption (2) holds for one fixed % ∈ (0, 1) and all g ∈ G.
Our main result is as follows.

Theorem 1. Let % ∈ (0, 1) be fixed. Then
(i) If f ∈ C(D) satisfies (2) for all g ∈ G and

f(z)− 1

2πi

∫
T

f(ζ)

ζ − z
dζ = o

(√
1− |z|

)
as |z| → 1, (3)

then f is holomorphic on D.
(ii) There exists a nonholomorphic function f ∈ C(D) such that con-

dition (2) is fulfilled for all g ∈ G, and

f(z)− 1

2πi

∫
T

f(ζ)

ζ − z
dζ = O

(√
1− |z|

)
as |z| → 1. (4)

The proof of Theorem 1 is based on the development of the method
proposed by the authors in [10]. We introduce a transmutation operator
which establishes a homeomorphism between the space of smooth radial
functions in D and the space of even functions in C∞(R). In a certain
general sense it commutes with the generalized convolution operator; this
allows us to reduce the problem to the one-dimensional case. Finally,
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we use some results of the theory of convolution equations in R (see [7,
Part 3]).

2. Notation. It is known that for each g ∈ G there exist uniquely
defined parameters τ, z ∈ C such that |τ | = 1, |z| < 1, and

gw = τ
w − z
1− zw

for each w ∈ D. The group G parametrized by pairs (τ, z) is the motion
group in the Poincaré model of the hyperbolic plane H2 which is realized
as the disk D and has the corresponding Riemannian structure (see [5,
Introduction, § 4]). The hyperbolic distance d between the points z1, z2 ∈
∈ H2 in this model is defined by

d(z1, z2) =
1

2
ln
|1− z1z2|+ |z2 − z1|
|1− z1z2| − |z2 − z1|

.

In particular,

d(z, 0) =
1

2
ln

1 + |z|
1− |z|

= arth |z| and |z| = th d(z, 0), z ∈ H2.

The hyperbolic measure dµ on H2 has the form

dµ(z) =
i

2

dz ∧ dz
(1− |z|2)2

.

The distance d and the measure dµ are invariant with respect to the group
G.

For r > 0, the symbol Br denotes the open hyperbolic disk of radius
r centered at the origin of H2, i.e.,

Br = {z ∈ H2 : d(0, z) < r}.

Let B∞ = H2. For r ≥ 0, we set

Br = {z ∈ H2 : d(0, z) ≤ r}, ∂Br = {z ∈ H2 : d(0, z) = r}.

Furthermore, let χr be the characteristic function (the indicator) of the
disk Br. We denote by L(H2) and Lloc(H2) the classes of functions in-
tegrable and locally integrable on H2 with respect to the measure dµ,
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respectively. Let dg be the Haar measure on G normalized so that the
relation ∫

G

ψ(g0)dg =

∫
H2

ψ(z) dµ(z) (5)

is valid for each function ψ ∈ L(H2) (see [5, Introduction, § 4, Section 3]).
Let D(H2) (or D(R)) be the set of functions with compact supports

in C∞(H2) (in C∞(R), respectively) endowed with the standard topology
(for instance, see [5, Ch. 2, § 2.2]). We denote the spaces of radial func-
tions in L(H2), C∞(H2) and D(H2) with the induced topology by L\(H2),
C∞\ (H2) and D\(H2). In a similar way, we let C∞\ (R) and D\(R) denote
the spaces of even functions in C∞(R) and D(R), respectively.

Let f1, f2 be radial functions in the class Lloc(H2). Assume that at
least one of the functions f1 and f2 has compact support. Then we define
the generalized hyperbolic convolution f1 � f2 by

(f1 � f2)(g0) =

∫
H2

f1(z)f2(g−1z)
(1− |z|2)2

(1− z · g0)2
dµ(z), g ∈ G. (6)

Equality (6) shows that f1 � f2 is a radial function in the class Lloc(H2).
It follows from (6) and (5) that

(f1 � f2)(ζ) =

∫
G

f1(g0)f2(g−1ζ)
(1− |g0|2)2

(1− ζ · g0)2
dg, ζ ∈ D, (7)

and

f1 � f2 = f2 � f1.

If f1, f2 ∈ C∞\ (H2) then, in view of (7),

L(f1�f2) = f1�Lf2 = (Lf1)�f2, (8)

where

L = 4(1− |z|2)2
∂2

∂z∂z
− 8(1− |z|2) z

∂

∂z
. (9)

In addition, if f1, f2, f3 ∈ Lloc(H2) are radial functions, and at least two
of the functions f1, f2, f3 have compact supports, then

(f1 � f2) � f3 = f1 � (f2 � f3).
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Let h ∈ L(R). Its Fourier transform ĥ is defined by

ĥ(λ) =

+∞∫
−∞

h(t)e−iλtdt, λ ∈ R.

Assume that λ ∈ C and

ν = ν(λ) =
iλ− 1

2
.

Now define

Uλ(z) = (1− |z|2)ν+1 F
(
ν + 2, ν + 1; 2; |z|2

)
, z ∈ D, (10)

where F is the Gauss hyperheometric function.
Also let

Hλ(z) = (1− |z|2)ν F
(
ν + 2, ν; 1; |z|2

)
, λ ∈ C, z ∈ D. (11)

We can conclude from (11) and the expansion of F in a hypergeometric
series that Hλ is an entire function of λ. It is even because

Hλ(z) = (1− |z|2)−2 F

(
3 + iλ

2
,

3− iλ
2

; 1;
|z|2

|z|2 − 1

)
(12)

(see [4, formula 2.9 (3)]) and F (a, b; c; z) is symmetric in a and b. It follows
from (9), (11) and the hypergeometric differential equation that

(LHλ)(z) = −(λ2 + 1)Hλ(z). (13)

Suppose that the function T ∈ L\(H2) is compactly supported. For
λ ∈ C, let

F(T )(λ) =

∫
H2

T (z)Hλ(z) (1− |z|2)2 dµ(z).

Equality (12) shows that the function F(T ) is an even entire function of
λ. If f1 and f2 are functions with compact support in L\(H2) then

F(f1�f2) = F(f1)F(f2) (14)

(see (8), (13) and the proof of Lemma 8 in [10]).
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3. Auxiliary results. We need the following lemmas in the proof of
Theorem 1.

Lemma 1. The following equality holds

∂

∂z
(z Uλ(z)) = 2Hλ(z), λ ∈ C, z ∈ D, (15)

where the function Uλ is defined by (10).

Proof. First assume that z 6= 0. Relation (10) yields

∂

∂z
(z Uλ(z)) =

1

ρ

d

dρ

(
ρ2(1− ρ2)ν+1F (ν + 2, ν + 1; 2; ρ2)

)
.

Using now [4, formula 2.8 (25)] and (11) we arrive at (15). Now continuous
extension to the point z = 0 completes the proof. �

For α, β, λ ∈ C, we set

ϕ
(α,β)
λ (r) = F

(
α+ β + 1− iλ

2
,
α+ β + 1 + iλ

2
; α+ 1; −sh2 r

)
.

Lemma 2. For each λ ∈ C,

F (χr) (λ) = π sh2 r ϕ
(1,1)
λ (r). (16)

Proof. For brevity we set

z = −sh2 r, a =
1 + iλ

2
, b =

1− iλ
2

.

The expansion of ϕ
(α,β)
λ (r) in a hypergeometric series shows that

lim
α→−1

ϕ
(α,1)
λ (r) − 1

Γ(α+ 1)
=

∞∑
n=1

a(a+ 1) . . . (a+ n− 1) b(b+ 1) . . . (b+ n− 1)

n! Γ(n)
zn =

= z
∞∑
n=0

a(a+ 1) . . . (a+ n) b(b+ 1) . . . (b+ n)

n! Γ(n+ 2)
zn = abzF (a+ 1, b+ 1; 2; z) =

= −
1

4
(λ2 + 1) sh2 r ϕ

(1,1)
λ (r).
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Now, by the definition of the transform F and [8, Proposition 7.2 (ii)] we
see that

F (χr) (λ) = π

r∫
0

sh (2t)ϕ
(0,2)
λ (t) dt = − 4π

λ2 + 1
lim
α→−1

ϕ
(α,1)
λ (r)− 1

Γ(α+ 1)
.

This gives, by the equality above, the desired result. �

Lemma 3. For each r > 0, the following assertions hold.
(i) F (χr) (0) 6= 0.
(ii) The function F (χr) (λ) has infinitely many zeros, all of which are

real, simple and lie symmetrically relative to λ = 0.
(iii) If F (χr) (λ) = 0 then |F(χr)

′(λ)| > c|λ|−3/2, where the constant
c > 0 is independent of λ.

Proof. Using (16) and [4, formula 3.2 (7)] we obtain

F (χr) = πthrP−1(iλ−1)/2(ch2r).

Now the assertions of Lemma 3 are partial cases of Lemmas 2.4, 2.5 and
Corollary 2.2 in [7, Part 2, Ch. 2]. �

The next statements are analogs of the Paley-Wiener theorem and the
inversion formula for the transform F .

Lemma 4.
(i) An even entire function w is the F-transform of a function in D\(H2)
with support in Br if and only if for each N ∈ Z+ there exists a positive
constant cN > 0 such that

|w(λ)| ≤ cN
er|Imλ|

(1 + |λ|)N
, λ ∈ C.

(ii) Assume that f ∈ (L\ ∩ C)(H2) and

∞∫
0

λ |F(f)(λ)| dλ < +∞.

Then

f(z) =
16

π2

∞∫
0

F(f)(λ)Hλ(z) |c(λ)|−2dλ+
1

2π
F(f)(i)Hi(z),
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where

c(λ) =
23−iλΓ(iλ)

Γ
(
iλ−1
2

)
Γ
(
iλ+3
2

)
and the integral is absolutely convergent for each z ∈ C.

Proof. To prove (i), let 0 < ξ < t. We set

K(t, ξ) =
23/2

π
(ch t)2(ch 2t− ch 2ξ)−1/2F

(
2,−2;

1

2
;

ch t− ch ξ

2 ch t

)
.

For λ ∈ C, z ∈ D, we have

Hλ(z) =

t∫
0

K(t, ξ) cosλξdξ,

where t = arth |z| (see [8, Proposition 7.3]). Owing to (13), the rest of the
proof is identical to that of Proposition 1 in [10].

In view of Theorem 2.3 in [6], assertion (ii) can be proved in the same
way as Proposition 2 in [10]. �

For f ∈ D\(H2), t ∈ R1, let

A(f)(t) =
16

π2

∞∫
0

F(f)(λ)|c(λ)|−2 cos(λt)dλ+
1

2π
F(f)(i) cos(it).

Using Lemma 4 and Stirling’s formula, it is easy to see that A(f) ∈
∈ C∞\ (R1).

Suppose that T ∈ L\(H2) has compact support. If F(T ) ∈ L2(R1)
then, by the classical Paley-Wiener theorem, there exists a function Λ(T ) ∈
∈ L2(R1) with compact support such that Λ̂(T ) = F(T ).

The main properties of the map f → A(f) are contained in the follo-
wing lemma.

Lemma 5.
(i) The transformation A can be extended to a linear homeomorphism

of the spaces C∞\ (H2) and C∞\ (R1).

(ii) Let f ∈ C∞\ (H2), r > 0. Then f = 0 in Br if and only if A(f) = 0
in (−r, r).
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(iii) Assume that T ∈ L\(H2) has compact support and let F(T ) ∈
∈ L2(R1). Then

A(f � T )(t) = A(f) ∗ Λ(T ) (17)

for each f ∈ C∞\ (H2).
(iv) Let λ ∈ C. Then

A(Hλ)(t) = cosλt. (18)

Proof. This lemma can be proved in the same way as Theorems 2 and 3
in [10] taking into account Lemma 4 and (14). �

4. Proof of the main result. We now proceed to the proof of
Theorem 1. To prove (i), we remark that we may confine our attention to
the case f ∈ C(D)∩C∞(D) (otherwise we can use the standard hyperbolic
regularization, see [5, Ch. 1, the proof of Theorem 4.2]). Let r > 0 and

Jf (ζ) =
1

1− |ζ|2

∫
∂Br

f

(
z + ζ

1 + ζ z

)
dz, ζ ∈ D. (19)

We set

gζz =
z + ζ

1 + ζ z
, z ∈ D.

By Green’s formula, we have

Jf (ζ) = −
∫
Br

∂

∂z
(f(gζz))

dz ∧ dz
1− |ζ|2

= 2i

∫
Br

∂f

∂z
(gζz)

(1− |z|2)2

(1 + ζ z)2
dµ(z).

Since gζ ∈ G and the measure dµ(z) is G-invariant,

Jf (ζ) = 2i

∫
gζBr

∂f

∂z
(w)

(1− |g−1ζ w|2)2

(1 + ζ g−1ζ w )2
dµ(w).

This implies easily that

Jf (ζ) = 2i

∫
gζBr

∂f

∂z
(w)

(1− |w|2)2

(1− wζ )2
dµ(w).
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Because of (6) we can write

Jf = 2i
∂f

∂z
� χr in H2. (20)

Next, let g ∈ G, z ∈ D, and

gz =
az + b

bz + a
, where a, b ∈ C, |a|2 − |b|2 = 1. (21)

Putting ζ = g0, we see from (19) and (31) that

Jf (g0) = |a|2
∫
∂Br

f

(
z + b

a

1 + b
az

)
dz.

The change of variable z =
a

a
w in the integral enables us to write

Jf (g0) = a2
∫
∂Br

f(gz) dz ∀g ∈ G. (22)

Equalities (20) and (22) show that the function f satisfies (2) for all g ∈ G
if and only if

∂f

∂z
� χr = 0 in H2, (23)

where r = arth ρ. Introduce the following auxiliary function

u(z) =
1

2πi

∫
|ζ|=1

f(ζz) dζ, z ∈ D. (24)

It follows from (24) that u ∈ C∞(D). We then find that u satisfies (2)
and, if z 6= 0,

u(z) = v(|z|)e−i arg z, where v(|z|) =
1

2π

π∫
−π

f(|z|eiϕ) eiϕ dϕ. (25)

A straightforward calculation shows that

∂u

∂z
= v ′(|z|) +

v(|z|)
|z|

. (26)
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In particular,
∂u

∂z
∈ C∞\ (H2). In addition, it follows from (25) that

v(0) = 0. (27)

Relation (23) leads to

∂u

∂z
� χr = 0 in H2, where r = arth ρ. (28)

Then we find from (16) and the asymptotic expansion for ϕ
(1,1)
λ (r) (see [7,

Part 2, Corollary 2.2]) that F(χr) ∈ L2(R1). By the Paley-Wiener theo-
rem, there exists a function Λr ∈ L2(R1) with compact support such that

Λ̂r = F(χr). Owing to Lemma 5 and (17),

A

(
∂u

∂z

)
∗ Λr = 0 on R.

Using now Lemma 3 and [7, Part 3, Theorem 1.3], we conclude that

A

(
∂u

∂z

)
(t) =

∑
λ∈N(r)

cλ cos (λt), t ∈ R, (29)

where N(r) = {λ > 0 : F(χr) = 0}, cλ ∈ C, the series converges in the
space C∞(R), and

|cλ| = O
(
(1 + λ)−α

)
as λ→ +∞

for each fixed α > 0. According to Lemma 5 the series∑
λ∈N(r)

cλHλ

converges in C∞(H2) to some function w ∈ C∞\ (H2). Relations (29)
and (18) yield

A

(
∂u

∂z

)
= A(w),

whence
∂u

∂z
= w in D. By the definition of w this shows that

v(|z|) =
|z|
2

∑
λ∈N(r)

cλ Uλ(|z|) (30)
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(see (26), (27) and Lemma 1). Next, it follows from (25) and (3) that

v(|z|) = o
(√

1− |z|
)

as |z| → 1. (31)

In addition, for each ε > 0, λ ∈ N(r) we have

Uλ(z) =
(
a(λ)eiλt + a(−λ)e−iλt

)
e−t +O

(
e−2t

)
, (32)

where

a(λ) =
Γ(iλ/2)√

πΓ((iλ+ 3)/2)
, (33)

|z| = th t > ε and the constant in the symbol O depends only on ε (see
[5, Introduction, Theorem 4.15]). Applying now (31) we see from (30)
and (32) that∑

λ∈N(r)

cλ
(
a(λ)eiλt + a(−λ)e−iλt

)
→ 0 as t→ +∞.

Together with (33) this implies that cλ = 0 for all λ ∈ N(r) (see, for
instance, [7, Part 3, Theorem 1.6]). Owing to (30) we obtain v = 0.

In view of (25) and (24) this means that∫
γR

f(z) dz = 0

for each R ∈ (0, 1).
Assume now that h ∈ G. Writing (2) with f(hz) instead of f and

using (3) with hz instead of z, we obtain∫
γR

f(hz) dz = 0

for all R ∈ (0, 1). Then

∂f

∂z
� χr = 0 in H2 for each r > 0.

Now, from the arbitrariness of r > 0 it follows that f is holomorphic.
To prove (ii) consider the function f(z) = z Uλ(z), where λ ∈ N(r)

and r = arth ρ. Owing to Lemma 1, we infer that
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∂f

∂z
= 2Hλ,

whence f is nonholomorphic in D. Next, the proof of (i) shows that f
satisfies (28) and (2) for all g ∈ G. Finally, it follows from [5, Introduction,
Theorem 4.15] that relation (4) is fulfilled. This completes the proof of
Theorem 1. �
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