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ON THE PROBLEM OF DETERMINING PARAMETERS
IN THE SCHWARZ EQUATION

Abstract. P. P. Kufarev’s method makes it possible to reduce
the problem of determining the parameters in the Schwarz-Chris-
toffel integral to the problem of successive solutions of systems
of ordinary differential equations. B. G. Baibarin obtained a
generalization of this method for the problem of determining pa-
rameters (preimages of vertices and accessory parameters) in the
Schwarz differential equation, whose solution is a holomorphic
univalent mapping from the upper half-plane onto a circular-arc
polygon. This paper specifies the initial condition for the system
of differential equations for the parameters of the Schwarz equa-
tion obtained by B. G. Baibarin. This method is used to solve
the problem of determining the accessory parameters for some
particular mappings.
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1. Introduction. There is a classical approach for constructing
a conformal mapping from the canonical domain (unit disk or complex
half-plane) onto a circular-arc polygon based on the Schwarz differen-
tial equation. The well-known problem of determining the parameters of
this equation is solved for certain particular mappings onto circular-arc
polygons. The simplest and most studied cases are when the circular-arc
polygon has no more than three vertices [7], [14]. The parameter prob-
lem is solved for some more complicated particular cases on the basis of
the P. Ya. Polubarinova-Kochina method in works by P. Ya. Polubarinova-
Kochina, E. N. Bereslavsky and others, see for example [4] and the overview
work [3]. We also mark the approach of A. R. Tsitskishvili, based on the
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theory of conjugation for several unknown functions and on the theory of
I. A. Lappo-Danilevskii [17], [18], which allows us obtaining some parti-
cular cases. However, it is oriented to general studies, as well as the work
of L. I. Chibrikova (for example [5]).

These papers are of interest both for constructing conformal map-
pings and for studying differential equations of the Fuchs class. The con-
formal mapping of a canonical domain onto a polygon with a boundary
consisting from segments can be represented by the Schwarz-Christoffel
integral. The problem of determining the parameters of these mapping is
simpler, since for an n-polygon with a straight-line boundary it is suffi-
cient to define n preimages of vertices, while for a circular-arc n-polygon
it is necessary to define 2n parameters: n preimages of vertices and n
additional parameters, called accessory ones. In 1947, P. P. Kufarev [15]
(see also [1], [16]) proposed a method for defining preimages of vertices
in the Schwarz-Christoffel integral for mapping from the unit disk onto
a polygon with internal normalization. For special cases, the method
was first tested in the work of Yu. V. Chistyakov [6], then in was ap-
plied in [9]. The method is convenient for practice, it received various
generalizations. Thus, the method is extended to mappings with bounda-
ry normalization in the work of V. Ya. Gutlyansky and A. O. Zaidan [8].
L. Yu. Nizamayeva [12], [11] proposed a new approach of finding the pa-
rameters in the Schwarz-Christoffel integral, using the idea of P. P. Ku-
farev and the technique of Hilbert boundary value problems with piecewise
smooth coefficients and variations of such problem solutions. In the work
of N. N. Nakipov and S. R. Nasyrov [10], the method is generalized to
mappings onto multisheet polygons containing branch points. In [13] Ku-
farev’s method is extended for mappings from a half-plane onto numerable
polygons with transfer symmetry. B. G. Baibarin generalizes P. P. Ku-
farev’s method for the problem of determining parameters in the Schwarz
differential equation, representing a holomorphic and univalent mapping
from the upper half-plane onto a circular-arc polygon. This paper specifies
the result of B. G. Baibarin [2]. With help of the generalization obtained
by B. G. Baibarin we define accessory parameters for some particular
mappings.

2. On Kufarev’s method. We briefly describe P. P. Kufarev’s
method. Suppose we need to obtain a conformal map from the upper
half-plane onto some circular polygon ∆. Without loss of generality, we
can assume it contains the origin and that the polygon ∆ is a kernel
with respect to the origin of some family of simply connected domains



52 I. A. Kolesnikov

∆(t), 0 6 t 6 T . Here the family ∆(t) is obtained by carrying out a
cut along N arcs of circles in some initial domain ∆0, ∆(0) = ∆0, and
∆(T ) = ∆. There is a family of functions f = f(z,t) that maps the upper
half-plane Π+ = {z ∈ C : Im z > 0} onto ∆(t). In the first step, carry-
ing a cut along the first arc, we have a family of mappings f = f(z,t),
represented by Schwarz’s differential equation on the one hand, and the
Loewner equation on the other. Note that the parameters of the map
f = f(z,t) (the preimages of the vertices of the polygon ∆(t) and the
accessory parameters) change continuously with the length of the cut.
Using the differential equations of Loewner and Schwarz, one can ob-
tain a system of ordinary differential equations for the parameters of the
map f . In the paper of P. P. Kufarev [15], devoted to the determina-
tion of parameters in the Schwarz-Christoffel integral, the initial condi-
tions of the ODE system at the first step are the parameters of the map
f = f(z, 0) (the initial domain ∆0 can be chosen sufficiently simple to
write explicitly the map f = f(z, 0)). In the generalization of P. P. Ku-
farev’s method to the case of mappings onto circular-arc polygons, addi-
tional difficulties arise in determining the initial conditions of the ODE
system (for more about this, see the following paragraphs). Let us in-
tegrate the ODE system for the corresponding value of the parameter
t = t1, that is, we define the parameters of the function f = f(z, t1) that
maps the upper half-plane onto the domain ∆(t1) (the domain ∆0 with
a cut along the first arc). Then we can proceed to the second step and
carry out the cut along the second arc and define the parameters of the
corresponding family of functions. Thus, in N steps, we can define the
parameters of the map f = f(z, T ).

3. The main results of B. G. Baibarin generalization. In this
section we present the main results of the work [2].

Let L(t) = {ζ : ζ = ζ(τ),t1 < τ < t}, 0 6 t1, t 6 tn
2 +1, ζ(tp) = ζp,

p = 1,..., n2 , ζ1 > 0, be a piecewise smooth curve consisting of circular arcs
that does not pass through the origin (n is an even number). Denote by
∆(t) a domain, obtained from the plane by carrying out a cut along the
positive part of the real axis from the point ζ1 to infinity and excluding
the curve L (the curve L and the cut intersect only at the point ζ1),
∆(t) = C\

(
L(t)

⋃
{ζ ∈ C : Re ζ > ζ1, Im ζ = 0}

)
. Let the family of

functions w = w(z,t), t1 6 t 6 tn
2 +1, map the half-plane onto the family

∆(t) (Fig. 1), such that w
(
β(t),t

)
= 0, where β satisfies the differential
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equation
dβ(t)

dt
=

1

β(t)− λ̃(t)
, β(t1) = β1. (1)

Here λ̃(t) is the preimage of the movable end of the cut ζ(t). Let the infi-
nity be fixed under the mapping w(z,t) and w(·,t) maps points ãn

2 +1−p(t),
ãn

2 +p(t) in point ζp, p = 1, . . . , n2 . At the vertex, whose preimage is the
point ãp, we denote the inner angle of D(t) by αpπ. Therefore, we have
αp = 2− αn−p+1. Note that we can choose any convenient domain [1] as

z1

z(t)

z(t)
z

a pp

n
2

zp

z

aa a1 2n

P+ w(z,t)b(t)

(t) (t)(t) l(t) 0
0

Figure 1: The family w(z,t)

the initial region ∆(0).
Denote the Schwarz derivative of the mapping w by S,

S(w,t) :=
w′′′(z,t)

w′(z,t)
− 3

2

(
w′′(z,t)

w′(z,t)

)2

.

A family of mappings w = w(z,t) satisfies the Schwarz differential equation

S(z,t) =

n∑
p=0

(
Lp

(z − ãp(t))2
+

M̃p(t)

z − ãp(t)

)
, (2)

where λ̃(t) = ã0(t), Lp =
1

2
(1− α2

p).
Since w satisfies the Loewner differential equation in the half-plane

∂w(z,t)

∂t
+

1

z − λ̃(t)

∂w(z,t)

∂z
= 0, w(z,t1) = ζ1 + z2,

the Schwarz derivative S satisfies the equation

∂S(z,t)

∂t
+

1

z − λ̃(t)

∂S(z,t)

∂z
− 2S(z,t)(

z − λ̃(t)
)2 − 6(

z − λ̃(t)
)4 = 0 (3)
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with the initial condition S(z,t0) = − 3
2

1
z2 .

The function on the left-hand side of (3) has poles of the third order
at the points z = ãp, p = 1, . . . , n. At the point z = ã0 = λ̃ it has a
pole of the forth order. On the other hand, in the right-hand side of the
equality (3) the function is identically equal to zero. It follows that the
parameters ãp, M̃p, p = 0, 1, . . . , n, of the Schwarz derivative S of the
function w satisfy the system of ordinary differential equations

ã′p(t) =
1

ãp(t)− λ̃(t)
, p = 1, . . . , n,

λ̃′(t) = −M̃0(t),

M̃ ′p(t) + Lp
(
ã′p(t)

)3 − (ã′p(t))2 M̃p(t) = 0, p = 1, . . . , n,
n∑
p=0

M̃ ′p(t) = 0.

(4)

Next, we make the change of variable x2 = t−tn
2
. Then the parameters

ãp(t) = ãp(x
2−tn

2
) = ap(x), M̃p(t) = M̃p(x

2−tn
2

) = Mp(x), p = 1, . . . , n,

λ̃(t) = λ̃(x2 − tn
2

) = λ(x), M̃0(t) = M̃0(x2 − tn
2

) = M0(x),

as functions of the variable x are expanded in series

a0(x) = λ(x) = σ + λ1x+ λ2x
2 + λ3x

3 + . . . ,

ap(x) = ap0 + ap1x+ ap2x
2 + ap3x

3 + . . . , p = 1, . . . , n,

Mp(x) = mp0 +mp1x+mp2x
2 +mp3x

3 + . . . , p = 2, . . . , n− 1,

Mp(x) =
mp,−1

x
+mp0 +mp1x+mp2x

2 + . . . , p = 0, 1, n,

(5)

and satisfy the system of differential equations obtained from the sys-
tem (4) by changing of variable t = x2 − tn

2
:

a′p(x) =
2x

ap(x)− λ(x)
, p = 1, . . . , n,

λ′(x) = −2xM0(x),

2x2M ′p(x) + Lp
(
a′p(x)

)3 − x (a′p(x)
)2
Mp(x) = 0, p = 1, . . . , n,

n∑
p=0

M ′p(x) = 0.

(6)
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The values a10 = an0 = σ, ap0, mp0, p = 2, . . . , n− 1, are known if the
mapping w = w(z,tn

2
) is specified.

There are the following particular integrals of the system (4)

n∑
p=0

Mp = 0, (7)

n∑
p=0

apMp = −3

2
−

n∑
p=0

Lp,

M2
0 + 2

n∑
p=1

(
Lp

(ap − λ)2
− Mp

(ap − λ)3

)
= 0.

Substituting the expansions (5) into the system (6), for the coefficients
λ1, ap1, p = 1, . . . , n, m0,−1, m1,−1, mn,−1, mp,1, p = 2, . . . , n − 1, we
obtain a system of algebraic equations that has a real solution (α1,αn 6=
0, 2)

a11 =

√
2
αn
α1
, an1 = −

√
2
α1

αn
, λ1 = a11 + an1,

m0,−1 = −λ1

2
, m1,−1 = L1

a3
11

a2
11 + 2

, mn,−1 = Ln
a3
n1

a2
n1 + 2

, (8)

ap1 = 0, p = 2, . . . , n− 1, mp1 = 0, p = 2, . . . , n− 1.

To determine 2n+ 2 second coefficients of the series (5) we get 2n+ 1
linearly independent equations

a12 = λ2
a2

11

4 + a2
11

, an2 = λ2
a2
n1

4 + a2
n1

, ap2 =
1

ap0 − σ
, p = 2, . . . , n−1,

m00 = −λ2, m10 = 2L1a12
a2

11 + 6

a2
11 + 2

, mn0 = 2Lnan2
a2
n1 + 6

a2
n1 + 2

,

mp2 = a2
p2

(
mp0 − 2Lpap2

)
, p = 2, . . . , n− 1.

(9)
To determine 2n + 2 of the third coefficients, we get a system of 2n + 1
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linearly independent equations

a13 =
8λ2

2a
3
11

(a2
11 + 4)2(a2

11 + 6)
+

a2
11

a2
11 + 6

λ3,

an3 =
8λ2

2a
3
n1

(a2
n1 + 4)2(a2

n1 + 6)
+

a2
n1

a2
n1 + 6

λ3,

m01 = −3

2
λ3, m11 = 3L1

a4
11

a4
11 − 4

λ3, mn1 = 3Ln
a4
n1

a4
n1 − 4

λ3,

ap3 =
2

3

λ1

(ap0 − σ)2
, p = 2, . . . , n− 1,

mp3 = 2ap2ap3
(
mp0 − 3Lpap2

)
, p = 2, . . . , n− 1.

(10)

To determine the fourth and subsequent coefficients apk, p = 1, . . . , n,
m0,k−2, m1,k−2, mn,k−2, mpk, p = 2, . . . , n − 1, substitute the expan-
sions (5) into the system (6) to get 2n+ 2 linearly independent equations,
k = 4, 5, . . . . Thus, the fourth and subsequent coefficients in the expan-
sion (5) are determined by the series method. In [2], the convergence
of the series (5) whose coefficients are found by this method is proved.
Specifying the initial conditions of a system of ordinary differential equa-
tions (6) (finding the coefficients λ2 and λ3) requires additional effort.

4. Addition to B.G. Baibarin’s results. It is not possible to find
the coefficients λ2 and λ3 with the help of the work [2].

Substituting the series (5) into the equality (7) and equating the free
terms we obtain

n∑
p=0

mp0 = 0,

that is

λ2 =
(2 + α1)(2 + αn)

9α1αn

n−1∑
p=2

mp0. (11)

The coefficient λ3 depends on the curvature of the arc, along which
the cut at the current step is carried out, but the relationship between λ3

and the curvature of the arc is not established.
Note that the expansion of the Schwarz derivative S of the function w

at infinity has the form

S(w,z) =
1− α2

∞
2z2

+
b1
z3

+
b2
z4

+ . . . ,
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where α∞π = −2π is angle at infinity, b1,b2 are real constants. So one
can write [14] the equation (2) as

S(w,z) =

n∑
p=0

Lp
(z − ap)2

+

(
2− n− α2

∞ +
n∑
j=0

α2
j

)
zn−1 +

n−2∑
v=0

γvz
v

2
n∏
j=0

(z − aj)
,

here γv are some real parameters. Now we can turn from n+ 1 unknowns
parametersM0,M1, . . . ,Mn to n−1 unknown parameters γ0, . . . , γn−2 by
the formula

Mp =

(
2− n− α2

∞ +
n∑
j=0

α2
j

)
an−1
k +

n−2∑
v=0

γva
v
k

2
n∏

j=0,j 6=k
(ak − aj)

, p = 0, . . . , n. (12)

5. A particular cases. Let us consider the particular case when
n = 2. The function w = w(z,t) maps the upper half-plane onto a circular-
arc polygon ∆(t), which is a plane with a cut along the ray from the point
ζ1 > 0 to infinity and with a cut along the arc of the circle starting from
the point ζ1. There are four preimages of vertices under the mapping w,
they are λ, a1, a2 and infinity, a2 6 λ 6 a1, w(∞,t) = ∞; the angles at
the corresponding vertices are equal to 2π, απ, (2 − α)π, −2π. We note
that, according to the chosen normalization (1) f(z,0) = z2 + ζ1. The
mapping w = w(z,t) satisfies the Schwarz differential equation. With the
help of the formula (12), the accessory parameters of this equation can be
written in the form

M0 =
2λ(1− α)2 + γ0

2(λ− a1)(λ− a2)
,

M1 =
2a1(1− α)2 + γ0

2(a1 − λ)(a1 − a2)
,

M2 =
2a2(1− α)2 + γ0

2(a2 − λ)(a2 − a1)
.
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The ODE system (6) takes the form

a′p(x) = 2x
ap(x)−λ(x) , p = 1, 2,

λ′(x) = −2xM0(x),

2x2M ′p(x) + Lp
(
a′p(x)

)3 − x (a′p(x)
)2
Mp(x) = 0, p = 1, 2,

n∑
p=0

M ′p(x) = 0,

hence, taking into account that m01 = −1.5λ3, we obtain

γ0(x) = −2
(
a1(3− α) + a2(1 + α)− λ(3− α)(1 + α)

)
.

The system of ODE can now be written in the form
a′p(τ) =

1

ap(τ)− λ(τ)
, p = 1, 2,

λ′(τ) = − 2λ(τ)(1− α)2 + γ0(τ)

2
(
λ− a1(τ)

)(
λ− a2(τ)

) ,
where τ = x2, or as follows

da1(λ)

dλ
=

λ− a2(λ)

4λ− a1(λ)(3− α)− a2(λ)(1 + α)
,

da2(λ)

dλ
=

λ− a1(λ)

4λ− a1(λ)(3− α)− a2(λ)(1 + α)
.

After the substitution

p(λ) = (1 + α)
(
a2(λ)− λ

)
+ (3− α)

(
a1(λ)− λ

)
,

q(λ) = (3− α)
(
a2(λ)− λ

)
+ (1 + α)

(
a1(λ)− λ

)
,

the system becomes simpler:
dp(λ)

dλ
=
q(λ)

p(λ)
− 4,

dq(λ)

dλ
= −3.

Hence, taking into account the normalization a1(0) = a2(0) = λ(0) = 0,
conditions (8) and conditions (9), (10), (11), which in this case take the

form λ2 = a12 = a22 = 0, a13 =
2− α

2(1 + α)
λ3, a23 =

α

2(3− α)
λ3, we obtain

λ = a1(1 + α) + a2(3− α),
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(a2 − a1)3 = c
(
a2(2− α) + a1α

)
,

where
c = 8

√
2α(2− α)

(α− 3)(1 + α)

(2− α)3α3λ3
.

Consider the behavior of the parameters a1 = a1(x), a2 = a2(x),
λ = λ(x), using their expansions (5), for fixed λ3 and α.

0.5 1.0 1.5 2.0

-3

-2

-1

1

2

3

a) λ3 = −1

0.2 0.4 0.6 0.8

-0.5
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2.0

2.5

3.0

b) λ3 = 1

0.5 1.0 1.5 2.0 2.5 3.0

-2

2

4

6

c) λ3 = 0

Figure 2: The graphs of a1, a2 and λ

Let α = 0.5, λ3 = −1. Then x ∈ [0;X], X ≈ 2.0205, and lim
x→X

λ(x) =

= lim
x→X

a2(x) ≈ −3.28, lim
x→X

a2(x) ≈ 3.28. Graphs of functions a1, a2 and

λ are shown in Fig. 2a) (the graph of a1 is on the top, the graph of λ is the
middle one, and the graph of a2 is on the bottom). Hence, we conclude
that this case corresponds to the mapping w from the half-plane onto the
circular-arc polygon shown in Fig. 3a).

Let α=0.5, λ3 =1. Then x∈ [0;X],X≈0.869, and lim
x→X

a2(x)≈−0.634,

lim
x→X

λ(x) = lim
x→X

a1(x) ≈ 3,14. Graphs of functions a1, a2, λ are shown in

Fig. 2b) (the graph of a1 is on the top, the graph of λ is the middle one,
and the graph of a2 is on the bottom). Hence we can conclude that this
case corresponds to the mapping w from the half-plane onto the circular-
arc polygon shown in Fig. 3b).

Let α = 0.5, λ3 = 0. Then a1, a2 and λ are linear functions of the
variable x, x ∈ [0; +∞), their graph are shown in Fig. 2c). This case
corresponds to the mapping w from the half-plane onto the polygon shown
in Fig. 3c).

Next, we carry out another cut (n = 4) and let

λ3 =
16
√

2(β − 1)

81u2(2− 3k − α)2(3k + α)2
√

(2− β)3β3

(
23β2 − 46β − 94−

−α2(13− 8β + 4β2) + 2α(13− 8β + 4β2)−
−9k2(133 + 22β − 11β2) + 3k(1− α)(133 + 22β − 11β2)

)
,



60 I. A. Kolesnikov

a) λ3 = −1 b) λ3 = 1 c) λ3 = 0

Figure 3: The range of w

where u = a3(0)−a2(0), k =
u2

c
, β = α1, α = α2. We have five preimages

of the vertices a3(x) 6 a4(x) 6 λ(x) 6 a1(x) 6 a2(x) under the mapping
w. Note that λ(0) = a1(0) = a4(0), a3(0), a2(0), c have the values defined
in the previous step.

The parameters Mp, p = 0, 1, 2, 3, 4, can be written according to the
formula (12):

γ0

2
= (α− 3)(1− β)λa1a2 − (1 + α)(1− β)λa1a3 + (3− α)(1 + α)λa1a4−

−(1− β)2λa2a3 + (3− α)(1− β)λa2a4 + (1 + α)(1− β)λa3a4+
+(1− β)a1a2a3 − (3− α)a1a2a4 − (1 + α)a1a3a4 − (1− β)a2a3a4,

γ1

2
= λa1

(
(1− α)2 − 4β

)
+ λa2(1− β)2 + λa3(1− β)2+

+λa4

(
(1− α)2 − 4(2− β)

)
+ a1a2

(
5− 2β − α(2− β)

)
+

+a1a3

(
1 + α(2− β)

)
+ a1a4(1− α)2 + a2a3(1− β)2+

+a2a4

(
1 + β(2− α)

)
+ a3a4(1 + αβ),

γ2

2
= λ

(
(3− α)(1 + α)− (1− β)2

)
− a1

(
(1− α)2 + 3(1− β)

)
+

+a2

(
α− 4 + β(2− β)

)
+ a3

(
β(2− β)− 2− α

)
+ a4

(
3(1− β)− (1− α)2

)
.

Indeed, it can be verified directly that Mp satisfies the system (6)
and the conditions (8), (9), (10). Consider behavior of the parameters
a1, a2, a3, a4 and λ for the chosen λ3 and α = 0.5, β = 1/3. Sup-
pose that, for the first arc, λ3 = −1 and x = 1. Then λ(0) = a1(0) =
= a4(0) ≈ 0.87689, a3(0) ≈ −0.91502, a2(0) ≈ 2.10963. For the second
arc, we have x ∈ [0;X], X ≈ 0.3647, and lim

x→X
λ(x) = lim

x→X
a1(x) =

= lim
x→X

a2(x) ≈ 2.4502, lim
x→X

a3(x) ≈ −0.9677, lim
x→X

a4(x) ≈ 0.6618. Func-
tion graphs of a2, a1, λ, a4 and a3 are shown, from top to bottom, in
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a) Behavior of the parameters b) The range of w
Figure 4: Second step

Fig 4a). In this case, we see that, as x tends to X, the second arc ap-
proaches to a point of the ray, as shown in Fig. 4b).
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