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REDUCED p-MODULUS, p-HARMONIC RADIUS AND
p-HARMONIC GREEN’S MAPPINGS

Abstract. We consider the definitions and properties of the met-
ric characteristics of the spatial domains previously introduced by
the author, and their connection with the class of mappings, the
particular case of which are the harmonic Green’s mappings intro-
duced by A. I. Janushauskas. In determining these mappings, the
role of the harmonic Green’s function is played by the p-harmonic
Green’s function of the n-dimensional region (1 < p <∞), the ex-
istence and properties of which are established by S. Kichenassamy
and L. Veron. The properties of p-harmonic Green mappings es-
tablished in the general case are analogous to the properties of har-
monic Green’s mappings (p = 2, n = 3). In particular, it is proved
that the p-harmonic radius of the spatial domain has a geometric
meaning analogous to the conformal radius of a plane domain.
Key words: reduced p-modulus, p-harmonic inner radius,
p-harmonic Green function, p-harmonic Green’s mapping
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1. Introduction. By definition, the conformal radius of a plane sim-
ply connected domain with respect to a fixed interior point is the radius
of the disk onto which this domain can be conformally mapped, so that
the indicated point passes to the origin, and its derivative at this point
is equal to one. It is known that the conformal radius coincides with
the inner radius of the region with respect to this point, determined by
the (harmonic) Green’s function [6]. The notion of p-harmonic inner ra-
dius of a spatial domain, introduced by the author (see [10]), is a natural
generalization of the inner (conformal) radius of a plane domain. This
concept has been applied in a number of works on the potential theory
(see [4, 8, 18]). We show that the p-harmonic inner radius of a spatial
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domain homeomorphic to a ball has a geometric meaning analogous to
the conformal radius. The role of the conformal mapping is played by the
p-harmonic Green’s mapping. This class of maps is defined by analogy
with harmonic Green’s mappings [19] and has a number of similar prop-
erties. The connection between the reduced p-module of the domain with
respect to the interior point and the inner p-harmonic radius ([10]) makes
it possible to extend geometric estimates and properties established by us-
ing the moduli method for other classes of maps to the case of p-harmonic
Green’s mappings (see [10,12]).

2. The reduced p-module. Let En be the n-dimensional Euclidean
space and En = En ∪ ∞ be its one-point compactification. Denote by
x = (x1, x2, . . . , xn) a vector in En, |x| =

√
x21 + . . .+ x2n is the length

of x. Bn(x0, t) is an open ball centered at a point x0 ∈ En with radius t;
Bn(∞, t) =

{
x ∈ En : |x| > t

}
; Sn−1(x, t) = ∂Bn(x, t), x ∈ En; ωn is the

volume of an n-dimensional ball of unit radius, nωn is the area of its
surface.

The concept of p-capacity and its generalizations in different versions
is encountered in the works of many authors (see, for example, [2,5,7,13]).
We consider a condenser, which is a ring domain D ∈ En, the complement
of which consists of two connected components C0 and C1 (condenser
plates).

For 1 < p < ∞, we define the p-capacity of the condenser D by the
formula

CappD = inf

∫
D

|∇u|p dω, (1)

where inf is taken over the class of continuous functions in D that are
continuously differentiable in D and take values 0 on C0 and 1 on C1. It is
known that if C0 and C1 are nondegenerate, then there is a unique poten-
tial function u0(x), which is the extremal for p-capacity of the condenser
D and is p-harmonic, that is, it satisfies the p-Laplace equation (in the
generalized sense).

Lemma 1. For almost all t ∈ (0, 1) we have:

CappD =

∫
St(u0)

|∇u0|p−1 dS, (2)

where St(u0) = {x ∈ D : u0(x) = t} is a level surface of the potential func-
tion and dS is the surface area element.
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Proof. Note that if ϕ(x) is a twice continuously differentiable function
defined in a domain G with a piecewise smooth boundary, and ψ(x) is a
continuously differentiable function in G, then, integrating by parts, we
obtain:∫

G

ψ div
(
|∇ϕ|p−2∇ϕ

)
dω =

=

∫
∂G

ψ |∇ϕ|p−2 ∂ϕ
∂n

dS −
∫
G

|∇ϕ|p−2
n∑
k=1

∂ϕ

∂xk

∂ψ

∂xk
dω, (3)

where −→n is the vector of the external normal to ∂G. Let Da,b be a domain
bounded by level surfaces Sa(u0) and Sb(u0) (0 < a < b < 1). Due to the
fact that u0(x) is a monotone function (see [15]), Da,b is a ring domain.
Applying formula (3) in this domain in the case ψ = 1 and ϕ = u0, we
obtain∫
∂Da,b

|∇u0|p−2
∂u0
∂n

dS =

∫
Sa(u0)

|∇u0|p−2
∂u0
∂n

dS +

∫
Sb(u0)

|∇u0|p−2
∂u0
∂n

dS = 0.

It follows that∫
Sb(u0)

|∇u0|p−2
∂u0
∂n

dS = −
∫

Sa(u0)

|∇u0|p−2
∂u0
∂n

dS =

∫
Sa(u0)

|∇u0|p−1 dS = I.

The value of I, therefore, does not depend on the choice of the level
surface of the potential function, except for the case when the gradient
u0(x) vanishes on this surface. Applying formula (3) again in the domain
Da,b when ψ = ϕ = u0, we find∫
Da,b

|∇u0|p dω = a

∫
Sa(u0)

|∇u0|p−2
∂u0
∂n

dS + b

∫
Sb(u0)

|∇u0|p−2
∂u0
∂n

dS = (b− a)I.

Passing to the limit as a→ 0 and b→ 1, we obtain the relation (2). �

A convenient metric characteristic of a condenser is the quantity

modpD =

(
nωn

CappD

) 1
p−1

, (4)
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which is called the p-module of a condenser D.
Let µp(x, x0) = µp(|x− x0|) = µp(t) be a fundamental solution of the

p-Laplace equation:

∆pu = −div(|∇u|p−2∇u) = nωnδ(x− x0), (5)

where δ(x−x0) is the Dirac measure or Dirac δ-function at x0 ∈ En. With
x0 6=∞, we have

µp(t) =

{
− ln t, p = n;
1
γ
t−γ, p 6= n,

(6)

where γ = n−p
p−1 . If x0 = ∞, then the role of µp(x,∞) is played by the

function
µ∞p (|x|) = µ∞p (t) = −µp

(
1/t
)
. (7)

Note that the p-module of the spherical ring KR
r , bounded by the concen-

tric spheres of radii r and R > r is

modpK
R
r = µp(r)− µp(R) =

ln R
r
, p = n,

− 1
γ
(R−γ − r−γ), p 6= n.

(8)

We will need the following well-known property from the potential theory,
formulated here for the case of p-modules of ring domains.

Lemma 2. If ring domains D1, D2, . . . , Dm are pairwise disjoint and
each of them separates the boundary components of a ring domain D,
then

modpD >
m∑
k=1

modpDk. (9)

Proof. Let uk be an admissible function for the ring domain Dk, ak > 0
and

∑m
k=1 ak = 1. Then u =

∑m
k=1 uk is an admissible function for the

ring domain D and ∫
D

|∇u|p dω =
m∑
k=1

ak

∫
Dk

|∇uk|p dω.

Hence,

CappD 6
m∑
k=1

apk CappDk. (10)
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Assuming

ak =

(
CappDk

) −1p−1

m∑
k=1

(
CappDk

) −1p−1
,

from (10), we obtain (9). �

Let G ⊂ En be a domain homeomorphic to a ball, x0 ∈ G,
Gt = G\Bn(x0, t). If x0 6= ∞, by Lemma 2, for sufficiently small
0 < t1 < t2 we have

modpGt1 > modpGt2 + modpK
t2
t1 ,

where Kt2
t1 is the ring bounded by concentric spheres of radii t1 and t2 with

center at x0. Therefore,

modpGt1 − µp(t1) > modpGt2 − µp(t2).

Consequently, the following limit exists:

lim
t→0

[modGt − µp(t)] = mp(x0, G). (11)

Similarly, when x0 =∞,

modpGt−1
1
> modpGt−1

2
+ modpK

t−1
1

t−1
2

,

where Kt−1
1

t−1
2

is the ring bounded by concentric spheres of radii t−12 and t−11

(t−12 < t−11 ) with the center at the origin. Hence, taking (8) into account,
we find

modpG1
t1

− µ∞p (t1) > modpG1
t2

− µ∞p (t2).

Consequently, the following limit exists:

lim
t→0

[
modG 1

t

− µ∞p (t)
]

= mp(∞, G). (12)

In the general case, the quantity mp(x0, G) = hp(x0, G) will be called the
reduced p-module of the domain G with respect to the point x0. If p > n
and x0 6=∞, we have

mp(x0, G) = lim
t→0

modpGt.
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If 1 < p < n and x0 =∞, then

mp(∞, G) = lim
t→0

modpG 1
t

=

(
nωn

Cp(En\G)

) 1
p−1

,

where Cp(A) is the p-capacity of the compact A ⊂ En, see [13], defined by

Cp(A) = inf

∫
En

|∇u|p dω.

Here the infimum is taken over the class of continuously differentiable
functions, greater than or equal to 1 on A, with compact support in En.

The notion of reduced modulus of a plane domain (p = n = 2) ap-
peared for the first time in Teichmiiller’s article [17]. Various generaliza-
tions of the concept of the reduced module and their applications were
considered in [1, 10–12, 14]. The definition of the reduced p-module of a
domain with respect to a point, given in this article above, can be ex-
tended to the case of domains of arbitrary connectivity. To do this, we
use the definition of the p-module of the domain, connected either to the
p-capacity of the corresponding condenser, or to the corresponding mod-
ules of families of curves or surfaces (see [7, 16]).

3. The inner p-harmonic radius. Let G be a domain with the
regular boundary in En, x0 ∈ G. From the results of S. Kichenassamy
and L. Veron [9] it follows that in the domain G there exists a unique
(generalized) solution u = uG(x, x0) ∈ C1,α(G\x0), α > 0 of the Dirichlet
problem for equation (5), which equals zero on the boundary of the domain
G, and such that the function

hp(x, x0) = uG(x, x0)− µp(x, x0) ∈ L∞(G).

In addition, there is the limit

lim
x→x0

hp(x, x0) = hp(x0, G) (13)

and
lim
x→x0

|x− x0|
n−1
p−1 (∇uG(x, x0)−∇µp(x, x0)) = 0. (14)

The function uG(x, x0) will be called the p-harmonic Green’s function of
the domain G with a pole at the point x0, and the function hp(x0, G) will
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be called the Roben p-function of the domain G. Note that when p > n
we have hp(x0, G) = uG(x0, x0). By definition [10], the inner p-harmonic
radius of the domain G at the point x0 is the value of Rp(x0, G) for which

hp(x0, G) =

{
−µp(Rp(x0, G)) , x0 6=∞,

−µ∞
p

(Rp(∞, G)) , x0 =∞.
(15)

Thus, Rn(x0, G) = exp{hn(x0, G)} and for p 6= n

Rp(x0, G) =


(
−γhp(x0, G)

)−1/γ
, x0 6=∞,(

γhp(∞, G)
)1/γ

, x0 =∞.
(16)

The inner p-harmonic radius of an arbitrary domain G ⊂ En at the point
x0 is the number Rp(x0, G) = supRp(x0, G

′), where the supremum is taken
over all domains G′ ⊂ G with the smooth boundary.

Theorem 1. [10] For any domain G ⊂ En with regular boundary and
any x0 ∈ G we have mp(x0, G) = hp(x0, G).

Proof. Let G ⊂ En be a domain with regular boundary, x0 6= ∞, and
Ωa(uG) = {x ∈ G : uG(x, x0) > a}. Let Ωa(uG) be a closed bounded set.
We show that Ωa(uG) is star-shaped with respect to the point x0 for suf-
ficiently large a. It follows from (14), that for any direction

−→
l

lim
x→x0

|x− x0|
n−1
p−1

(
∂uG(x, x0)

∂l
− ∂µp(x, x0)

∂l

)
= 0. (17)

In particular, passing to spherical coordinates and calculating the deriva-
tive along the radius −−−−→x− x0 for ρ = |x− x0| we obtain:

lim
ρ→0

ρ
n−1
p−1

∂uG
∂ρ

= −1. (18)

It follows that for small ρ the function uG(x,x0) decreases monotonically
with respect to ρ and the level surface Sa(uG) = ∂Ωa(uG) is star-shaped
with respect to the point x0. We consider the condenserG(a) = G\Ωa(uG).
The extremal function for the p-capacity of the condenser G(a) has the
form va(x) = 1

a
uG(x, x0). By Lemma 1,

CappG(a) =
1

ap−1

∫
Sa(uG)

|∇uG|p−1 dS. (19)



Reduced p-modulus 89

Applying formula (3) to the domain bounded by the surface Sa(uG) and
sphere S(x0, t), where t > 0 is sufficiently small, and setting ψ = 1, and
ϕ = uG(x, x0), we find

CappG(a) =
1

ap−1

∫
Sa(uG)

|∇uG|p−1 dS = − 1

ap−1

∫
S(x0,t)

|∇uG|p−2
∂uG
∂t

dS.

(20)

It follows from (14) that
∂uG
∂t

= −t
1−n
p−1 (1 + o(t)), t→ 0. Thus,

CappG(a)− 1

ap−1

∫
S(x0,t)

t1−n
(
1 + α(t)

)p−2(
1 + o(t)

)
dS =

=
nωn
ap−1

(
1 + α(t)

)p−2(
1 + o(t)

)
and passing to the limit as t→ 0, we find that CappG(a) = nωn/a

p−1 or
modpG(a) = a. We consider now the condenser Gt = G\Bn(x0, t), where
t > 0 is sufficiently small, and the values a1 < a2 are such that the level
surface Sa1(uG) contains the sphere Sn−1(x0, t) and touches it, and the
level surface Sa2(uG) lies inside this sphere and touches it from within.
Such values a1 and a2 exist except for the trivial case when the domain G
is a ball with center at the point x0.
Since the p-module of the condenser does not decrease as it expands, then
modpG(a2) > modpGt > modpG(a1) or

a1 6 modpGt 6 a2. (21)

It follows from (13) that for any ε > 0 there exists δ > 0, such that

µp(|x− x0|) + hp(x0, G)− ε < uG(x, x0) < µp(|x− x0|) + hp(x0, G) + ε

for any x, such that |x− x0| < δ. Choosing t sufficiently small and using
(21), we have

hp(x0, G)− ε < modpGt − µp(t) < hp(x0, G) + ε,

so mp(x0, G) = hp(x0, G). The proof of the theorem in the case of an
arbitrary domain with a regular boundary, as well as the consideration of
the case x0 =∞ is obtained by modifying the above arguments. �



90 B. E. Levitskii

Note that from the definition of the inner p-harmonic radius of an
arbitrary domain G ⊂ En at the point x0 and the relation (15), and also
the well-known property of continuity of the p-capacity (p-module) with
respect to the monotonic convergence of sets (see, for example, [7]), it
follows that Rn(x0, G) = exp{mn(x0, G)} and for p 6= n

Rp(x0, G) =

{(
γmp(x0, G)

)−1/γ
, x0 6=∞,(

−γmp(∞, G)
)1/γ

, x0 =∞.
(22)

4. p-Harmonic Green’s mappings. LetG and G̃ be homeomorphic
to a ball domains regular boundaries in En. Let uG(x, x0) and uG̃(y, y0)
be p-harmonic Green’s functions for these domains with poles at points
x0 ∈ G (x0 6=∞) and y0 ∈ G̃ (y0 6=∞), respectively, 1 < p 6 n. Consider
the mapping f : G→ G̃ such that:

• f(x0) = y0;

• the level set St(uG) is mapped onto the level set St(uG̃);

• the trajectory of the gradient field ∇uG(x, x0) that enters the pole
x0 corresponds to the trajectory of the gradient field ∇uG̃(y, y0) that
enters the pole y0.

Such mappings are constructed by analogy with the Green’s mappings
(p = n = 3) considered in the monograph by A. I. Januszauskas [19], as a
special case of harmonic mappings with respect to M. A. Lavrentyev. It
follows from relation (17) that p-harmonic Green’s functions of G and G̃
have the property that for any ray l from the point x0 ∈ G (respectively,
y0 ∈ G̃) there is the unique trajectory of the field ∇uG(x, x0) (respectively,
the unique trajectory of the field ∇uG̃(y, y0)), entering x0 (respectively,
y0) with the tangent l. Let σ : S → S be the rotation (linear mapping)
of the unit sphere S = S(0, 1) under which a point X ∈ S mapped to the
point σ(X). If l is the ray from the center of S passing through the point
X, then σ(l) denotes the ray from the center of S passing through the
point σ(X).

p-Harmonic Green’s mapping f : G → G̃ is defined in a sufficiently
small neighborhood U(x0) of the pole x0 , as follows. If l is the tangent at
the point x0 of the trajectory of gradient field ∇uG(x, x0) that enters the
pole x0 and passes through the point x ∈ St(uG), then y = f(x) ∈ St(uG̃)
belongs to the trajectory of the gradient field ∇uG̃(y, y0), that enters the
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pole y0 with the tangent σ(l). The constructed mapping is a homeomor-
phism of a sufficiently small neighborhood U(x0) onto a sufficiently small
neighborhood of U(y0). This homeomorphism can be extended outside
these neighborhoods by means of the following construction, similar to
that described in [19]. If the function uG(x, x0) has no critical values
α : a 6 α < ∞ in the domain G(a) = G\Ωa(uG), or ∇uG(x, x0) = 0
in some points on the level surface Sα(uG), then the whole domain G(a) is
homeomorphic to the ball. The same is true for the domain
G̃(a) = G̃\Ωa(uG̃). Let α0 > α1 > . . . > αk > 0 be the critical va-
lues of the function uG in the domain G. There are a finite number of
such values, provided that ∇uG(x, x0) 6= 0 on ∂G. Analogously, let
β0 > β1 > . . . > βm > 0 be the critical values of the function uG̃ in
the domain G̃. Let γ = max(α0, β0). Consider the field ∇uG(x, x0) that
enters the pole x0 with the tangent l and has the level surface Sa(uG), and
the field ∇uG̃(y, y0) that enters the pole y0 with the tangent σ(l) and has
the level surface Sa(uG̃). Consider a point x ∈ G(γ) at the intersection
of the trajectory of the field ∇uG(x, x0) and associate it with the point
y ∈ G̃(γ) at the intersection of the trajectory of the field ∇uG̃(y, y0).
Thus, the extension of the mapping f from the neighborhood U(x0) to
the homeomorphism of the domain G(γ) to the domain G̃(γ) is defined.
Further extended beyond G(γ) along such trajectories, this mapping may
have singularities, because different trajectories of the gradient field in-
tersect at critical points. Such construction is possible only if both func-
tions uG(x, x0) and uG̃(y, y0) have singularities at the points x0 and y0, or
uG̃(y0, y0) = uG(x0, x0).

Let ft be the trace of the mapping f on the level surface St(uG), Jft(x)
be the Jacobian of the trace ft and Jf (x) be the Jacobian of f . The
following theorem extends the properties established in [19] for p = 2 and
n = 3 to the case of p-harmonic Green’s mappings.

Theorem 2. The following relations hold:

1) |f ′(x0)| = lim
x→x0

|f(x)− y0|
|x− x0|

=

{
∆n(G̃, G), p = n;

1, p < n.
(23)

2) lim
t→∞

|∇uG̃|
|∇uG|

∣∣∣∣
uG=uG̃=t

= 1. (24)

3) lim
x→x0

Jf (x) =

{
∆n
n(G̃, G), p = n;

1, p < n.
(25)
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4) Jf (x) = Jft(x)× |∇uG(x, x0)|∣∣∇uG̃(f(x), y0)
∣∣ , x ∈ St(uG). (26)

5) Jft(x) =


(
|∇uG(x, x0)|
|∇uG̃(f(x), y0)|

)n−1
×∆n

n(G̃, G), p = n,(
|∇uG(x, x0)|
|∇uG̃(f(x), y0)|

)p−1
, p < n,

x ∈ St(uG). (27)

Here ∆n(G̃, G) = exp
[
hn(y0, G̃)− hn(x0, G)

]
.

Proof. The following representations hold for the p-harmonic Green’s
functions of the domains G and G̃ in the neighborhood of the poles x0
and f(x0) = y0 due to (13):

uG(x,x0) = µp(x, x0) + hp(x0, G) +O(|x− x0|)

and
uG̃(f(x), y0) = µp(f(x), y0) + hp(y0,G̃) +O(|f(x)− y0|).

On the corresponding level surfaces uG̃(f(x),y0) = uG(x,x0); thus

|f(x)− y0| =

=

|x− x0| exp
[
hp(y0,G̃)− hp(x0,G) +O(|x− x0|)

]
, p = n,

|x−x0|
{

1−|x−x0|γ
[
hp(y0,G̃)−hp(x0,G)

]
+o(|x−x0|γ)

}
, p < n.

(28)

This implies the first relation.
Due to (14), we have for all 1 < p 6 n:

|∇uG(x, x0)| = |x− x0|
1−n
p−1 (1 +O(|x− x0|)),

and, respectively,∣∣∇uG̃(f(x), y0)
∣∣ = |f(x)− y0|

1−n
p−1
(
1 +O

(
|f(x)− y0|

))
.

Hence, taking (28) into account, we obtain (24).
Let us prove the equality (25). Let the ball Bn(x0, r) ⊂ G and B̃ be

its image under the mapping f. Let

Rt1 = max
y∈B̃
|y − y0| = |yt1 − y0| ,
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where yt1 ∈ St1(uG̃), and

Rt2 = min
y∈B̃
|y − y0| = |yt1 − y0| ,

where yt2 ∈ St2(uG̃), 0 6 t1 < t2 < ∞. We set xtν = f−1(ytν ), ν = 1, 2.
For the n-dimensional Lebesgue measure mn(B̃) of the domain B̃ we have
the inequality

Rn
t2

rn
6
mn(D)

ωnrn
6
Rn
t1

rn
. (29)

From relation (27) we easily find

lim
r→0

Rn
t2

rn
= lim

r→0

Rn
t1

rn
=

{
expn

[
hn(y0, G̃)− hn(x0, G)

]
, p = n,

1, p < n.

Note that Jf (x0) = lim
r→0

mn(D)/ωnr
n; then (29) implies (25). By con-

struction of the map f , Jf (x) = Jft(x)Kt, where Kt is the coefficient of
extension along the orthogonal trajectories of the mapping f on the level
surface St(uG). The increase rate of a function along orthogonal trajec-
tories to level surfaces is proportional to the length of its gradient, then
Kt = |∇uG(x, x0)| ×

[
|∇uG̃(f(x), y0)|

]−1 for x ∈ St(uG), that is, equal-
ity (26) is satisfied. Moreover, by virtue of (24), lim

t→∞
Kt = 1. We consider

two level surfaces St(uG) and St1(uG), where 0 6 t < t1 < ∞. Let point
X ∈ St(uG) and θ(X) ∈ St1(uG) be its image lying on the trajectory of the
field ∇uG(x, x0), passing through X. If there are no critical points in the
layer bounded by these surfaces, then the mapping θ : St(uG) → St1(uG)
is a homeomorphism. Let U(X) ⊂ St(uG) be an open connected neigh-
borhood of X, and V (X) ⊂ St1(uG) be its image under the mapping θ.
Denote by Ω(X) the domain that represents the part of the flow tube of
the vector field ∇uG(x, x0), enclosed between U(X) and V (X). Applying
formula (3) in the domain Ω(X) in the case when ψ = 1 and ϕ = uG(x, x0),
we obtain∫
V (X)

|∇uG|p−2
∂uG
∂n

dSV =

∫
U(X)

|∇uG|p−2
∂uG
∂n

dSU =

=

∫
V (X)

|∇uG|p−2
∂uG
∂n

[Jθ(x)]−1 dSV ,
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where Jθ(x) is the Jacobian of the mapping θ. Applying the mean-value
theorem and contracting the neighborhood U(X) to the point X, we find

|∇uG|p−2
∂uG
∂n

∣∣∣∣
uG=t1

= |∇uG|p−2
∂uG
∂n

∣∣∣∣
uG=t

[Jθ(X)]−1 .

Hence,
Jθ(X) = |∇uG|p−1|uG=t ×

[
|∇uG|p−1|uG=t1

]−1
.

Analogously, for the mapping θ̃ : St1(uG̃)→ St2(uG̃) we obtain

Jθ̃(X) = |∇uG̃|
p−1|u

G̃
=t ×

[
|∇uG̃|

p−1|u
G̃
=t1

]−1
.

As ft = θ̃−1 ◦ ft1 ◦ θ,

Jft(x) = Jft1 (x)× |∇uG(x, x0)|p−1

|∇uG̃(f(x), y0)|p−1
∣∣∣∣∣
uG=uG̃=t

×
|∇uG̃(f(x), y0)|p−1

|∇uG(x, x0)|p−1
∣∣∣∣∣
uG=uG̃=t1

. (30)

Passing to the limit in (30) for t1 → ∞ and taking (24) and (25) into
account, we obtain (27). �

From relation (23) and our reasoning, we obtain

Corollary 1.

Rp(y0,G̃) =

{
|f ′(x0)|Rn(x0, G), p = n,[
Rp
−γ(x0, G) + λpf (x0)

]− 1
γ , p < n,

(31)

where λpf (x0) = lim
x→x0

[
|f(x)− y0|−γ − |x− x0|−γ

]
.

Theorem 3. Assume that G̃ is a ball of radius R centered at y0; for
p = n we have |f ′(x0)| = 1 if and only if Rn(x0, G) = R, and for p < n we
have Jf (x) = 1 +O(|x− x0|

n−1
p−1 ) if and only if Rp(x0, G) = R.

Proof. The first part of the statement follows immediately from (31).
Further, since

uG̃(y0, G̃) =

{
lnR− ln |y − y0| , p = n,

− 1
γ
R−γ + 1

γ
|y − y0| , p < n,

(32)
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for y = f(x), we have

|f(x)− y0| =

{
R

Rn(x0,G)
|x− x0| (1 +O(|x− x0|)), p = n,

|x− x0|
[
1 + C |x− x0|γ +O(|x− x0|γ+1)

]− 1
γ , p < n.

(33)
Here C = R−γ −Rp

−γ(x0, G). It follows from (32) and (14) that∣∣∣∇uG̃(y0, G̃)
∣∣∣ = |y − y0|−

n−1
p−1

and, respectively,

|∇uG(x, x0)| = |x− x0|
−n−1
p−1

(1 +O(|x− x0|)).

From this, using (33), we find:

|∇uG(x, x0)|∣∣∇uG̃(f(x), y0)
∣∣=


Rn(x0, G)

R
(1 +O(|x− x0|)), p = n,

1− n− 1

n− p
C |x− x0|γ +O(|x− x0|γ+1), p < n.

(34)
Since, by virtue of (26) and (27),

Jf (x) =


(
|∇uG(x, x0)|
|∇uG̃(f(x), y0)|

)n
×
(

R

Rn(x0, G)

)n
, p = n;(

|∇uG(x, x0)|∣∣∇uG̃(f(x), y0)
∣∣
)p
, p < n,

from (34) we deduce

Jf (x) =

1 +O(|x− x0| , p = n,

1− pn−1
n−pC |x− x0|

γ +O(|x− x0|γ+1), p < n,
(35)

from which the assertion to be proved follows. �

Remark. For p = n the construction of p-harmonic Green’s mappings
described above and the assertion of Theorem 2 can be extended to the
case where one or both poles x0 or y0 are equal to ∞.
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