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ELEMENTARY SOLUTIONS OF A HOMOGENEOUS
q-SIDED CONVOLUTION EQUATION

Abstract. Spectral synthesis on the complex plane related to
solutions of some homogeneous equations of convolution type.
There is a method to obtain solutions: we describe the elemen-
tary solutions set of the equation (spectral analysis) and prove
the approximation theorem (spectral synthesis). In this paper we
use the method for some homogeneous equations of convolution
type, which appears from spectral synthesis problem for some
differential operator.
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1. Introduction. Let Ω0, Ω be convex domains in C, ε > 0,
Uε = {z : |z| < ε}. Suppose that Ω0 + Uε ⊆ Ω ; O(Ω), O(Uε), O(Ω0) and
O(C) are spaces of holomorphic functions equipped with the topology of
uniform convergence on compact sets. The operator D takes a function
f to f

′
. The operator Dq takes a function f to f (q). Consider a shift

operator
Th : f(z)→ f(z + h)

where h ∈ Uε is the shift. The operator takes O(Ω) to O(Ω0) and is
continuous. The shift operator Th can be identified with the infinite order
differential operator exphD. The characteristic function of the operator
Th = exphD is equal to exphλ, we have

Th(expλz)

expλz
= exphλ.
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Let q be a natural number, a0, . . . ,aq−1 be a set of complex numbers
containing a non-zero one. Denote by ωq the number exp 2πi

q . Let A be
a continuous linear operator that acts on elements of the space of entire
functions O(C). Define A by the rule

g(λ)→
q−1∑
k=0

akg(ωkqλ),

ATh is a continuous linear operator that takes O(Ω) to O(Ω0) by the rule

f(z)→
q−1∑
k=0

akf(z + ωkqh).

The operator ATh : O(Ω) → O(Ω0) is called a q-sided shift operator
(h ∈ Uε is the shift). Choose a continuous linear operator S on the space
O(Ω0) and an arbitrary q-sided shift operator ATh : O(Ω)→ O(Ω0). The
equation

〈S,ATh(f)〉 = 0, f ∈ O(Ω), (1)

is called a homogeneous q-sided convolution equation. The solution space
of a homogeneous q-sided convolution equation is equal to the kernel of the
respective q-sided convolution operator O(Ω)→ O(Uε) | f → 〈S,ATh(f)〉.
This space is a closed subspace in the space O(Ω) and is an invariant
set for the differential operator Dq [3]. Any exponential polynomial is
called an elementary solution if this exponential polynomial satisfies the
condition (1).

Let q = 1, ϕ(h) = 〈S, exphz〉 be the characteristic function of the func-
tional S. Suppose that λ is a zero of the function ϕ that has multiplicity
n. Then exponential monomials of the form:

expλz, z expλz, . . . , zn−1 expλz (2)

satisfy the condition (1) and are in WS . It is well known that any expo-
nential monomial has the form (2) if this monomial satisfies the condition
(1). It follows that any elementary solution of the equation (1) is a linear
combination of monomials of the form (2), where λ ∈ C is a zero of the
characteristic function of the analytic functional S and n is the zero’s
multiplicity [1, 2].

Choose q > 1; then we obtain a more complicated description of the
solution sets of homogeneous q-sided convolution equations. The spectral



A homogeneous q-sided convolution equation 139

synthesis problem for the differential operator Dq appears; it requires the
description of the differential operator’s root vectors that are in a Dq - in-
variant set W ⊆ O(Ω) [3].

2. Properties of a q-sided shift operator.

Property 1. A q-sided shift operator ATh can be identified with the
infinite order differential operator

f(z)→
∞∑
n=0

bn
hn

n!
(Dnf)(z), (3)

where

bn :=

q−1∑
k=0

akω
kn
q , n ∈ {0,1, . . .}

and the series (3) uniformly converges on each compact subset of Ω0.

Proof. Suppose that f ∈ O(Ω). By definition we have:

ATh(f)(z) =

q−1∑
k=0

akf(z + ωkqh) =

q−1∑
k=0

ak(expωkqhD)(f)(z),

where z ∈ Ω0.
By the operator’s expωkqhD definition we have:

ATh(f)(z) =

q−1∑
k=0

ak

∞∑
n=0

ωknq hn

n!
(Dnf)(z) =

=

∞∑
n=0

(
q−1∑
k=0

akω
kn
q

)
hn

n!
(Dnf)(z) =

∞∑
n=0

bn
hn

n!
(Dnf)(z).

For any k ∈ {0, 1, . . . , q − 1} the series

∞∑
n=0

ωknq hn

n!
(Dnf)(z)

uniformly converges on each compact subset of Ω0 to the function f(z +
+ ωkqh). Then the series (3) is uniformly convergent on compact subsets
of Ω0 too. �
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Property 2. The characteristic function of a q-sided shift operator
ATh : O(Ω)→ O(Ω0) is equal to the function

A(exphλ) :=

q−1∑
k=0

ak expωkqhλ =

∞∑
n=0

bn
hnλn

n!
,

then
ATh(expλz)

expλz
= A(exphλ).

Proof. On the one hand, by definition of the q-sided shift operator for
any z ∈ Ω0 we have

ATh(expλz) =

q−1∑
k=0

ak expλ(z + ωkqh) =

q−1∑
k=0

ak expωkqhλ expλz.

Hence,
ATh(expλz)

expλz
=

q−1∑
k=0

ak expωkqhλ = A(exphλ).

On the other hand, by Property 1

ATh(expλz) =

∞∑
n=0

bn
hn

n!
Dn expλz =

∞∑
n=0

bn
hnλn

n!
expλz.

Then,
ATh(expλz)

expλz
=

∞∑
n=0

bn
hnλn

n!
.

The property is proved. �

Property 3. A q-sided shift operator ATh : O(Ω) → O(Ω0) is linear
and continuous.

Proof. Linearity and continuity of the operator ATh : O(Ω)→ O(Ω0) fol-
low from the linearity and continuity of the shift operators Tωkqh : O(Ω)→
O(Ω0), k ∈ {0, 1, . . . , q − 1} and the representation

ATh(f) =

q−1∑
k=0

akTωkqh(f). (4)
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The property is proved. �

From Property 1 it follows that some of

bn :=

q−1∑
k=0

akω
kn
q , n ∈ {0, 1, . . .}

are not equal to zero. Note that for any n ∈ Z+ we have

bn+q = bn. (5)

Hence, some of b0, . . . ,bq−1 are not equal to zero. The determinant

∆0,...,q−1 :=

∣∣∣∣∣∣∣∣∣∣
ω0
q ω0

q · · · ω0
q

ω0
q ω1

q · · · ωq−1
q

· · · · · · · · · · · ·
ω0
q ωq−1

q · · · ω
(q−1)(q−1)
q

∣∣∣∣∣∣∣∣∣∣
=

∏
06n<j6q−1

(ωjq − ωnq )

of the system of equations
a0 + a1 + . . .+ aq−1 = b0

a0 + ωqa1 + . . .+ ωq−1
q aq−1 = b1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a0 + ωq−1
q a1 + . . .+ ω

(q−1)(q−1)
q aq−1 = bq−1

is not equal to zero. Thus, we obtain a0, . . . , aq−1 from b0, . . . , bq−1:

ak =
∆k

0,...,q−1(b0, . . . ,bq−1)

∆0,...,q−1
, (6)

where ∆k
0,...,q−1(b0, . . . , bq−1) is the determinant∣∣∣∣∣∣∣∣

ω0
q · · · b0 · · · ω0

q

ω0
q · · · b1 · · · ωq−1

q

· · · · · · · · · · · · · · ·
ω0
q · · · bq−1 · · · ω

(q−1)(q−1)
q

∣∣∣∣∣∣∣∣ ,
obtained by replacing the k-th column by (b0, . . . , bq−1)T in the determi-
nant ∆0,...,q−1.

Summarizing everything said above, we get the following property.

Property 4. A q-sided shift operator ATh is a differential operator of
the form (3) such that:
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1) bn satisfy the condition (5);

2) some of b0, . . . , bq−1 are not equal to zero.

The coefficients a0, . . . , aq−1 are called the determining coefficients of
the q-sided shift operator ATh. The coefficients b0, . . . , bq−1 are called the
characteristic coefficients of the q-sided shift operator ATh.

Denote by nA := {n1, . . . , nν} any ordered set of numbers {0, . . . , q−1}
such that:

1) 0 6 n1 < . . . < nν 6 q − 1;

2) if n ∈ {n1, . . . , nν}, then bn 6= 0;

3) if n 6∈ {n1, . . . , nν}, then bn = 0.

Such a set nA := {n1, . . . , nν} is called the indicator of the q-sided shift
operator ATh.

3. Exponential polynomials in some Dq-invariant space. Let
W be a Dq-invariant subspace of the space O(Ω). Any exponential poly-
nomial that is in W ⊆ O(Ω) has the form

m∑
j=0

q−1∑
k=0

pj,k(z) exp{ωkqλjz},

where λj ∈ C, pj,k(z) are polynomials in z, ωq := exp 2πi
q . Since the

exponential polynomial is in W ⊆ O(Ω), this polynomial is equal to the
linear combination of special exponential polynomials.

Proposition 1. Any exponential polynomial fromW ⊆ O(Ω) is equal to
the linear combination of exponential monomials from W that have the
form

q−1∑
k=0

pk(z) exp{ωkqλz}, (7)

where λ ∈ C, pk(z) are polynomials in z.

Proof. Suppose that σ(z) ∈W and

σ(z) :=

m∑
j=0

q−1∑
k=0

pj,k(z) exp{ωkqλjz}, λi 6= λj , i 6= j.
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Let us act by the operator Dq − α, where α ∈ C, on the exponential
polynomial σ(z); we get

(Dq − α)σ(z) =

m∑
j=0

q−1∑
k=0

gj,k(z) exp{ωkqλjz},

where

gj,k(z) =

q∑
i=0

(q
i

)
λq−1
j ω−ikq p

(i)
j,k(z)− αp(i)

j,k(z).

The following facts can be easily checked:

1) if λqj = α, then for any k ∈ {0, . . . , q − 1} deg gj,k(z) < deg pj,k(z);
2) if λqj 6= α, then for any k ∈ {0, . . . , q − 1} deg pj,k(z) = deg gj,k(z)

and the leading coefficient of the polynomial gj,k(z) is equal to the
leading coefficient of the polynomial pj,k(z) multiplied by λqj − α.

Let us act on σ(z) by the operator

(Dq − λq1)
n+1

(Dq − λq2)
n+1 · . . . · (Dq − λqm)

n+1
,

where

n = max
j,k
{deg pj,k(z)} , (j,k) ∈ {0, . . . ,m− 1} × {0, . . . , q − 1}.

By the above relations 1) and 2), we conclude that exponential polynomial

σ0(z) := (Dq − λq1)
n+1

(Dq − λq2)
n+1 · . . . · (Dq − λqm)

n+1
σ(z)

has the form
q−1∑
k=0

pk(z) exp{ωkqλ0z}.

The leading coefficient of the polynomial pk(z) is equal to that of the
polynomial p0,k multiplied by

c0 := (λq0 − λ
q
1)
n+1

(λq0 − λ
q
2)
n+1 · . . . · (λq0 − λqm)

n+1 6= 0.

Hence, the exponential polynomial

σ̃(z) := σ(z)− c0σ0(z)
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has the form

σ̃(z) =

m∑
j=0

q−1∑
k=0

p̃j,k(z) exp{ωkqλ0z},

where deg p̃0,k(z) < deg p0,k(z) for any k ∈ {0, . . . , q − 1}.
Applying the above procedure to the exponential polynomial σ̃(z) we

continue to decrease the degrees of the polynomials p̃0,k(z). After that,
we deal with the polynomials p1,k(z), etc. After a finite number of the
steps we obtain:

σ(z) = c0σ0(z) + c1σ1(z) + . . .+ csσs(z).

Note that the exponential polynomials σ0(z),σ1(z), . . . ,σs(z) have the re-
quired form. �

It is clear that any exponential polynomial of the form (7) has the
representation

em(z,λ) :=
∂m

∂ζm

( q−1∑
k=0

gk(ζ) exp{ωkq ζz}
)∣∣∣∣∣

ζ=λ

, (8)

where λ ∈ C, gk(ζ) are holomorphic at λ functions.

Proposition 2. Any exponential polynomial from W ⊆ O(Ω) is equal
to the linear combination of exponential monomials fromW that have the
form (8).

Proposition 3. [3] If an exponential polynomial em(z,λ) is in
W ⊆ O(Ω) and λ 6= 0, then the exponential polynomials

e0(z,λ), e1(z,λ), . . . , em−1(z,λ)

are in W .

4. Exponential polynomials and a q-sided shift operator.
Choose an arbitrary exponential polynomial

em(z,λ) :=
∂m

∂ζm

( q−1∑
k=0

gk(ζ) exp{ωkq ζz}
)∣∣∣∣∣

ζ=λ
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of the form (8). Then the q-sided shift operator

ATh : f(z)→
q−1∑
k=0

akf(z + ωkqh)

(where h ∈ Uε is the shift) takes the exponential polynomial to

ATh(em(z,λ)) :=
∂m

∂ζm

( q−1∑
k=0

gk(ζ)ATh(exp{ωkq ζz})
)∣∣∣∣∣

ζ=λ

.

By Property 2 we have

ATh(exp{ωkq ζz}) = A(exp{ωkq ζh}) exp{ωkq ζz} =

=

∞∑
n=0

bn
ωknq ζnhn

n!
exp{ωkq ζz},

where bn are characteristic coefficients of the q-sided shift operator ATh.
Then,

ATh(em(z,λ)) =
∂m

∂ζm

( q−1∑
k=0

gk(ζ)

∞∑
n=0

bn
ωknq ζnhn

n!
exp{ωkq ζz}

)∣∣∣∣∣
ζ=λ

=

=

∞∑
n=0

bn
hn

n!

∂m

∂ζm

( q−1∑
k=0

gk(ζ)ωknq ζn exp{ωkq ζz}
)∣∣∣∣∣

ζ=λ

=

=

∞∑
n=0

bn
hn

n!

∂m

∂ζm

(
ζn

q−1∑
k=0

gk(ζ)ωknq exp{ωkq ζz}
)∣∣∣∣∣

ζ=λ

.

Choose an arbitrary functional S ∈ O∗(Ω0); it takes the function
ATh(em(z,λ)) to 〈

S,ATh(em(z,λ))
〉

=

=
∞∑
n=0

bn
hn

n!

∂m

∂ζm

(
ζn

q−1∑
k=0

gk(ζ)ωknq ϕ(ωkq ζ)

)∣∣∣∣∣
ζ=λ

, (9)

where ϕ is a characteristic function of the functional S.
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Proposition 4. We obtain the equality〈
S,ATh(em(z,λ))

〉
= 0

for any h ∈ Uε iff functions

bn(ζ) =: ζn
q−1∑
k=0

gk(ζ)ωknq ϕ(ωkq ζ), n ∈ nA,

are equal to zero at λ with the multiplicity at leastm+1, nA := {n1, . . . , nν}
is the indicator of the q-sided shift operator ATh.

Proof. Suppose that
〈
S,ATh(em(z, λ))

〉
= 0 for any h ∈ Uε. Hence,

em(z,λ) ∈ WS ⊆ O(Ω), where WS is the solution space of the homoge-
neous q-sided convolution equation. WS is Dq-invariant. By Proposition 3
the exponential polynomials

e0(z,λ), e1(z,λ),..., em−1(z,λ)

are in WS . From (9) we have〈
S,ATh(ep(z,λ))

〉
=

=

∞∑
n=0

bn
hn

n!

∂p

∂ζp

(
ζn

q−1∑
k=0

gk(ζ)ωknq ϕ(ωkq ζ)

)∣∣∣∣∣
ζ=λ

= 0

for any h ∈ Uε and p ∈ {0, 1, . . . ,m}. It is clear that

∂p

∂ζp

(
ζn

q−1∑
k=0

gk(ζ)ωknq ϕ(ωkq ζ)

)∣∣∣∣∣
ζ=λ

= 0

for any p ∈ {0, 1, . . . ,m} and n ∈ nA. Thus, the functions bn(ζ), where
n ∈ nA, have a zero λ with the multiplicity at least m+ 1. �

5. Elementary solutions of a homogeneous q-sided convolu-
tion equation. Now we obtain the description of the set consisting of
exponential polynomials that are in the solution space WS ⊆ O(Ω) of the
homogeneous q-sided convolution equation (1).
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Denote by ∆0,...,q−1 the Vandermonde determinant∣∣∣∣∣∣∣∣∣∣
ω0
q ω0

q · · · ω0
q

ω0
q ω1

q · · · ωq−1
q

· · · · · · · · · · · ·
ω0
q ωq−1

q · · · ω
(q−1)(q−1)
q

∣∣∣∣∣∣∣∣∣∣
.

It is clear that

∆0,...,q−1 =
∏

06j<i6q−1

(ωiq − ωjq) 6= 0.

Let c0(ζ), c1(ζ), . . . , cq−1(ζ) be a set of holomorphic at λ ∈ C functions.
Denote by ∆k(ζ, c0, . . . , cq−1) the determinant

∆k
0,...,q−1

(
c0(ζ),

1

ζ
c1(ζ), . . . ,

1

ζq−1
cq−1(ζ)

)
=

=



ω0
q · · · c0(ζ) · · · ω0

q

ω0
q · · · 1

ζ
c1(ζ) · · · ωq−1

q

· · · · · · · · · · · · · · ·

ω0
q · · · 1

ζq−1
cq−1(ζ) · · · ω

(q−1)(q−1)
q


,

that is obtained by replacing the k-th column in ∆0,...,q−1 by

(c0(ζ),
1

ζ
c1(ζ), . . . ,

1

ζq−1
cq−1(ζ))T .

Theorem 1. Any elementary solution of a homogeneous q-sided convo-
lution equation (1) is equal to a linear combination of exponential poly-
nomials of the form

e(z, c0, . . . , cq−1) :=
∂m

∂ζm

(
q−1∑
k=0

∆k(ζ, c0, . . . , cq−1)

ϕ(ωkq ζ)
exp{ωkq ζz}

)∣∣∣∣∣
ζ=λ

,

where the holomorphic at λ ∈ C functions

c0 := c0(ζ), . . . , cq−1 := cq−1(ζ)
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and m ∈ Z+ satisfy the following condition: functions

∆k(ζ, c0, . . . , cq−1)

ϕ(ωkq ζ)
, k ∈ {0, 1, . . . , q − 1}

and functions
cn(ζ)

(ζ − λ)m+1
, n ∈ nA

are holomorphic at λ.

Proof. By Proposition 2, any exponential polynomial from a
Dq-invariant WS ⊆ O(Ω) is equal to the linear combination of exponen-
tial polynomials from WS of the form (8). Suppose that the exponential
polynomial

em(z,λ) :=
∂m

∂ζm

(
q−1∑
k=0

gk(ζ) exp{ωkq ζz}

)∣∣∣∣∣
ζ=λ

is in WS ⊆ O(Ω). Suppose that ϕn(ζ) := ζnϕ(ζ), n ∈ {0, 1, . . . , q − 1}.
Then for any n ∈ {0, 1, . . . , q − 1} we have

bn(ζ) := ζn
q−1∑
k=0

gk(ζ)ωknq ϕ(ωkq ζ) =

q−1∑
k=0

gk(ζ)ϕn(ωkq ζ).

By Proposition 4, the functions bn(ζ), n ∈ nA have a zero λ with the
multiplicity at least m+ 1.

Consider the system of q linear functional equations

bn(ζ) =

q−1∑
k=0

gk(ζ)ϕn(ωkq ζ), n ∈ {0, 1, . . . , q − 1},

where gk(ζ) are unknown holomorphic at λ ∈ C functions. The matrix of
the system

ϕ0(ω0
qζ) ϕ0(ω1

qζ) · · · ϕ0(ωq−1
q ζ)

ϕ1(ω0
qζ) ϕ1(ω1

qζ) · · · ϕ1(ωq−1
q ζ)

· · · · · · · · · · · ·
ϕq−1(ω0

qζ) ϕq−1(ω1
qζ) · · · ϕq−1(ωq−1

q ζ)

 =
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=


ω0
qζ

0ϕ(ω0
qζ) ω0

qζ
0ϕ(ω1

qζ) · · · ω0
qζ

0ϕ(ωq−1
q ζ)

ω0
qζ

1ϕ(ω0
qζ) ω1

qζ
1ϕ(ω1

qζ) · · · ωq−1
q ζ1ϕ(ωq−1

q ζ)

· · · · · · · · · · · ·

ω0
qζ
q−1ϕ(ω0

qζ) ωq−1
q ζq−1ϕ(ω1

qζ) · · · ω
(q−1)(q−1)
q ζq−1ϕ(ωq−1

q ζ)


has q rows and q columns. The determinant ∆0,...,q−1(ζϕ(ζ)) of the matrix
is equal to the following:

∆0,...,q−1ζ
q(q−1)

2

q−1∏
k=0

ϕ(ωkq ζ),

where ∆0,...,q−1 is the Vandermonde determinant∏
06j<i6q−1

(ωiq − ωjq) 6= 0.

Thus, the determinant ∆0,...,q−1(ζϕ(ζ)) does not vanish in some neigh-
borhood of λ, except λ itself. By Cramer’s rule

gk(ζ) =
∆k

0,...,q−1(ζϕ(ζ), b0(ζ), b1(ζ), . . . , bq−1(ζ))

∆0,...,q−1(ζϕ(ζ))
, k ∈ {0, 1, . . . , q − 1},

where ∆k
0,...,q−1(ζϕ(ζ), b0(ζ), b1(ζ), . . . , bq−1(ζ)) is the determinant

ω0
qζ

0ϕ(ω0
qζ) · · · b0(ζ) · · · ω0

qζ
0ϕ(ωq−1

q ζ)

ω0
qζ

1ϕ(ω0
qζ) · · · b1(ζ) · · · ωq−1

q ζ1ϕ(ωq−1
q ζ)

· · · · · · · · · · · · · · ·

ω0
qζ
q−1ϕ(ω0

qζ) · · · bq−1(ζ) · · · ω
(q−1)(q−1)
q ζq−1ϕ(ωq−1

q ζ)

 ,

that we obtain by replacing the k-th column in ∆0,...,q−1(ζϕ(ζ)) by

b0(ζ), b1(ζ), . . . , bq−1(ζ).

Then for any k ∈ {0, 1, . . . , q − 1} we have

gk(ζ) =
∆k

0,...,q−1(ζϕ(ζ), b0(ζ), b1(ζ), . . . , bq−1(ζ))

∆0,...,q−1(ζϕ(ζ))
=

∆k(ζ, c0, . . . , cq−1)

ϕ(ωkq ζ)
,
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where
c0(ζ) :=

b0(ζ)

∆0,...,q−1
, . . . , cq−1(ζ) :=

bq−1(ζ)

∆0,...,q−1
.

Thus the exponential polynomial em(z,λ) ∈ WS has a representation of
the form

∂m

∂ζm

( q−1∑
k=0

∆k(ζ, c0, . . . , cq−1)

ϕ(ωkq ζ)
exp{ωkq ζz}

)∣∣∣∣∣
ζ=λ

and functions

∆k(ζ, c0, . . . , cq−1)

ϕ(ωkq ζ)
= gk(ζ)∆0,...,q−1, k ∈ {0, 1, . . . , q − 1},

cn(ζ)

(ζ − λ)m+1
=

bn(ζ)

(ζ − λ)m+1∆0,...,q−1
, n ∈ nA

are holomorphic at λ.
Now consider an arbitrary exponential polynomial of the form

e(z, c0, . . . , cq−1) :=
∂m

∂ζm

( q−1∑
k=0

∆k(ζ,c0, . . . , cq−1)

ϕ(ωkq ζ)
exp{ωkq ζz}

)∣∣∣∣∣
ζ=λ

,

where the holomorphic at λ ∈ C functions

c0 := c0(ζ), . . . , cq−1 := cq−1(ζ)

and m ∈ Z+ satisfy the following condition: the functions

∆k(ζ, c0, . . . , cq−1)

ϕ(ωkq ζ)
, k ∈ {0, 1, . . . , q − 1}

and
cn(ζ)

(ζ − λ)m+1
, n ∈ nA

are holomorphic at λ. Let us show that e(z,c0, . . . , cq−1) ∈WS . We need
to prove that 〈

S,AThe(z,c0, . . . , cq−1)
〉

= 0.

By Property 2 we have

ATh(e(z, c0, . . . , cq−1)) =
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=
∂m

∂ζm

( q−1∑
k=0

∆k(ζ, c0, . . . , cq−1)

ϕ(ωkq ζ)
ATh(exp{ωkq ζz})

)∣∣∣∣∣
ζ=λ

=

=
∂m

∂ζm

( q−1∑
k=0

∆k(ζ, c0, . . . , cq−1)

ϕ(ωkq ζ)
A(exp{ωkq ζz}) exp{ωkq ζz}

)∣∣∣∣∣
ζ=λ

=

=
∂m

∂ζm

( q−1∑
k=0

∆k(ζ, c0, . . . , cq−1)

ϕ(ωkq ζ)

∞∑
n=0

bn
ωknq ζnhn

n!
exp{ωkq ζz}

)∣∣∣∣∣
ζ=λ

.

Hence,
ATh(e(z, c0, . . . , cq−1)) =

=

∞∑
n=0

bn
hn

n!

∂m

∂ζm

(
ζn

q−1∑
k=0

∆k(ζ, c0, . . . , cq−1)

ϕ(ωkq ζ)
ωknq exp{ωkq ζz}

)∣∣∣∣∣
ζ=λ

.

Since the functional S is continuous,〈
S,ATh(e(z, c0, . . . , cq−1))

〉
=

=

∞∑
n=0

bn
hn

n!

∂m

∂ζm

(
ζn

q−1∑
k=0

∆k(ζ, c0, . . . , cq−1)

ϕ(ωkq ζ)
ωknq ϕ(ωkq ζ)

)∣∣∣∣∣
ζ=λ

=

= ∆0,...,q−1

∞∑
n=0

bn
hn

n!

∂m

∂ζm

(
ζn

q−1∑
k=0

ωknq
∆k(ζ,c0, . . . , cq−1)

∆0,...,q−1

)∣∣∣∣∣
ζ=λ

.

By the relations (5) 〈
S,ATh(e(z, c0, . . . , cq−1))

〉
=

= ∆0,...,q−1

∞∑
n=0

bn′
hn

n!

∂m

∂ζm

(
ζn

q−1∑
k=0

ωkn
′

q

∆k(ζ, c0, . . . , cq−1)

∆0,...,q−1

)∣∣∣∣∣
ζ=λ

,

where n′ is the remainder after division of n by q. By definition of the
determinant ∆k(ζ, c0, . . . , cq−1), we obtain

q−1∑
k=0

ωkn
′

q

∆k(ζ,c0, . . . , cq−1)

∆0,...,q−1
=
cn′(ζ)

ζn′
.
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Then, 〈
S,ATh(e(z, c0, . . . , cq−1))

〉
=

= ∆0,...,q−1

∞∑
n=0

bn′
hn

n!

∂m

∂ζm

(
ζn−n

′
cn′(ζ)

)∣∣∣∣
ζ=λ

,

where bn′ = 0, if n′ 6∈ nA. Note that cn′(λ) = 0, c′n′(λ) = 0, . . . , c
(m)
n′ (λ) =

= 0, if n′ ∈ nA. Hence,〈
S,ATh(e(z,c0, . . . , cq−1))

〉
= 0.

The theorem is proved. �
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