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ELEMENTARY SOLUTIONS OF A HOMOGENEOUS
qg-SIDED CONVOLUTION EQUATION

Abstract. Spectral synthesis on the complex plane related to
solutions of some homogeneous equations of convolution type.
There is a method to obtain solutions: we describe the elemen-
tary solutions set of the equation (spectral analysis) and prove
the approximation theorem (spectral synthesis). In this paper we
use the method for some homogeneous equations of convolution
type, which appears from spectral synthesis problem for some
differential operator.
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1. Introduction. Let g, © be convex domains in C, ¢ > 0,
U. = {2z : |z| < €}. Suppose that Qo + U. C Q ; O(2), O(Us), O(€) and
O(C) are spaces of holomorphic functions equipped with the topology of
uniform convergence on compact sets. The operator D takes a function
f to f/. The operator D? takes a function f to f(9. Consider a shift
operator

Th: f(z2) = f(z+h)

where h € U; is the shift. The operator takes O(Q) to O(Qp) and is
continuous. The shift operator T}, can be identified with the infinite order
differential operator exp hD. The characteristic function of the operator
Ty, = exp hD is equal to exp h\, we have

Th(exp A2)

= hA.
exp Az P
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Let ¢ be a natural number, ag,...,aq—1 be a set of complex numbers
containing a non-zero one. Denote by w, the number exp 2mi  Tet A be
a continuous linear operator that acts on elements of the space of entire
functions O(C). Define A by the rule

g—1
g(N) = > arg(whN),
k=0

AT}, is a continuous linear operator that takes O(€2) to O(€)) by the rule

f(z) = i apf(z +wlh).

k=0

The operator ATy, : O(Q) — O(€y) is called a g-sided shift operator
(h € U, is the shift). Choose a continuous linear operator S on the space
O(£2) and an arbitrary ¢-sided shift operator AT}, : O(2) — O(Qp). The
equation

<Sa ATh(f)> =0, fe O(Q)7 (1)

is called a homogeneous q-sided convolution equation. The solution space
of a homogeneous ¢-sided convolution equation is equal to the kernel of the
respective ¢g-sided convolution operator O(2) — O(U,) | f — (S, ATx(f)).
This space is a closed subspace in the space O(QQ) and is an invariant
set for the differential operator D? [3]. Any exponential polynomial is
called an elementary solution if this exponential polynomial satisfies the
condition (1).

Let ¢ =1, o(h) = (S, exp hz) be the characteristic function of the func-
tional S. Suppose that A is a zero of the function ¢ that has multiplicity
n. Then exponential monomials of the form:

exp Az, zexp Az, ..., 2" Lexp\z (2)
satisfy the condition (1) and are in Wg. It is well known that any expo-
nential monomial has the form (2) if this monomial satisfies the condition
(1). It follows that any elementary solution of the equation (1) is a linear
combination of monomials of the form (2), where A € C is a zero of the
characteristic function of the analytic functional S and n is the zero’s
multiplicity [1,2].

Choose ¢ > 1; then we obtain a more complicated description of the
solution sets of homogeneous ¢-sided convolution equations. The spectral
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synthesis problem for the differential operator D? appears; it requires the
description of the differential operator’s root vectors that are in a DY - in-
variant set W C O(Q) [3].

2. Properties of a g-sided shift operator.

Property 1. A g-sided shift operator AT), can be identified with the
infinite order differential operator

o0 hn .
2) = )b (D" f)(2), (3)
n=0 :
where
qg—1
= Zakw§n7 n e {0,1, .. }
k=0

and the series (3) uniformly converges on each compact subset of €.

Proof. Suppose that f € O(Q2). By definition we have:

[ay

Q

AT (f)(2)

qg—1
apf(z + wgh) = Zak(expo.)ghD)(f)(z)7
k=0

b
Il

0

where z € Q.
By the operator’s exp wghD definition we have:

For any k € {0, 1, ...,q — 1} the series

00 kn hn

S (D))

n=0

uniformly converges on each compact subset of Q to the function f(z +
+ wkh). Then the series (3) is uniformly convergent on compact subsets
of Q¢ too. J
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Property 2. The characteristic function of a g-sided shift operator
ATy, = O(Q) — O(Q) is equal to the function

oo

A(exp hA) : Zakexpw hX = Zb hn)\n

then

fﬁ@z&?ﬂl&flzz4A(eXp;LX)
exp Az

Proof. On the one hand, by definition of the g-sided shift operator for
any z € )y we have

q—1 q—1
ATy (exp Az) = ay exp A(z + wgh) = Z aj exp w(’;h)\ exp A\z.
k=0 k=0
Hence,
ATy (exprz) =
(};((?\I;'z) = Z ay, exp wf;h)\ = A(exp h\).
k=0

On the other hand, by Property 1

oo

h
ATy (exp Az) = Z b,—D"exp Az = Z b exp Az.

n=0
Then,

AT} (exp Az) _ i b, AR |

exp \z — n!

The property is proved. [
Property 3. A g¢-sided shift operator ATy, : O(Q) — O(Qp) is linear
and continuous.

Proof. Linearity and continuity of the operator AT}, : O(Q) — O(Qy) fol-
low from the linearity and continuity of the shift operators ngh :0(Q) —

O(), k€ {0,1,...,¢— 1} and the representation

ATW(f) = Y arTupn(f)- (4)
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The property is proved. [J

From Property 1 it follows that some of

-1

by, = akw(’;", n€{0,1,...}
0

=}

=~
I

are not equal to zero. Note that for any n € Z, we have

bntq = bn. (5)
Hence, some of by, . ..,bs—1 are not equal to zero. The determinant

0 0 0
Wg Wy Wq
wg w; wg_l Vi n

Ao,...q-1= = I @i-w
0<n<j<Lq—1

0 q—1 (¢—1)(g—1)

w, wi wWq

of the system of equations

ao+a1+...+aq_1:b0
ag —i—wqal—i—...—i—wg_laq,l =

ag + W Lo, + +w(q D=1, =Dy
is not equal to zero. Thus, we obtain ay, ...,aq—1 from by, ..., bg_1:
Ak (boy .-+ sbg—1)
,...,q—1\Y0> sVg—1
ap — 5 (6)
Ao,... g1
where A§ 1 (bo,...,bg—1) is the determinant
wg bp - w21
wq . e bl PP w(‘]li
. N ’
wg oo bg w((]q—l)(q—l)

obtained by replacing the k-th column by (bo,...,b,—1)7 in the determi-
nant Ag,.. g—1.
Summarizing everything said above, we get the following property.

Property 4. A ¢-sided shift operator ATy, is a differential operator of
the form (3) such that:
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1) b, satisty the condition (5);
2) some of by, ...,bs—1 are not equal to zero.

The coefficients ag, . ..,aq—1 are called the determining coefficients of
the g-sided shift operator AT},. The coefficients by, ..., b,—; are called the
characteristic coefficients of the g-sided shift operator AT},.

Denote by na := {n,...,n,} any ordered set of numbers {0, ...,¢—1}
such that:

Ho<n <...<n, <qg—1;
2) if n € {n1,...,n,}, then b, # 0;
3) if n & {ny,...,n,}, then b, = 0.
Such a set ny := {n1,...,n,} is called the indicator of the g-sided shift
operator AT},.
3. Exponential polynomials in some D?-invariant space. Let

W be a Di-invariant subspace of the space O(2). Any exponential poly-
nomial that is in W C O(2) has the form

m q—1
Z ijyk(z) exp{w(’;)\jz},
§=0 k=0
where \; € C, p;x(z) are polynomials in z, w, := exp % Since the

exponential polynomial is in W C O(), this polynomial is equal to the
linear combination of special exponential polynomials.

Proposition 1. Any exponential polynomial from W C O(Q) is equal to
the linear combination of exponential monomials from W that have the

form
q—1

Zpk. (2) exp{w(];/\z}, (7)

k=0
where A € C, pi(z) are polynomials in z.

Proof. Suppose that o(z) € W and

7(2) = 30 3 iz (w2l A £ Ay i
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Let us act by the operator D? — o, where a € C, on the exponential
polynomial o(z); we get

-1

(D7 — Z 9.k ( exp{wk)\ iz},
0

2

b
Il

Jj=0

where

q
gia(2) =2 (1) AT () — aplii 2).

=0

The following facts can be easily checked:
1) if XY = a, then for any k € {0,...,q — 1} degg;r(2) < degp;x(2);

2) if A} # a, then for any k € {0,...,q — 1} degp; x(2) = degg;r(2)
and the leading coefficient of the polynomial g, x(z) is equal to the
leading coefficient of the polynomial p; 1 () multiplied by )\? - a.

Let us act on o(z) by the operator
(DT = XD (DT =AD" (DT = A"
where
n= njl_’a}cx{degp%k(z)} ,(5,k) € {0,...,m—1} x{0,...,¢g—1}.
By the above relations 1) and 2), we conclude that exponential polynomial
00(2) i= (D = A)" (DT =AD" (D= AL o(2)
has the form

qg—1
Zpk (2) exp{w(’;)\oz}.
k=0

The leading coefficient of the polynomial pg(z) is equal to that of the
polynomial pg ,, multiplied by

= (=AD" =AD" (= AL o,
Hence, the exponential polynomial

o(z) :==0(2) — cpoo(z)
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has the form
-1

Z Dj.k(2 exp{w Aoz},

7=0 0

Q

>
Il

where deg po x(z) < degpo i (z) for any k € {0,...,¢ —1}.

Applying the above procedure to the exponential polynomial &(z) we
continue to decrease the degrees of the polynomials pg x(z). After that,
we deal with the polynomials py x(2), etc. After a finite number of the
steps we obtain:

0(z) = cooo(z) + c101(2) + ... + cs045(2).

Note that the exponential polynomials o¢(2),01(2),...,05(2) have the re-
quired form. [J

It is clear that any exponential polynomial of the form (7) has the
representation

m

-2 (S wommcten)

em(2,\)

, (8)

¢=A

where A € C, g, (¢) are holomorphic at A functions.

Proposition 2. Any exponential polynomial from W C O(Q) is equal
to the linear combination of exponential monomials from W that have the
form (8).

Proposition 3. [3] If an exponential polynomial e,,(z,\) Iis in
W C O(Q) and X # 0, then the exponential polynomials

eo(z,A),e1(2,A), - ..y em—1(2,A)

are in W.

4. Exponential polynomials and a ¢-sided shift operator.
Choose an arbitrary exponential polynomial

m

en(2)) = 5o (Z gr(C exp{waZ})

¢=x
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of the form (8). Then the g-sided shift operator

q—1
ATy, : f(2) — Z arf(z + wf;h)
k=0

(where h € U, is the shift) takes the exponential polynomial to

ATy (em(2z,0)) 8(’” (ng VAT, ( exp{w (z}))

¢=A
By Property 2 we have
ATy (exp{wyC2}) = A(exp{wyCh}) exp{wy(z} =
o0 km npn

Z h exp{wkCz}

where b,, are characteristic coefficients of the g-sided shift operator AT},.
Then,

ATh(em(z )\ 8;; <Z gk Z bn

kncn h

exp{wy Cz}>

¢=A

oo

= ,acm(zgk kncnexp{wscz})

B STLAN(S SNy

n=0

¢=x

¢=X

Choose an arbitrary functional S € O*(€Qp); it takes the function
ATp(em(z,0)) to
(S, ATy (em(2,0))) =

> A g™ -
=2 by acm (Cn ng plw C)>
n=0

where ¢ is a characteristic function of the functional S.

¢=A
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Proposition 4. We obtain the equality
<S, ATh(em(z,)\))> =

for any h € U, iff functions

= C"ng p(wgC)s n € na,

are equal to zero at \ with the multiplicity at least m+1, ny :== {ny,...,n,}
is the indicator of the g-sided shift operator AT},.

Proof. Suppose that <S, ATh(em(z,)\))> = 0 for any h € U.. Hence,
em(z,A) € Wg C O(Q), where Wy is the solution space of the homoge-
neous ¢-sided convolution equation. Wy is D%-invariant. By Proposition 3
the exponential polynomials

eo(z,M), e1(2,A),0y €m—1(2,A\)

are in Wg. From (9) we have

<S, ATh(ep(z,/\))> =
=0

—Z nar a;p(cnz% "o(ut0))

for any h € U, and p € {0,1,...,m}. It is clear that

acr <angk C))

¢=A

=0
¢=A

for any p € {0,1,...,m} and n € ng. Thus, the functions b, (¢), where
n € na, have a zero A with the multiplicity at least m + 1. O

5. Elementary solutions of a homogeneous ¢-sided convolu-
tion equation. Now we obtain the description of the set consisting of
exponential polynomials that are in the solution space Wg C O(Q2) of the
homogeneous ¢-sided convolution equation (1).
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Denote by Ay, 4—1 the Vandermonde determinant

0 0 0
Wy W Wy

0 1 q—1
Wy W Wq

0 q—1 (g—1)(g—1)
w, wi wWg

It is clear that

Ao, q-1 = H (wg —wg) #0.

0<y<igg—1

Let ¢o(¢),c1(C), ..., cq—1(¢) be a set of holomorphic at A € C functions.
Denote by Ag(C,co,...,cq—1) the determinant

AI(i...,q—l (CO(C)’ 1cl(C)v AR qulcq—l(g)> =

¢
wg “ .. CO(C) “ e wg
1
wg e Ecl(c) “ .. W(q]71
0 1 (a—=1)(g—1)
wd chq(@ c W

that is obtained by replacing the k-th column in Aq . ,—1 by

%cl(o, . %cq_ao)?

Theorem 1. Any elementary solution of a homogeneous g-sided convo-

lution equation (1) is equal to a linear combination of exponential poly-
nomials of the form

m g-1
(2o Cg1) = 0 (Z Ag(C, e,y C4-1) eXp{UJ?CZ})

(co(¢)

9

S xm \ & p(wiC) o

where the holomorphic at A € C functions

co = ¢co((),-- -, Cq—1 = Cq—l(C)
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and m € Z satisfy the following condition: functions

Ak(<7007 s 7cq—1)
,ke{0,1,...,9g—1
P(wh¢) { J

and functions
Cn(C)

are holomorphic at .

Proof. By Proposition 2, any exponential polynomial from a
D%-invariant Wg C O(£2) is equal to the linear combination of exponen-
tial polynomials from Wg of the form (8). Suppose that the exponential
polynomial

em(z,\) GCW (Z gx(C exp{wé“{z})

is in Wg C O(£2). Suppose that ¢,(¢) := ("¢(¢), n € {0,1,...,q — 1}.
Then for any n € {0,1,...,q — 1} we have

¢=x

q—1 qg—1
bn(C) = C" Y gr(Qwh™o(wh¢) = gr(Qpn(wh).
k=0 k=0

By Proposition 4, the functions b,(¢), n € na have a zero A with the
multiplicity at least m + 1.
Consider the system of ¢ linear functional equations

ng SDTLUJC n€{0717"'7q_1}7

where g (¢) are unknown holomorphic at A € C functions. The matrix of
the system

@o(wgC) @o(wgl) -+ wo(wiC)
p1(wg¢)  pilwgl) - w(wiTC)

Pa-1(9)0) Par(@Q) o pgorlwf )
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wWelp(wgC)  wllplwgl) o WaCe(wi 'O
| el widtelwg) i)
WU (W))W (g ) e g T (g )

has ¢ rows and ¢ columns. The determinant Ag__,—1(¢p(¢)) of the matrix
is equal to the following:

q—1
a(g—1) k
AOV"wq_lC 2 H QD(wq C)a
k=0
where Ay, 4—1 is the Vandermonde determinant

H (wf] —wg) # 0.

0<y<isg—1

Thus, the determinant Ay . 4—1(¢(¢)) does not vanish in some neigh-
borhood of A, except A itself. By Cramer’s rule

Ag,...,q—l(cw(C)v bO(C)a bl(C)? ) bq—l(C))
AO,...,qfl(CSD(C))

where A 1(¢@(¢),b0(¢), b1(C), - - ., bg—1(¢)) is the determinant

gk(€) = L kef0,1,...,q—1},

WICPWI) o bo(¢) e wICp(wI~1¢)
wiCtp(wye) o bi(Q) - wi~ ' Cp(wd™1C)
WICTLp(WIC) e ba(Q) e w1

that we obtain by replacing the k-th column in Ag . ,—1(Ce(C)) by

b0(¢); 01(C), - -, bg—1(C)-

Then for any k € {0,1,...,¢ — 1} we have

A,....q=1(€(©):50(€), b1(C) -+, bg-1(€)) _ Ar(C o, - 1)
Ag,..., qfl(CSD(C)) w(w!;() ’

gk(¢) =
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where

bo(¢)

co(€) := A ey Cg—1(€) == bq_il(o.

0,...,q—1 Ao, q—1
Thus the exponential polynomial e,,(z,A) € Wg has a representation of
the form

am = Ak(CaCOa"'vc —1) k
acm <kz_0 oED eXp{%CZ})

=X
and functions

Ak(C7 Coy e 7Cq—1)
p(wk()
(@) bn(Q)
(S N (G Cxey PR

are holomorphic at .
Now consider an arbitrary exponential polynomial of the form

= gk(C)AOW.,q*la ke {07 17 ey q — 1}7

O™ (S AulCco,- oy cqm1) "
e(z,co,...,Cq-1) 1= m(z : eXp{quz}> ,

ogm \ &= p(wgC) o

where the holomorphic at A € C functions
co :=¢o(C)y...,cq—1 :=cq-1(C)
and m € Z, satisfy the following condition: the functions
Ak(C7 Coy - - - 7cq—1)
,ke{0,1,...,q—1}
P(wgC)
. ©
Cn
=y S

are holomorphic at A. Let us show that e(z,cp,...,cq—1) € Ws. We need

to prove that
<S, ATh@(Z,COa ) Cq—1)> =0.

By Property 2 we have

ATy (e(z,co, ... Cq-1)) =
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om S lAk CaCO7'-
acm

NNgh

2 Cq-1) ATMexp{wSCz}))

weC)

C=A
-1

o m( Ak C,Co,..
k=0

1 Cq—1)
= Hem 20 A(exp{wl(z}) exp{wl];(z})

¢=A

kncn h"

1A g,
:a<m<z e C‘“an

=0

exp{w}¢ Z})

¢=A
Hence,
ATy (e(z,coy .- Cq-1)) =

X h 9 (T AL(C Core o)k
_ Z ' acm ( n Z k C7CO7 O -, Cq 1)w,’;" exp{w?(z})
n=0

=0

¢=x

Since the functional S is continuous,

(S, ATy (e(z, o, .-, cq-1))) =

o) q—1
R o™ ( Ak(C Coy. ..y C _1)
o b 5 €0, s Lq wkn(p(wkc) —
Z )l 3<m 1;0 <P(W§C) q q -
o] qg—1
h™ o™ Ag(¢co5---5¢q-1)
1 b wkn q
g g ’I’L' aCm ( ];) q A07...,q—1 o
By the relations (5)
<S, ATy (e(z, cq, - - - cq_l))> =
= h™ o™ /Ak C,Co,...,cfl)
= Do, g1 ) bu— (C" )" ! :
I nz::() ' aCm Z A0,...,q—1 c=x
where n' is the remainder after division of n by ¢. By definition of the
determinant Ay (¢, co, - .., cq—1), we obtain
qg—1

Zw n'Ak CCO,...,qul) o cn’(c).

k=0 ,...,q—l Cn’
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Then,
(S, ATy (e(z,co, ..., Cq-1))) =

=Ny, q-1 bp — m(Cn_n/Cn'(O)‘ )
4 nz:% n! ¢ =

where b,y =0, if n’ & n4. Note that ¢,/ (\) =0, ¢,,(A\) =0,... ,cg,n)()\) =
=0, if n’ € ns. Hence,

<S, ATy (e(z,coy .- -y cq,l))> =0.
The theorem is proved. [
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