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ON THE ALMOST PERIODIC AT INFINITY FUNCTIONS
FROM HOMOGENEOUS SPACES

Abstract. We consider homogeneous spaces of functions defined
on the real axis (or semi-axis) with values in a complex Banach
space. We study the new class of almost periodic at infinity func-
tions from homogeneous spaces. The main results of the article are
connected to harmonic analysis of those functions. We give four
definitions of an almost periodic at infinity function from a homo-
geneous space and prove them to be equivalent. We also introduce
the concept of a Fourier series with slowly varying at infinity coef-
ficients (neither necessarily constant nor necessarily having a limit
at infinity). It is proved that the Fourier coefficients of almost
periodic at infinity function from a homogeneous space (not neces-
sarily continuous) can be chosen continuous. Moreover, they can
be extended on C to bounded entire functions of exponential type.
Besides, we prove the summability of Fourier series by the method
of Bochner-Fejer. The results were received with essential use of
isometric representations and Banach modules theory.
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1. Homogeneous function spaces. Let X be a complex Banach
space, EndX be a Banach algebra of bounded linear operators on X. Let
J be either R+ = [0,∞), or R = (−∞,∞).

By L1
loc(J, X) denote the space of Bochner measurable locally inte-

grable on J (classes of) functions with values inX. By Sp(J, X), p ∈ [1,∞),
denote the Stepanov space of functions [15] x ∈ L1

loc(J, X) with the fol-
lowing norm:

‖x‖Sp = sup
s∈J

( 1∫
0

‖x(s+ t)‖pXdt
)1/p

, p ∈ [1,∞).
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Stepanov spaces play an important role in studying differential equa-
tions in Banach spaces (see [4]).

Definition 1. A Banach space F(R, X) of functions defined on R with
values in a Banach space X is called homogeneous, if the following condi-
tions are satisfied:

(a) the space F(R, X) is injectively (which means injectivity of the in-
clusion operator) and continuously embedded in S1(R, X);

(b) a group of shift operators S(t), t ∈ R, of the form

(S(t)x)(s) = x(s+ t), s, t ∈ R, x ∈ F(R, X), (1)

is defined on F(R, X);
(c) for any functions f ∈ L1(R), x ∈ F(R,X) their convolution de-

fined by

(f ∗ x)(t) =

∫
R

f(τ)x(t− τ)dτ =

∫
R

f(τ)(S(−τ)x)(t)dτ, t ∈ R, (2)

belongs to F(R, X) and satisfies the condition ‖f ∗ x‖ 6 C‖f‖1‖x‖
for some C > 1 (usually C = 1);

(d) the inclusion ϕx ∈ F(R, X) holds for any x ∈ F(R, X) and any
infinitely differentiable function ϕ ∈ Cb(R) with compact support
suppϕ; moreover, inequality ‖ϕx‖ 6 ‖ϕ‖1‖x‖ holds and the map-
ping t 7→ ϕS(t)x : R→ F(R, X) is continuous.

By F0(R, X) we denote the least closed subspace of F(R,X) containing
all functions ϕx, x ∈ F(R, X), where ϕ ∈ Cb(R, X) is infinitely differen-
tiable and its support suppϕ is a compact set.

Definition 2. A Banach space F(R+, X) of functions from S1(R+, X)
is called homogeneous, if a homogeneous space F(R, X) associated with
F(R+, X) exists, such that for any function x ∈ F(R+, X) there is an
extension y ∈ F(R, X) with the following properties:

1) y(t) = x(t) for all t ∈ R+;

2) ‖y‖ 6 C‖x‖, C > 0;

3) y ∈ F0(R−, X);

4) S(t)x ∈ F(R+, X) for all t > 0, x ∈ F(R+, X);
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5) for any other extension z ∈ F(R, X) with the properties 1) – 4) the
condition y − z ∈ F0(R, X) holds.

In this article we denote a homogeneous space by F(J, X), while in
case X = C the notation F(J) can be used. Denote a closed subspace of
F(J, X) defined by {x ∈ F(J, X) : function t 7→ S(t)x : J → F(J, X) is
continuous} by Fc(J, X).
Example 1. The following Banach spaces of functions defined on J with
values in a Banach space X are homogeneous. All of them are linear
subspaces of L1

loc(J, X).

1) The spaces Lp = Lp(J, X), p ∈ [1,∞), of Lebesgue measurable and
integrable with power p ∈ [1,∞) (classes of) functions with the norm

‖x‖p =

(∫
J

‖x(t)‖pXdt
)1/p

, p ∈ [1,∞).

Note that (Lp(J, X))c = Lp(J,X), (Lp(J, X))0 = Lp(J, X).

2) The space L∞ = L∞(J, X) of essentially bounded (classes of) func-
tions with the following norm: ‖x‖∞ = vrai sup

t∈J
‖x(t)‖X . Note that

(L∞(J, X))c = Cb, u(J, X).

3) Stepanov spaces Sp = Sp(J, X), p ∈ [1,∞).

4) Wiener amalgam spaces (Lp, lq) = (Lp(J, X), lq(J, X)), p ∈ [1,∞),
q ∈ [1,∞], (see [4]) of functions x ∈ L1

loc(J, X) such that

‖x‖p, q =

(∑
k∈Z

(∫ 1

0

‖x(s+ k)‖pds
)q/p)1/q

<∞, p, q ∈ [1,∞).

The following equivalent norm can also be used:

‖x‖p,q= sup
t∈[0,1]

(∑
k∈Z

(∫ 1

0

‖x(s+ t+ k)‖pds
)q/p)1/q

<∞, p, q ∈ [1,∞).

5) The space Cb = Cb(J,X) of bounded continuous functions with
the norm ‖x‖∞ = sup

t∈J
‖x(t)‖X , x ∈ Cb(J, X). Note that Cb(J, X)

is a closed subspace of L∞(J, X) and (Cb(J, X))c = Cb, u(J, X),
(Cb(J, X))0 = C0(J, X).

6) The subspace Cb, u = Cb, u(J, X) of Cb(J, X) of uniformly continu-
ous functions from Cb. Note that (Cb, u(J, X))c = Cb, u(J, X) and
(Cb, u(J, X))0 = C0(J, X).
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7) The subspace C0 = C0(J, X) of Cb, u(J, X) of continuous functions,
vanishing at infinity. These functions satisfy the condition
lim
|t|→∞

‖x(t)‖ = 0, t ∈ J.

8) The subspace Csl,∞ = Csl,∞(J, X) of Cb, u(J, X) of continuous func-
tions slowly varying at infinity. These functions satisfy the condition
lim
|t|→∞

‖x(t+ τ)− x(t)‖ = 0, t, τ ∈ J (see [12,17–19]).

9) The subspace Cω,∞ = Cω,∞(J, X) of Cb, u(J, X) of continuous
ω-periodic at infinity functions, ω ∈ R+. These functions satisfy
the condition lim

|t|→∞
‖x(t+ ω)− x(t)‖ = 0, t ∈ J (see [12,17–19]).

10) The subspace AP∞ = AP∞(J, X) of Cb, u(J, X) of continuous almost
periodic at infinity functions (see [3, 4]).

11) Subspaces Ck = Ck(J, X), k ∈ N, of k times continuously dif-
ferentiable functions with bounded k-th derivative and the norm
‖x‖(k) = ‖x‖∞ + ‖x(k)‖∞.

12) Hölder spaces Ck, α = Ck, α(J, X), k ∈ N ∪ {0}, α ∈ (0, 1],

Ck, α =

{
x ∈ Ck : ‖x(k)‖C0, α = sup

t6=s∈J

|x(k)(t)− x(k)(s)|
|t− s|α

<∞
}
,

‖x‖Ck, α = ‖x‖Ck + ‖x(k)‖C0, α .

13) The subspace V = V(J, X) of functions from L∞(J, X) with bounded
variation ‖x‖V = sup

t∈J
V t+1
t (x) + sup

t∈J
‖x‖X used as a norm.

Definition 1 implies that each of the mentioned homogeneous spaces
F(R,X) is endowed with the structure of a Banach L1(R)-module on using
the convolution (2), where S is a group of shifts defined by (1). Thus, there
is an opportunity to use some notions and results of the theory of Banach
L1(R)-modules given below. In particular, the spaces Fc(R, X) coincide
with the spaces of S-continuous vectors (see Definition 3).

2. Almost periodic vectors from Banach L1(R)-modules. Let
X be a complex Banach space and End X be a Banach algebra of linear
operators on X . By L1(R) we denote the algebra of complex Lebesgue’s
measurable (classes of) functions summable on R with convolution as the
multiplication: (f ∗ g)(t) =

∫
R
f(t− s)g(s)ds, t ∈ R, f, g ∈ L1(R).

We endow X with the structure of a non-degenerate Banach L1(R)-
module (see [5,10,14]) associated with some bounded isometric represen-
tation T : R→ End X . It means that the following properties hold.
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Assumption 1. A Banach L1(R)-module X fulfills the conditions below:

1) if fx = 0 for every function f ∈ L1(R), then the vector x ∈ X
vanishes (a non-degeneracy property of X );

2) for every f ∈ L1(R) and x ∈ X the following equations hold:

T (t)(fx) = (T (t)f)x = f(T (t)x), t ∈ R,

the module structure on X is associated with the representation T :
R→ End X .

If T : R → End X is a strongly continuous isometric representation,
then the formula

T (f)x = fx =

∫
R

f(t)T (−t)xdt, f ∈ L1(R), x ∈ X ,

endows X with the structure of a Banach L1(R)-module satisfying the
conditions of Assumption 1; this structure is associated with the repre-
sentation T .

Remark 1. Associate a unique representation T : R→ End X (see [10])
with every non-degenerate Banach L1(R)-module X . In order to empha-
sise this, sometimes the notation (X , T ) is used.

The theory of Banach L1(R)-modules was constructed in [7] and stu-
died in [1, 2, 5, 6, 9, 10,14].

Definition 3. A vector from a Banach L1(R)-module (X , T ) is called
continuous (with respect to the representation T ) or T -continuous if a
function ϕx : R → X defined by ϕx(t) = T (t)x, t ∈ R, is continuous for
t = 0 (hence, it is continuous on R).

A set of all continuous vectors from a Banach L1(R)-module X denoted
by Xc or (X , T )c is a closed submodule in X , i. e., Xc is a closed linear
subspace in X invariant under shift operators T (f), T (t) for f ∈ L1(R)
and t ∈ R.

Every homogeneous space F(R, X) is endowed with the structure of a
Banach L1(R)-module using the convolution (2), where S :R→EndF(R, X)
is the group of shifts defined in (1). However, formula (2) does not define
the structure of L1(R)-module for F(R+, X). Nevertheless, the quotient
space F(J, X)/F0(J, X) is endowed with this structure.
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Given a function f from L1(R), the Fourier transform f̂ : R → C is
defined as

f̂(λ) =

∫
R

f(t)e−iλt dt, λ ∈ R.

Definition 4. The Beurling spectrum of a vector x ∈ X is the set of
numbers Λ(x) in R defined by

Λ(x) = {λ0 ∈ R : fx 6= 0 for every function f ∈ L1(R) with f̂(λ0) 6= 0}.

The definition implies that Λ(x) = R\{µ0 ∈ R : there exists a function
f ∈ L1(R) such that f̂(µ0) 6= 0 and fx = 0}.

The Beurling spectrum of vectors in a Banach L1(R)-module X has
the following properties (see [5, 10]):

Lemma 1. For every x ∈ X and f ∈ L1(R) the following properties hold:

1) the set Λ(x) is closed and Λ(x) = ∅ if and only if x = 0 ;
2) Λ(fx) ⊆ (supp f̂)

⋃
Λ(x);

3) fx = 0 when (supp f̂)
⋂

Λ(x) = ∅ and fx = x if the set Λ(x) is
compact and f̂ = 1 in its neighbourhood;

4) the set Λ(x) is a singleton ((Λ(x) = {λ0})) if and only if x 6= 0 and
T (t)x = eiλ0tx for t ∈ R.

Remark 2. As we indicated above, every homogeneous space F(R, X)
is a Banach L1(R)-module. If a function x ∈ F(R, X) has the property
Λ(x) = {λ0}, then it can be represented as x(t) = x0e

iλ0t for t ∈ R, where
x0 ∈ X.

Now let us introduce λ0-nets, bounded approximate identities (BAIs),
and invariant integrals (see [2, 5, 6, 10]), which are essential for our study.

Definition 5. Let U be a directed set and λ0 ∈ R. A bounded net
(fα, α ∈ U) of functions from L1(R) is called a λ0-net if the conditions
below hold:

1) f̂α(λ0) = 1 for all α ∈ U ;
2) lim

α
fα∗f = 0 for any function f ∈ L1(R) with the property f̂(λ0) = 0.

As an example of a λ0-net from L1(R) one can consider the functions
gα(t) = fα(t)eiλ0t, ψα(t) = ϕα(t)eiλ0t, α > 0, where 0-nets (fα, α > 0) and
(ϕα, α > 0) are defined by
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fα(t) =

{
αe−αt, t > 0,
0, t < 0,

α > 0,

ϕα(t) =

{
(2α)−1, t ∈ [−α, α],
0, t /∈ [−α, α],

α > 0.

The set U = (0,∞) for (fα, α > 0) is directed in the descending order,
while for (ϕα, α > 0) it is in the ascending order.

Definition 6. Given a directed set U , a bounded net (eα, α ∈ U) of
functions from L1(R) is called the bounded approximate identity (BAI) of
L1(R) if the conditions below are met:

1) êα(0) = 1 for all α ∈ U ;
2) lim

α
eα ∗ f = f for all f from L1(R).

Definition 7. Given a directed set U , a bounded net (fα, α ∈ U) of
functions from L1(R) is called an invariant integral if the conditions below
are true:

1) f̂α(0) = 1 and fα > 0 for all α ∈ U ;

2) lim
α

∫
R
|fα(t+ u)− fα(t)|dt = 0 for all u ∈ R.

Below we use the following concept of an almost periodic vector in a
Banach space X (see [2, 5, 6]), carrying a strongly continuous isometric
representation T : R→ EndX .
Definition 8. A vector x0 ∈ X is called almost periodic (with respect
to representation T ) if one of the following conditions is met:

1) for every ε > 0 the set Ω(ε, x0) = {ω ∈ R : ‖T (ω)x0 − x0‖ < ε} of
ε-periods of the vector x0 is relatively dense in R;

2) the orbit {T (t)x0, t ∈ R} of x0 is precompact in X ;
3) t 7→ ϕ(t) = T (t)x0, t ∈ R, is a continuous almost periodic function,

i. e., ϕ ∈ AP (R, X) (see [5, 15]);
4) for any ε > 0 there are eigenvalues λ1, . . . , λN and associated eigen-

vectors x1, . . . , xN of the representation T , i. e., T (t)xk = eiλktxk for
t ∈ R and k = 1, . . . , N such that

‖x0 −
N∑
k=1

xk‖ < ε.
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The set AP (X ) = AP (X , T ) of almost periodic vectors (with res-
pect to a representation T ) is a closed submodule of X . Observe that
AP (Cb, u(R, X), S) = AP (R, X) and AP (X ) ⊂ Xc (see [3, 4, 7]).

A unique linear operator J ∈ EndAP (X ) with the properties
1) ‖J ‖ = 1;
2) J (T (t)x) = J x for t ∈ J and x ∈ X ;

exists on a Banach space AP (X ) of almost periodic vectors. Consider
a function x̂B : R → X , x̂B(λ) = J (Tλx), where Tλ(t) = T (t)e−iλt for
t ∈ R, for every vector x from AP (X ). This function is called the Bohr
transform of the vector x. Its support supp x̂B is at most a countable set,
i. e., supp x̂B = {λ1, λ2, . . . }, and

T (t)xk = eiλktxk, t ∈ R, k > 1,

where xk, k > 1, are eigenvectors of the representation T ; they are also
eigenvectors of the generator iA of the operator group T, i. e., iAxk =
= iλkxk, k > 1. Moreover, Λ(xk) = {λk} for k > 1. The set ΛB(x) =
= {λ1, λ2, . . . } is called the Bohr spectrum of the vector x ∈ AP (X ). Note
that

x̂B(λ) = lim
α→∞

1

α

α∫
0

T (τ)xe−iλτdτ = lim
0<ε→0

ε

ε−1∫
0

T (τ)xe−(ε+iλ)τdτ =

= lim
0<ε→0

εR(ε+ iλ, iA)x = lim
α
fαx, λ ∈ R,

where (fα, α ∈ U) is an arbitrary λ-net from L1(R).
The series

x ∼
∑
k>1

xk (3)

is called the Fourier series of the vector x ∈ AP (X ) and xk, k > 1,
are called the Fourier coefficients of x. Note that if the series absolutely
converges, then x =

∑
k>1

xk.

Note the uniqueness property of the Bohr transform: if the Bohr trans-
form x̂B of a vector x ∈ AP (X ) is equal to zero, then x = 0.

Lemma 2. [13] For any function f from L1(R) and any almost periodic
vector x ∈ AP (X ) with the Fourier series (3), the vector fx is almost
periodic with the Fourier series of the form

fx ∼
∑
k>1

f̂(λk)xk.
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The following lemma uses the (BAI) (fn, n > 1) in L1(R) (see Defini-
tion 6) constructed below (see [2, 5, 6]).

Let us consider a function f̂0 from L̂1(R) of Fourier transforms of func-
tions from L1(R) (with pointwise multiplication) with compact support
supp f̂0 on the interval [−1, 1], such that f̂0(0) = 1. Then the sequence
(fn), n > 1, of functions defined by fn(t) = nf0(nt), t ∈ R, is a (BAI) in
L1(R). Note that ‖fn‖ = ‖f0‖ for n > 1.

Lemma 2 implies

Lemma 3. [13] Let x be an almost periodic vector from AP (X ) with the
Bohr spectrum ΛB(x)={λ1, λ2, . . . } satisfying the condition lim

n→∞
|λn|=∞.

In this case

lim
n→∞

‖x− fnx‖ = lim
n→∞

∥∥∥x− ∑
|λk|<n

f̂0

(
λk
n

)
xk

∥∥∥,
where xk, k > 1, are the Fourier coefficients of x.

Lemma 4. The Bohr transform x̂B : R→ X of a vector x from AP (X )
can be estimated as follows

‖x̂B(λ)‖ 6 ‖x‖, λ ∈ R.
Proof. Given a directed set U , in the equality x̂B(λ)=lim fαx, x∈AP (X ),
we should use a λ-net (fα, α ∈ U) from L1(R), which is an invariant
integral (see Definition 7). In this case ‖fα‖ = f̂α(0) = 1 for any α ∈ U
and, consequently, ‖x̂B(λ)‖ 6 sup

α
‖fα‖‖x‖ = ‖x‖, λ ∈ R. �

Theorem 1. For any vector x from AP (X ) with the Bohr spectrum
ΛB(x) = {λ1, λ2, . . . } the equality lim

n→∞
‖x̂B(λn)‖ = 0 holds true.

Proof. Condition 4) of Definition 8 implies that there exists a sequence
(xn, n ∈ N) of vectors from AP (X ) with finite Bohr transform supports
supp (̂xn)B, n > 1. Lemma 4 implies that sup

λ∈R
‖x̂B(λ) − (̂xn)B(λ)‖ → 0,

n→∞. Hence, lim
n→∞

‖x̂B(λn)‖ = 0. �

Given m > 0 and x ∈ AP (X ), consider

τm(x) =
∑

|λk|<m,λk∈ΛB(x)

(
1− |λk|

m

)
xk,

where ΛB(x) = {λ1, λ2, . . . } and xk with k > 1 are the Fourier coefficients
of x (see (3)).
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Theorem 2. [15] The Fourier series (3) of a vector x from AP (X ) is
summable by the Bochner–Feier method, i. e., the equality
lim
m→∞

‖x− τm(x)‖ = 0 holds.

If X0 is a closed submodule of X invariant under operators T (t), t∈R, then
the quotient space X/X0 is also a Banach L1(R)-module, whose structure
for all f ∈ L1(R) and equivalence classes x̃ = x+X0, x ∈ X , is defined as
fx̃ = fx + X0 = f̃x. This structure is associated with the representation
T̃ : R→ EndX/X0, T̃ (t)x̃ = T̃ (t)x = T (t)x+ X0, x ∈ X .

Denote the quotient space F(J, X)/F0(J, X) by X (J), J ∈ {R+,R};
this is a Banach space under the norm ‖x̃‖ = inf

y∈x+F0

‖y‖, where x̃ = x +

+ F0(J, X) is the equivalence class that contains the function
x ∈ F(J, X). A Banach space X (J) is a Banach algebra with the mul-
tiplication rule defined by x̃ỹ = x̃y, x̃, ỹ ∈ X (J).

Define the strongly continuous group of isometries
S̃ : R→ EndX (R) on X (R) by the formula

S̃(t)x̃ = S̃(t)x, x ∈ F(R, X), t ∈ R.

The quotient space X (R) is endowed with the structure of a Banach L1(R)-
module using the formula fx̃ = f̃ ∗ x, f ∈ L1(R), x ∈ F(R, X).

Remark 3. Assume that J = R+. Each function x ∈ F(R+, X) can be
extended to the function y on R, so that y satisfied all five conditions of
Definition 2. Note that the equivalence class x̃ ∈ X (R) does not depend
on the certain extension and, consequently, the Banach space X (R+) is
isometrically embedded in X (R) as a closed submodule. In this case, the
group S̃ is well-defined on X (R+).

3. Almost periodic at infinity functions. Consider a homoge-
neous function space F(J, X) satisfying the conditions (a)–(d) from Defi-
nition 1 for J = R (the conditions 1) – 5) from Definition 2 for J = R+).
Consider the (semi-)group S : J→ EndF(J, X) of operators of the form

(S(t)x)(τ) = x(t+ τ), t, τ ∈ J

in a Banach space F(J, X).

Definition 9. A function x ∈ Fc(J, X) is called slowly varying at infi-
nity if and only if the condition S(α)x − x ∈ F0(J, X) is fulfilled for
every α ∈ J.
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Denote the set of slowly varying at infinity functions from F(J, X)
by Fsl,∞(J, X). Definition 9 directly implies that Fsl,∞(J, X) is a closed
subspace of F(J, X) that is invariant under the shift operators S(t), t ∈ J.
Slowly varying and periodic at infinity functions from homogeneous spaces
were studied in [16].

In the case F(J, X) = Cb, u(J, X) the above definition is equivalent to
the classical definition of continuous slowly varying at infinity function
(see [3, 4, 8]). The set of these functions is denoted by Csl,∞(J, X). Par-
ticularly, the solutions of the heat equation were established to belong to
Csl,∞(J, X) in [8].

Lemma 5. For every x ∈ Fsl,∞(R, X) there exists a function
x0 ∈ Csl,∞(R, X) such that x − x0 ∈ F0(R, X). Moreover, for every
x ∈ Fsl,∞(R, X) there is a function y : R → X that can be extended
on C to a bounded entire function of the exponential type and such that
y − x ∈ F0(R, X).

For J = R this result was proved in [16]. The result for J = R+ follows
from Remark 3.

For example, a function x = c+x0 ∈ F(J, X), where c is a vector from
X and x0 is a function from F0(J, X), belongs to Fsl,∞(J, X).

Let us give four definitions of almost periodic at infinity functions from
the homogeneous space F(J, X). After that, we are going to prove them
to be equivalent and study their Fourier series.

First, let us introduce a definition of a continuous almost periodic at
infinity function (see [3, 4]) that is based on the notion of ε-period at
infinity.

Definition 10. Assume ε > 0. A number ω > 0 is called an ε-period at
infinity of x ∈ Cb(J, X) if there exists a number a(ε) > 0 such that

sup
|t|>a(ε)

‖x(t+ ω)− x(t)‖ < ε.

Denote the set of ε-periods at infinity of a function x ∈ Cb(J, X) by
Ω∞(ε, x).

Definition 11. A subset Ω of J is called relatively dense on J if there
exists an l > 0 with [t, t+ l] ∩ Ω 6= ∅ for every t ∈ J.
Definition 12. A function x ∈ Cb, u(J, X) is called almost periodic at
infinity if for every ε > 0 the set Ω∞(ε, x) of its ε-periods at infinity is
relatively dense on J.
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The set of almost periodic at infinity functions from Cb,u(J,X) is de-
noted by AP∞(J, X) and studied in [3,4,11,13]. Definitions 10 and 12 imp-
ly that every function x ∈ Cb, u(R, X) almost periodic in the Bohr sense
(x ∈ AP (R, X), see [5, 15]) is almost periodic at infinity. By AP (R+, X)
denote the set of almost periodic Bohr functions that are restrictions to
R+ of functions from AP (R, X). Therefore, AP (J, X) ⊂ AP∞(J, X).

Definition 13. Assume that ε > 0. A number ω > 0 is called an
ε-period at infinity of x ∈ F(J, X) if there exists a function
x0 ∈ F0(J, X) such that

‖S(ω)x− x− x0‖ < ε.

For the set of ε-periods at infinity of x ∈ F(J, X) we use the same
denotation Ω∞(ε, x).

Definition 14. A function x from Fc(J, X) is called almost periodic
at infinity if for any ε > 0 the set Ω∞(ε, x) of its ε-periods at infinity is
relatively dense on J.

Denote the set of functions from F(J, X) almost periodic at infinity
by AP∞F(J, X). Note that AP∞F(J, X) is a closed subspace of F(J, X)
invariant under the shift operators S(t), t ∈ J. Definition 9 directly
implies that Ω∞(ε, x) = J for any x ∈ Fsl,∞(J, X) and ε > 0, hence,
x ∈ AP∞F(J, X). Consequently, Fsl,∞(J, X) ⊂ AP∞F(J, X).

In the case F(J, X) = Cb, u(J, X) the above definition is equivalent to
Definition 12.

Definition 15. A set of functionsM⊂ F(J, X) is called precompact at
infinity if for any ε > 0 there exist finitely many functions b1, . . . , bN ∈M
called an ε-net at infinity, such that for every x ∈M there exists a function
bk, 1 6 k 6 N , and a function αε ∈ F0(J, X) such that

‖x− bk − αε‖ < ε.

Definition 16. A function x ∈ Fc(J, X) is called almost periodic at
infinity if the setM = {S(k)x, k ∈ J} is precompact at infinity.

For F(J, X) = Cb, u(J, X) Definition 16 corresponds to the Bochner’s
criterion (see [15]) of almost periodicity.

Observe that the functions of the form

x(t) =
N∑
k=1

xk(t)e
iλkt, x1, . . . , xN ∈ Fsl,∞(J, X), λ1, . . . , λN ∈ R, t ∈ J,
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called generalized trigonometric polynomials, are almost periodic at infin-
ity in the sense of Definition 16.

Definition 17. A function x ∈ Fc(J, X) is called almost periodic at
infinity if, given ε > 0, we can indicate a finite collection λ1, . . . , λN of
real numbers and functions x1, . . . , xN from Fsl,∞(J, X) such that

∥∥∥x− N∑
k=1

xkek

∥∥∥ < ε,

where ek, 1 6 k 6 N, are functions defined by ek(t) = eiλkt, t ∈ R.

Definition 18. A function x from Fc(J, X) is called almost periodic
at infinity if the equivalence class x̃ = x + F0(J, X) is an almost perio-
dic vector from X (J) = F(J, X)/F0(J, X) with respect to the isometric
representation S̃ : R→ EndX .

The almost periodic at infinity functions from Cb, u(J, X) appeared, for
the first time, in [3, 4]. In these articles the definition corresponding to
Definition 18 was used. The main results of those articles deal with the
asymptotic behaviour of bounded operator semigroups.

Theorem 3. All definitions of almost periodic at infinity functions from
F(J, X) (Definitions 14, 16, 17, 18) are equivalent.

Proof. We assume that J = R (the result for J = R+ follows from Re-
mark 3). Let us consider the quotient space X = F(R, X)/F0(R, X) and
the group of isometries T = S̃ : R → EndX defined above. For this
representation, Definition 17 corresponds to property 4) of Definition 8.
Since all of the properties of Definition 8 are equivalent, it suffices to show
that the first three properties are equivalent to Definitions 14, 16, and 17,
respectively.

Given x ∈ F(R, X), take the equivalence class x̃ in X , constructed
from x. Then for each ε > 0 the set Ω∞(ε, x)∪ (−Ω∞(ε, x)) coincides with
the set Ω(ε, x̃) of ε-periods of x̃. Hence, the corresponding definitions are
equivalent.

The equivalence of Definition 16 and property 2) of Definition 8 follows
directly from the definition of the quotient module X .

In order to verify the equivalence of Definition 17 and property 4)
of Definition 8, it suffices to establish that the Beurling spectrum Λ(ỹ)
of the equivalence class ỹ ∈ X with ỹ = y + F0(R,X) is the singleton
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(Λ(ỹ) = {λ0}) if and only if y ∈ F(R, X) can be represented in the form
y(t) = y0(t)eiλ0t for t ∈ R, where y0 ∈ Fsl,∞(R, X).

If Λ(ỹ) = {λ0}, then S̃(t)ỹ = eiλ0tỹ for every t ∈ R (see property 4)
of Lemma 1). Hence, Λ(ỹ0) = {0}, where y0(s) = y(s)e−iλ0s for s ∈ R.
Therefore, S̃(t)ỹ0 = ỹ0 for every t ∈ J. Thus, S(t)y0 − y0 ∈ F0(R, X) for
t ∈ R, i. e., y0 ∈ Fsl,∞(R, X).

Conversely, if y(t) = y0(t)eiλ0t for t ∈ R, where y0 ∈ F0(J, X), then
S̃(t)ỹ = eiλ0tỹ for t ∈ R, and so property 4) of Lemma 1 implies that
Λ(ỹ) = {λ0} (see Remark 2). �

Given x ∈ AP∞F(J, X), let us consider the series

x̃ ∼
∑
n>1

ỹn, ΛB(x̃) = {λ1, λ2, . . . }, Λ(ỹn) = λn,

which is the Fourier series of the equivalence class x̃ = x + F0(J, X) ∈
AP (X ).

Definition 19. The series

x(t) ∼
∑
n>1

xn(t)eiλnt, t ∈ J, (4)

where functions zn, n > 1, of the form zn(t) = xn(t)eiλnt, t ∈ J, xn ∈
Fc(J, X), belong to the corresponding equivalence classes ỹn with n > 1,
is called the Fourier series of x. The functions xn with n > 1 are called
the Fourier coefficients of x.

Note that the Fourier series defined this way is ambiguous, i. e., the
functions xn with n > 1 can be chosen differently. In [3, 4] the analogous
definition was given for functions from Cb, u(J, X).

Theorem 4. Coefficients of any Fourier series (4) of a function
x ∈ AP∞F(J, X) belong to Fsl,∞(J, X) and satisfy the condition
lim
n→∞

‖xn‖F = 0.

The condition xn ∈ Fsl,∞(J, X) follows from Definition 17 and the
equality lim

n→∞
‖xn‖F = 0 follows from Theorem 1.

Theorem 4 and Lemma 5 directly imply

Theorem 5. Given a function x ∈ AP∞F(J, X), one can construct
the Fourier series (4) such that xn ∈ Csl,∞(J, X), n > 1. Moreover, the
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functions xn with n > 1 can be extended on C to bounded entire functions
of the exponential type.

Given m > 0 and x ∈ AP∞F(J, X), consider a function
τm(x, ·) : J→ X defined by

τm(x, t) =
∑

|λn|<m,λn∈ΛB(x̃)

(
1− |λn|

m

)
xk(t)e

iλnt, t ∈ J,

where xk, k > 1, are the Fourier coefficients of x.

Definition 20. The Fourier series (4) of a function x ∈ AP∞F(J, X)
is summable at infinity by the Bochner–Feier method, if a sequence (y0

m,
m ∈ N) of functions from F0(J, X) such that

lim
m→∞

‖x− τm(x,·)− y0
m‖F = 0 (5)

exists.

For F(J, X) = Cb, u(J, X) condition (5) is equivalent to

lim
m→∞

sup
t∈J
‖x(t)− τm(x, t)− y0

m(t)‖X = 0.

Theorem 6. The Fourier series (4) of a function x ∈ AP∞F(J, X) is
summable at infinity by the Bochner–Feier method.

Proof. Assume that J = R (the result for J = R+ follows from Re-
mark 3). Let us consider the quotient space X = F(R, X)/F0(R, X) and
the group of isometries T = S̃ : R→ EndX defined above. For a function
x ∈ AP∞F(R, X) an equivalence class x̃ belongs to AP (X ). Therefore, it
satisfies the conditions of Theorem 2. The statement of Theorem 6 follows
directly from Theorem 2. �

Note that the choice of Fourier coefficients in the last theorem is not
essential.
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