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Abstract.

In this article a class of symmetric functions is defined and
used in some special representation of holomorphic functions.
This representation plays an important role in transitions from
concrete problems of projective description to equivalent prob-
lems of inductive description and finds multiple applications in
questions connected with spectral synthesis of differential opera-
tors.
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1. Introduction. Suppose n,q € N; G is an open set in C";
7 : G — C1?is a holomorphic mapping. A set g C G is called w-symmetric,
if there exists a set V in C? such that g = 7=1(V). A function ¢ : g — C9,
where ¢ is a w-symmetric set, is called w-symmetric on g, if ¢ = pom,
where ¢ is some holomorphic on 7(g) function. A set of all 7-symmetric
on g functions O (g) is a ring. This ring is a subring of the ring of all
holomorphic on g functions O(g).

The class of w-symmetric functions is needed to consider some rep-
resentations of holomorphic on complex domain functions. For example,
consider the case of one variable. Suppose n = ¢ = 1; 7 is a polynomial;
G is an open w-symmetric set in C. Note the following theorem: Any
u € O(G) has the unique representation of the form u(z) = ZZ;} 2Pup(2),
where u, € Ox(G) [1]. Such presentation is called a symmetric represen-
tation of the analytic function [2]. The case 7 := (m,...,my) : C — CY,
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where 7y, ...,m4 are polynomials, was considered in [2]. The case where
G is an open set in C, (G, 7, 7(G)) — analytic covering, was studied in [3].

In this paper we consider a more general case. We obtain symmetric
representations of some multivariate functions.

Note that the concept of symmetric representation of an analytic func-
tion plays a key role in some questions of complex analysis. For example
it is used in spectral synthesis (see [3-6]).

2. Analyticity of the difference relation.

2.1. Alphabetized list of independent variables. Denote by A any

product set {zg), . 72(1)) } X. .. X {zin), 2 } , where {z%i), . ,z(i),)},

p(1 p(n) p(i
i=1,...,n are ordered sets of independent variables.
The set A = {z;: j = 1,...,p} has p = p(1) x --- x p(n) different
elements. Any finite sequence z1,...,2, € A is called an alphabetized list

of the set A, if j < k < 3 m € [1,n) such that j; = ki,...,jm = km,
Jm+1 < km+1 holds for any

- {ZJ<1>ZJ<:>} = {Zlgl)zli:)}

Let z1,..., 2, be an alphabetized list of the set . Consider a matrix
0w
1 n
P
(1) (n)
o) Fpn)

such that each j-th row equals to z;. Choose any partition of the matrix
Z Zy,...,Zp) where any submatrix Z; consists of p(2)---p(n) rows of
the matrix Z. Partition of all Z; in the same way gives us submatrices
Zk 15+ -2 p(2), Which consist of p(3) - - p(n) rows of Z, etc. We have:

Z1 Zk)l Zk,t,l
Z = , Ik = s Dot = ) e
Zp(1) Zr,p(2) Zit.p(3)
Any submatrix of rank m has the form:

N Y I R
Zy, = ’

L (1) (m) | _(m+1) (n)

T 2y, e 7 Zpima1)  t Zp(n)
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thus, columns 1,...,m are equal.

Any two neighboring submatrices of rank m are called adjacent if these
submatrices are in the same submatrix of rank m — 1 (note that Z has
rank 0). We have:

i) any two adjacent submatrices have the same columns except exactly
one called marked;

ii) any marked column consists of equal elements.

More precisely, m-th columns of matrices Zj, . ;j—1 and Z, . ; of rank
m are marked. The elements of m-th columns are equal to ZJ(;l and ij))
respectively.
2.2. The main procedure. Let us consider the procedure used in the
proof of theorem 1. Add the marked column of the upper adjacent subma-
trix to each submatrix Zy, ..., Z,(1) of rank 1 from the right to obtain the
non-rectangular matrix Z’. Each submatrix Zj, _; of rank m of matrix Z
determines the submatrix Z; j of rank m of matrix Z' uniquely. Note
that i) and ii) hold for adjacent pairs of submatrices of matrix Z’. The pair
Zy = Zy, Zj is the only exception. The marked columns of the adjacent
matrix pair Z;_; and Z;, k = 3,...,p(1), are the last column of Z},_, and
the first column of Z;. Elements of these columns are equal to elements
of 22122 and z,(cl)7 respectively. Add the marked column of upper adjacent
submatrix to each submatrix Z3, ..., ’( 1 of rank 1 from the right. We
obtain a new matrix Z” and new submatrices Z;/ i Properties 1) and

ii) hold for Z;! .. The pair Z{ = Z| = Zy, Z3 Z2 and Z§ = Z4, ZY

are exceptions’ The marked columns of the adjacent matrix pair Zj/
and Z}/, k =4,...,p(1), are the last column of Z;_, and the first column

of Z}/. Elements of these columns are equal to elements of z,(cl_)3 and zl(;),
respectively. Then add columns to ZJ, ..., Z;’(l), etc. Finely, p(1) — 1-th

step gives us the matrix ;7. We have:

(€ € )

Zk-1 2]

1Zk:: Zk; , 121:Z1.
1 1
ORI

In the same way we deal with submatrices 1Z; (rank = 1) of matrix
1Z. Let us consider the first step. Properties i) and ii) are satisfied for
adjacent submatrix pairs of matrix 1 Z, if the submatrices have rank > 1.
Then add the marked column of the upper adjacent submatrix to each
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submatrix 1 Zx 2, ... 1 Zkp(2), kK € 1,...,p(1) from the right to obtain a
new matrix 1Z/ and new submatmces 1Z,C _j- Properties i) and ii) are
satisfied for submatrices of rank > 2. The marked columns of the adjacent
matrix pair 1Zk] 1,1Zk], kE=1,...,p(1), j = 3,...,p(2), are the last
column of 1Zk7 _, and the second column of 1Z1/w" Elements of these

columns are equal to elements of zﬁ)z, 252) respectively. Then add columns

t0 125, 3,12, p(2)7 €te. Finally, p(2) — 1-th step gives us the matrix 5 Z.
We obtain:

1 1 2 2
z}i)l zﬁ) Zj(jl 25)
5Tk =\ Zn; ceo e | e e, 2Zha = Zag,
1 1 2 2
Zl(c)l zg) 23(21 ZP
2 I
2 Z15=| 215 | - |, 2Zka=|Zk1| -
2 2 1 1
Zj(—)l z§ ) Zl(c )1 Z§ )

Then we change in the same way submatrices of o Z of rank 2, etc. We

have: ) )
wZ,...i = (2, j|z( ) zg )\ .. |zj(7i)1zgn))

(if i € k,...,7 and i = 1, then there is no i-th submatrix in the matrix
nZk,...; ). Now we stop because submatrices of ,,Z are rows of ,,Z if these
submatrices have rank n.

2.3. An analytic continuation of the difference relation. Choose
any m X m invertible matrix A = (ax ;) and ! x [ nondegenerate matrix
B. The matrix

auB . almB

AXx B= :

amiB ... ammB
is called the Kronecker product.

It is clear that the determinant |A x B| of the matrix A x B equals
Al B|™.

Suppose that aq,...,a,, € C. Consider the square matrix
1 a; ... ag'“l
D(ay,...,am) =
1 an am—1
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Determinant of the matrix D(ay,...,a,,) is called the Vandermonde de-
terminant. We have:

Alar,..oam) = [ (a5 —ax).

1<k<j<m
Let {zgi)7...,z1(j?i)}, i = 1,...,n, be a collection of finite ordered
number sets, z1,...,2p, p = p(1) X --- x p(n) is an alphabetized list of
product set of sets {z%i), ceey Zz()i()i)}’ 1 =1,...,n. Consider the matrix
1 1
D=D (zi ),...,z;(i)) X ...x D (z%”%...,zﬁ%) ;A =det(D).

It is clear that

A = A{l Agz . Azn — ﬁ H (Zj(z) . ZI(;‘))Pi ’

i=11<k<j<m

where p; = %, A=A (zii), . ,zl(f)l)) We have:
2zt 2?
A:A(Zl,,zp): ,
zg‘l z,ofp
where a1,...,a, is an alphabetized list of the set
{0,...,p(1) =1} x ... x{0,...,p(n) — 1}
Q= (a,(:), ce ,Ck](:l)), Z?k = (Z](-l))agvl) X ... X (Z‘g-n))agcn).

Let ¢, ..., g™ be a collection of open sets in C. Take the set
»1 (z(l), ce z(”)) yee s Pp (z(l), ce z("))

of functions that are holomorphic at the product set gt x ... x g™ Let

(1) (1) (n) (n)
L0 Y ()
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be sets of independent variables where zf € gY) . Consider the relation

P
)
where |®| = det P,
e1(21) - pp(21)
e
01(zp) - pp(2p)
21,...,2p is an alphabetized list of the product set

1 1 n n
(o0, 2 b o,

Determinants |®| and A are holomorphic functions on g(*. From Har-
togs’s theorem it follows that |®| and A are holomorphic at the product
set

g=g¢M x ... xgMx.. . xg™x.  xgm.

— —
p(1) p(n)

Then F' is a holomorphic function at g\ Z(A), where Z(A) is a set of
points of § and x € Z(A) = A(x) =0..
Theorem 1. The function F' has the unique holomorphic on G analy-
tical continuation.

Proof. It follows from continuity of F' that the analytical continuation is
unique. It remains to check that it exists. Denote ® by ®(Z). Consider
the partition of the matrix ®(Z):

D(Zk1)s - ®(Zg pi2y)-
We have:
®(Z1) D(Zi.1)
®(Z) = : , ®(Zk) = f s
(Zp1)) D(Zy p(2))
If we replace ®(Z), k =2,...,p(1) by
D(Zy) — P(Z-1)

(1) (1) ’
T Ak

®(2') =
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we obtain the matrix ®(Z’). Elements of ®(Z’) are holomorphic functions
at g. We have:
1 1 p1 1 D\Pt
18(2)| = (z;(;) —z;(i)_l) S (zg ) >) 1B(2")] .
If we replace ®(Z},), k=3,...,p(1) by

(2;) — (%)

1) ’

" o
P = Zl(cl) k-1

we get the matrix ®(Z”). Elements of ®(Z") are holomorphic functions
at g. We have:

1 1 p1 1 1\ P1
|<I)(Z’)|:(z](3d)fzé(i)_2> x...x(zé)fz£)> 1B(2")].

If we replace ®(Z)), k = 4,...,p(1), etc, we get the matrix ®(;Z). Ele-
ments of ®(Z") are holomorphic functions at g. We have

[®(2)] = AT [2(12)] - (1)
Then we replace ®(:1Zx ), j =2,...,p(2) by

®(1Zk,;) — P (1Z1,5-1)
®(12;) = OO

27—z

in ®(;Zy) for all k € 1,...,p(1) to obtain the matrix ®(;Z’). Its elements
are holomorphic functions at g. We have:

2 2 b2 2 2 b2
062) = (s — 2y 1) X x (57 = 22) 1062

If we replace <I>(1Z,’€7j)7 j=3,...,p(2), etc, we get the matrix ®(37). Its
elements are holomorphic functions at g. We have:
[©(12)] = A |2 (22)]. (2)

Then we get the matrix ®(,,Z). Its elements are holomorphic functions
at g. We have
[@(n-12)| = AT [@(n2)] - (3)

It follows from (1), (2), (3) that
[©(2)] = Al@(n2)]-
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Finally, we obtain F' = |®(,,Z)|. This completes the proof. (J

3. The symmetric representation of an analytic function.
3.1. Analytic cover. Let A be an image of 7 : G — C?. The mapping
m is called an analytic cover of A if the following conditions hold:

1) mapping 7 is proper (hence, A is an n-dimensional analytic set in
C? [4, Remmert-Stein theorem]);

2) there exists an analytic subset ¢ C A, dimo < n such that A, = A\o
is an n-dimensional complex manifold in CY;

3) the set 1=1(o) is nowhere dense in G;

4) the restriction of ™ to G, = G\m (o) is a local biholomorphic p-
sheeted covering on A,.

The set o is called critical. The preimage 7—'(o) is an n-dimensional
subset of G. Metric dimension of 771(¢) is less than or equal to 2n — 2.
Hence, 7~ 1(o) is removable. Then any bounded over 7~ !(o) holomorphic
on G, function has the unique holomorphic on G extension. Sets 7=1(\),
A € A are compact analytic subsets of the set G and are called 7-layers.
Hence, the sets are finite [7]. Points A € A, are called ordinary, and
respective m-layers are called simple. Simple 7-layers consist of p different
points. A single-valued mapping {1,...,p} — 7~ 1()\) is called ordering of
alayer 771()). Ordering of a simple 7-layer can be represented in the form
Z1,...,%p. Elements of the sequence z1,...,z, depend on A = 7(z;) € As.
Mappings

2k = (zl(gl)(A)a ceey Z](cn)(A))v k= 13 Ry 2

are holomorphic on some neighborhood of any ordinary point.

The concept of analytic cover develops the concept of local biholo-
morphic k-sheeted covering. Analytical coverings appear in the Weier-
strass preparation theorem. It follows from the theorem that any pure
k-dimensional analytical set has some analytical cover on CF as a local
representation.

3.2. Special analytic cover. Let G, ....G™ be open sets in
C; 7). C = €19, ¢@i) € N,i=1,...n, be holomorphic functions;
A® = 7()(C). The mappings (V) are analytic covers, as:

1) the mapping 7(9 : C — €% is proper (hence, AV is 1-dimentional
analytic set in C4());
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2) there exists the close discrete set @ < A® guch that Aii) =
A\e® is a 1-dimentional complex manyfold in C9();

3) the restriction of 7@ to C{” = C\(7®)~1(¢®) is a local biholo-
morphic p(i)-sheeted covering on A{".

It is clear that the product set 7 : C™ — C%, ¢ = ¢(1) + ...+ ¢(n) of
mappings 7(9, i = 1,... n, is an analytic covering. The image 7~T(C~1’) =A
equals to product set A x ... x A hence the image is an n-dimensional
analytic set in C? [7]. The mapping # : G — A is proper. Indeed,
let K be a compact set in A, let K® be a projection of K on A®,
K =KW x...x K™, It is clear that (W(i))_l (K(i)) is a compact set in

G,
7 HK) = (w(”)_l (K(1)> <. (W(n))‘l (K(”)>

7#=1(K) is a compact set in G. 771 (K) C 7~ (K) and 7! (K) are closed

then #7!(K) is a compact set in G. This proves condition 1). Further,
critical set ¢ equals to the set

A\ (AS}) X ... X Afk")) = OZ(Q
i=1

where
SO = AD s x AGTD 5w g0 s AGFD 5 A

are (n — 1)-dimensional analytic subsets in A. TIndeed, & is an (n — 1)-
dimensional analytic subset of A and

A*ZZ\\&ZAS)X...XAYL)

in an n—dimensional complex manifold in C%. We have proved that con-

dition 2) holds. Set #7'(5) has the representation [J#~! (X(V), where
i=1

K2

71 (Z(i)) equals to
GM x ... x Gt x (w(i))il (a(i)) x GUHD x . x G,

Since (ﬂ'(i))_l (c™) is a closed discrete set, it follows that 7~ () and
771(5) are (n—1)-dimensional analytic sets. It now follows that #=1(5) is
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a nowhere dense set in G [7]. Condition 3) holds. It is clear that condition
4) is satisfied. Note that p = p(1)...,p(n).

A= AW x ... x A is a topological subspace of C?Z. Let A be an

open subset of A, G = 7= (A). A restriction 7 : G — A of the covering
map 7 : C" — C? to the m-symmetric set G is an analytic covering. We
say that 7 is special. Note that any m-symmetric set is 7-symmetric. In
particular, any m-layer equals to the respective w-layer.
3.3. Some representation of an analytic function. Let mapping
7 : G — A be a special analytic covering; let O(A) be a ring of holomorphic
on A functions; let O(A,) be a ring of locally holomorphic on A, functions;
let O,(A) be a subring of the ring O(A,) that consists of bounded on A
functions. The mapping

O(A,) = 04(Gy) | ¢ — pom

is a ring isomorphism. Since the mapping 7 is proper and the set 7—1(o)
is removable, the restriction of the mapping 7 to O, (A) is a ring isomor-
phism. It takes O,(A) on O,(G.) N O(G).

Let m be a special analytic covering, z € G, and

w(z) =2 =0 Ay e A, 2D e A,

Denote by A the m-layer 7=1()\) . It is clear that A = A() x ... X A

where \(¥) are simple 7(9)-layers, i = 1,.. -,n. Since the m-layer A con-
tains z = (2, ..., 2™) | then a 7()-layer AV contains the i—th coordi-
nate z. Let zgl), ... ,zl(f()i), zgl) = z() be an arbitrary ordering of a simple

7 layer S\(i); let 21, ..., 2, be an alphabetized list of the layer . Consider
a relation

_ 12

A )
where |®| = |®|(z1,...,2p), A =A(21,...,2p), ¢1,-..,9¢p € O(G), define
functions f : G, — C, f: A, — C, with respect to the conditions

f(2) = F(z1,2), fO) = Fz1(A), -, (V).

Since the restriction of F' to G\Z(A) is a symmetric function of vari-

ables {zgl), cee Z;H)}, e {zln), ce Z;Z)l)} and (z1,..., %) € G\Z(A) for

any z € G,, then the functions f, f are well defined. Indeed, the or-
der of the set {z1,...,%,} changes but F' doesn not as one changes the

F
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order in a set {z%i),...,zs()i)}, i € 1,...,n. On the other hand, map-
pings z1(A), ..., z,(A) are holomorphic on sufficently small neighborhoods
of the ordinary points. Then f € O(A,). It follows from theorem 1 that
fe 0.(A). Indeed, suppose A = (A, ... A(™) € ¢ and let k) ¢ A®
be a compact neighborhood of A let d < A be an open neighbor-
hood of compact k), ¢ = (z(0)=1(d®). Choose neighborhoods k(*),
d® such that A € int (k) # 0, X\ € dP x ... xd™ C A, X C
c gWx...xg™ C G. Since the map 7 is proper, K = (7()=1(k()
is a compact set in g¥. Tt follows from theorem 1 that the function F
is analytic on a set G = (gM)P(M) x .. x (¢()P(") hence, F is bounded
on (KWW x % (KM)P()  Then the function f is bounded on
ED x ... x k). Finally f is locally bounded on A.
We have

f2)=F) = (fom)(2),

where z € G, and A = ().

Now note that the function f € O,(G.) is locally bounded on 7~ !(c).
The set 7~ 1(o) is removable. Then f has an extension that is holomorphic
on G. We have

fe0,(G)NO(G).
Now we can prove the following theorem.
Theorem 2. For any function f € O(G) the unique representation
P
F=Y 200 B € 0(G.)nO(G). (4)
k=1

is true. The restriction of f*) to G, equals to Ag(f)/A, where Ag(f) is
the determinant obtained by replacement of k-th column by the column
from f(z1),..., f(2p) in determinant A and z1,...,z, is a alphabetized
list of the simple m-layer \ that contains z.

Proof. It is clear that for any z € G, we have

FA =" 2% M),

k=1
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where f = (f(z1),..., f(2p)), 2% = (9%, .. -, 29*). The determinant A

is not equal to zero for any z € G.. Then for any z € G, we have
o
f=>zmf®, (5)
k=1

where ) = Ap(f)/A € O.(G.). The functions f*) have the only
extension that is in O(G). Now we have

f®e0(G)NOG)k=1,...,p.

It is easy to see that (2) < (5). Uniqueness of (2) follows from the fact
that we obtain f*) from (5), using Cramer’s rule. Indeed,

flz) =20 fO () + o+ 27 f0 (1)
f(zp) = Zz?lf(l)(zp) +.ot ngf(p)(zp)
The theorem is proved. [
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