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SHARP ESTIMATES OF PRODUCTS OF INNER RADII
OF NON-OVERLAPPING DOMAINS

IN THE COMPLEX PLANE

Abstract. In the paper we study a generalization of the extremal
problem of geometric theory of functions of a complex variable on
non-overlapping domains with free poles: Fix any γ ∈ R+ and find
the maximum (and describe all extremals) of the functional

[r (B0, 0) r (B∞,∞)]γ
n∏
k=1

r (Bk, ak) ,

where n ∈ N, n > 2, a0 = 0, |ak| = 1, B0, B∞, {Bk}nk=1 is
a system of mutually non-overlapping domains, ak ∈ Bk ⊂ C,
k = 0, n, ∞ ∈ B∞ ⊂ C, (r(B, a) is an inner radius of the domain
B ⊂ C at a ∈ B). Instead of the classical condition that the poles
are on the unit circle, we require that the system of free poles is an
n-radial system of points normalized by some "control" functional.
A partial solution of this problem is obtained.
Key words: inner radius of a domain, non-overlapping domains,
radial system of points, separating transformation, quadratic differ-
ential, Green’s function
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Let N, R be the sets of natural and real numbers, respectively, C
be the complex plane, C = C

⋃
{∞} be a one-point compactification,

and R+ = (0,∞). Let χ(t) = 1
2
(t + t−1), t ∈ R+, be the Zhukovskii

function. Let r(B, a) be an inner radius of the domain B ⊂ C relative to
the point a ∈ B.

The system of points An := {ak ∈ C, k = 1, n}, n ∈ N, n > 2 is called
n-radial, if |ak| ∈ R+ for k = 1, n and 0 = arg a1 < . . . < arg an < 2π.

Denote

Pk = Pk(An) := {w : arg ak < argw < arg ak+1}, an+1 := a1,
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αk :=
1

π
arg

ak+1

ak
, αn+1 := α1, k = 1, n,

n∑
k=1

αk = 2.

For any n-radial system of points An = {ak}, k = 1, n, we introduce
the "control" functional

L(An) :=
n∏
k=1

χ

(∣∣∣ ak
ak+1

∣∣∣ 1
2αk

)
· |ak|.

The class of n-radial systems of points for which L(An) = 1 contains
automatically all systems of n different points of the unit circle.

Consider the following extremal problem.
Problem 1. For any fixed value of γ ∈ R+, find the maximum of the

functional

Jn(γ) = [r (B0, 0) r (B∞,∞)]γ
n∏
k=1

r (Bk, ak) , (1)

where n ∈ N, n > 2, a0 = 0, An = {ak}nk=1 are n-radial systems of
points, such that L (An) = 1, B0, B∞, {Bk}nk=1 is a system of mutually
non-overlapping domains, ak ∈ Bk ⊂ C, k = 0, n, ∞ ∈ B∞ ⊂ C; also,
describe all extremals.

This problem belongs to the class of extremal problems with free poles.
Problems of this type have been studied in many papers (see, for exam-
ple, [1–16]). For γ = 1

2
and n > 2, an estimate of the functional Jn(γ) for

the system of non-overlapping domains was found in the paper [6, p. 59].
Kuz’mina [15, p. 267] strengthened this result for simply connected do-
mains and showed that the estimate is correct for γ ∈

(
0, n

2

8

]
, n > 2.

Note that for n = 2 the Kuz’mina’s estimate of the functional (1) coin-
cides with the Dubinin’s estimate. Some partial cases of the above-posed
problem were considered in [2, 3, 5].

Let

S(x) = x2x
2+2 · |1− x|−(1−x)

2

· (1 + x)−(1+x)
2

and Ψ(x) = ln(S(x)).

Ψ′(x) = 4x ln(x)− 2(x− 1) ln |x− 1| − 2(x+ 1) ln(x+ 1) +
2

x
(see Fig. 1).

The function S(x) is logarithmically convex on the interval [0, x0],
x0 ≈ 0.88441. Let Ψ′(x) = t, y0 6 t < 0, y0 ≈ −1.06. The equation
Ψ′(x) = tk has two solutions x1(t) ∈ (0, x0] and x2(t) ∈ (x0,∞].
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Figure 1: The function plot y = Ψ′(x)

Let δ0n = min ((n− 1)x1(t) + x2(t)) = 2
√
γ0n, then γ0n =

(
δ0n
2

)2
. Then

the following proposition is true.

Theorem 1. Let n ∈ N, n > 2, γ ∈ (0, γ0n], γ0n =
(
δ0n
2

)2
. Then, for

any n-radial system of points An = {ak}nk=1 such that L (An) = 1, and any
system of mutually non-overlapping domains B0, B∞, Bk,
a0 = 0 ∈ B0 ⊂ C, ∞ ∈ B∞ ⊂ C, ak ∈ Bk ⊂ C, k = 1, n, the following
inequality holds:

[r (B0, 0) r (B∞,∞)]γ
n∏
k=1

r (Bk, ak) 6 [r (Λ0, 0) r (Λ∞,∞)]γ
n∏
k=1

r (Λk, λk) ,

(2)
where the domains Λ0, Λ∞, Λk, and the points 0, ∞, λk, k = 1, n, are,
respectively, circular domains and poles of the quadratic differential

Q(w)dw2 = −γw
2n + (n2 − 2γ)wn + γ

w2(wn − 1)2
dw2. (3)

Proof. Let ζ = πk(w) denote a univalent branch of the multivalent analy-
tic function −i (e−i arg akw)

1
αk , k = 1, n, that maps Pk onto the right half-

plane Re ζ > 0 conformally in the one-sheet way. Consider the system of
functions ζ = πk(w) = −i (e−i arg akw)

1
αk , k = 1, n. Let Ω

(1)
k , k = 1, n,

denote a domain of the plane Cζ , obtained as a result of the union of the
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connected component of the set πk(Bk

⋂
P k), containing the point πk(ak),

with its symmetric reflection with respect to the imaginary axis. In turn,
by Ω

(2)
k , k = 1, n, we denote the domain of the plane Cζ , obtained as a

result of the union of the connected component of the set πk(Bk+1

⋂
P k),

containing the point πk(ak+1), with its symmetric reflection with respect
to the imaginary axis, Bn+1 := B1, πn(an+1) := πn(a1). In addition, Ω

(0)
k

denotes a domain of the plane Cζ obtained as a result of the union of the
connected component of the set πk(B0

⋂
P k), containing the point ζ = 0,

with its symmetric reflection with respect to the imaginary axis. Similarly,
Ω

(∞)
k denotes a domain of the plane Cζ obtained as a result of the union

of the connected component of the set πk(B∞
⋂
P k), containing the point

ζ = ∞, with its symmetric reflection with respect to the imaginary axis.
It is clear that πk(ak) := ω

(1)
k , πk(ak+1) := ω

(2)
k , k = 1, n, πn(an+1) := ω

(2)
n .

The definition of the functions πk yields

|πk(w)− ω(1)
k | ∼

1

αk
|ak|

1
αk
−1 · |w − ak|, w → ak, w ∈ P k,

|πk(w)− ω(2)
k | ∼

1

αk
|ak+1|

1
αk
−1 · |w − ak+1|, w → ak+1, w ∈ P k,

|πk(w)| ∼ |w|
1
αk , w → 0, w ∈ P k,

|πk(w)| ∼ |w|
1
αk , w →∞, w ∈ P k.

Using the corresponding results for the separating transformation [6,7],
we get the inequalities

r (Bk, ak) 6

r
(

Ω
(1)
k , ω

(1)
k

)
· r
(

Ω
(2)
k−1, ω

(2)
k−1

)
1
αk
|ak|

1
αk
−1 · 1

αk−1
|ak|

1
αk−1

−1


1
2

, (4)

r (B0, 0) 6

[
n∏
k=1

rα
2
k

(
Ω

(0)
k , 0

)] 1
2

, (5)

r (B∞,∞) 6

[
n∏
k=1

rα
2
k

(
Ω

(∞)
k ,∞

)] 1
2

. (6)

The conditions of realization of the sign of equality in inequalities
(4) – (6) are described in [7, p. 29]. On the basis of those relations, we
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get the inequality

Jn(γ) 6
( n∏
k=1

αk

) n∏
k=1

|ak|
1
αk + |ak+1|

1
αk

(|ak||ak+1|)
1

2αk

· |ak|×

×

{
n∏
k=1

(
r
(

Ω
(0)
k , 0

)
r
(

Ω
(∞)
k ,∞

))γα2
k ·
r
(

Ω
(1)
k , ω

(1)
k

)
· r
(

Ω
(2)
k , ω

(2)
k

)
(
|ak|

1
αk + |ak+1|

1
αk

)2
} 1

2

.

Further, from the last relation we have

Jn(γ) 6

(
n∏
k=1

αk

)
n∏
k=1

(∣∣∣∣ akak+1

∣∣∣∣ 1
2αk

+

∣∣∣∣ak+1

ak

∣∣∣∣ 1
2αk

)
|ak|×

×

{
n∏
k=1

(
r
(

Ω
(0)
k ,0

)
r
(

Ω
(∞)
k ,∞

))γα2
k ·
r
(

Ω
(1)
k ,ω

(1)
k

)
· r
(

Ω
(2)
k ,ω

(2)
k

)
(
|ak|

1
αk + |ak+1|

1
αk

)2
} 1

2

,

where |ω(1)
k | = |ak|

1
αk , |ω(2)

k | = |ak+1|
1
αk , |ω(1)

k − ω
(2)
k | = |ak|

1
αk + |ak+1|

1
αk .

Taking into account the fact that

n∏
k=1

1

2

(∣∣∣∣ akak+1

∣∣∣∣ 1
2αk

+

∣∣∣∣ak+1

ak

∣∣∣∣ 1
2αk

)
|ak| =

n∏
k=1

χ

(∣∣∣ ak
ak+1

∣∣∣ 1
2αk

)
|ak| = L (An) ,

we obtain the following inequality

Jn(γ) 6 2n ·

(
n∏
k=1

αk

)
· L (An)×

×
n∏
k=1

{(
r
(

Ω
(0)
k , 0

)
r
(

Ω
(∞)
k ,∞

))γα2
k ·
r
(

Ω
(1)
k , ω

(1)
k

)
· r
(

Ω
(2)
k ,ω

(2)
k

)
(
|ak|

1
αk + |ak+1|

1
αk

)2
} 1

2

.

Equality in the last inequality is achieved when equality is realized in the
inequalities (4) – (6) for all k = 1, n. Based on the last relation, Theorem
4.1.1 in [1], Corollary 4.1.3 in [1], and the invariance of the functional(

r (B1, a1) r (B3, a3)

|a1 − a3|2

)γ (
r (B2, a2) r (B4, a4)

|a2 − a4|2

)
,
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we have

Jn(γ) 6

(
2
√
γ

)n
·
( n∏
k=1

αk
√
γ
)
· L (An)×

×
n∏
k=1

{(
r
(

Ω̃
(0)
k , 0

)
r
(

Ω̃
(∞)
k ,∞

))γα2
k ·
r
(

Ω̃
(1)
k , ω̃

(1)
k

)
· r
(

Ω̃
(2)
k , ω̃

(2)
k

)
(
|ak|

1
αk + |ak+1|

1
αk

)2
} 1

2

,

where the domains Ω̃
(0)
k , Ω̃

(∞)
k , Ω̃

(1)
k , Ω̃

(2)
k and points 0, ∞, ω̃(1)

k , ω̃(2)
k , are,

respectively, the circular domains and the poles of the quadratic differen-
tial

Q(z)dz2 = −
z4 + 2(1− 2

γα2
k

)z2 + 1

z2(z2 + 1)2
dz2.

Each term in the braces of the last inequality is a value of the functional

Kτ = [r (B0, 0) r (B∞,∞)]τ
2

· r (B1, a1) r (B2, a2)

|a1 − a2|2
(7)

on the system of nonoverlapping domains {Ω̃(0)
k , Ω̃

(1)
k , Ω̃

(2)
k , Ω̃

(∞)
k }, and the

corresponding system of points {0, ω̃(1)
k , ω̃

(2)
k ,∞} (k = 1, n).

An estimate of the functional (7) in the case of fixed poles was first ob-
tained in [6], and then in the papers [9,15]. On the basis of Lemma 4.1.2 [1],
we get the estimate

Kτ 6 Φ(τ), τ > 0,

where Φ(τ) = τ 2τ
2 · |1− τ |−(1−τ)2 · (1 + τ)−(1+τ)

2 . Then

Jn(γ) 6

(
2
√
γ

)n
·

(
n∏
k=1

αk
√
γ

)[
n∏
k=1

Φ(τk)

]1/2
= (8)

=

(
2
√
γ

)n
·

[
n∏
k=1

(
τ
2τ2k+2

k · |1− τk|−(1−τk)
2 · (1 + τk)

−(1+τk)2
)] 1

2

,

where τk =
√
γ · αk, k = 1,n.

Consider the function S(x) = x2x
2+2 ·|1− x|−(1−x)

2

·(1 + x)−(1+x)
2

. The
function S(x) is logarithmically convex on the interval [0,x0], x0 ≈ 0.88441.
Now we consider an extremal problem

n∏
k=1

S(xk) −→ max,
n∑
k=1

xk = 2
√
γ, xk = αk

√
γ.
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Let X(0) =
{
x
(0)
k

}n
k=1

be an arbitrary extremal point of the problem. The
following result holds (obtained similarly [12]):

Ψ′(x
(0)
1 ) = Ψ′(x

(0)
2 ) = . . . = Ψ′(x(0)n ), (9)

where Ψ′(x) = 4x ln(x) − 2(x − 1) ln |x − 1| − 2(x + 1) ln(x + 1) + 2
x
(see

Fig. 1).
Further it will be necessary for us to show that the following condition

holds:
x
(0)
1 = x

(0)
2 = · · · = x(0)n for all γ ∈ (0,γn].

Let Ψ′(x) = t, y0 6 t < 0, y0 ≈ −1.06. We find a solution of equation
Ψ′(x) = tk, k = 1, 53. Since ∀tk ∈ [y0, 0), it follows that the equation has
two solutions x1(t) ∈ (0, x0], x2(t) ∈ (x0,∞].

Consider the following values of t: t1 = −0.02, t2 = −0.04, t3 = −0.06,
t4 = −0.08, · · · , t52 = −1.04, t53 = y0. Direct calculations are presented
in Table 1.

Consider the case n = 2. From the analysis of the tabular data for
n = 2, we get that the minimum of the sum x1(tk) + x2(tk+1) is achieved
for the interval [−0.62;−0.64] and is equal to 1.709336 (see Table 2). The
relation x1(t) + x2(t) = 2

√
γ holds for each γ ∈ (0; 0.73]. Let γ = 0.73;

then the value 2
√
γ is less than the minimum 1.709336. Thus, for n = 2

and γ ∈ (0; 0.73], we obtain that x2 does not belong to (x0,∞), that is x1
and x2 belong to the interval (0, x0] and x1 = x2. From inequalities (8)
and (9) for n = 2, we have

J2(γ) 6
4

γ
· S
(

2
√
γ

2

)
.

For n = 3, the minimum of the value 2x1(tk) + x2(tk+1) on the whole
graph is achieved on the interval [−0.48;−0.50] and is equal to 2.381211
(see Table 3). Similarly, 2x1(t) + x2(t) = 2

√
γ. Let γ = 1.41; then

2
√
γ = 2.3748. Thus, for γ ∈ (0; 1.41] the situation x2 ∈ (x0,∞) is not

possible. In this way, we obtain x1, x2, x3 ∈ (0, x0] and x1 = x2 = x3.
Then, taking into account the inequalities (8) and (9) for n = 3, we

have

J3(γ) 6

(
2
√
γ

)3 [
S

(
2
√
γ

3

)]3/2
.

Similarly, the situation holds for all γ ∈ (0,γn], n = 4, 5, 6.
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k tk x1(tk) x2(tk) k tk x1(tk) x2(tk)
0 0 0.581421 ∞ 27 -0.54 0.671495 1.047944
1 -0.02 0.584192 2.607677 28 -0.56 0.675680 1.041549
2 -0.04 0.586996 2.095431 29 -0.58 0.679954 1.035639
3 -0.06 0.589833 1.849825 30 -0.6 0.684325 1.030184
4 -0.08 0.592706 1.696659 31 -0.62 0.688797 1.025157
5 -0.1 0.595614 1.588941 32 -0.64 0.693377 1.020539
6 -0.12 0.598559 1.507710 33 -0.66 0.698072 1.016313
7 -0.14 0.601542 1.443586 34 -0.68 0.702890 1.012468
8 -0.16 0.604564 1.391304 35 -0.7 0.707842 1.008999
9 -0.18 0.607626 1.347643 36 -0.72 0.712936 1.005911
10 -0.2 0.610729 1.310499 37 -0.74 0.718185 1.003228
11 -0.22 0.613876 1.278433 38 -0.76 0.723604 1.001015
12 -0.24 0.617066 1.250421 39 -0.78 0.729208 0.999457
13 -0.26 0.620302 1.225709 40 -0.8 0.735017 0.997390
14 -0.28 0.623585 1.203729 41 -0.82 0.741053 0.994797
15 -0.3 0.626917 1.184045 42 -0.84 0.747345 0.991762
16 -0.32 0.630299 1.166313 43 -0.86 0.753926 0.988295
17 -0.34 0.633734 1.150260 44 -0.88 0.760838 0.984381
18 -0.36 0.637223 1.135664 45 -0.9 0.768138 0.979982
19 -0.38 0.640770 1.122345 46 -0.92 0.775896 0.975038
20 -0.4 0.644375 1.110153 47 -0.94 0.784212 0.969461
21 -0.42 0.648041 1.098962 48 -0.96 0.793228 0.963114
22 -0.44 0.651772 1.088668 49 -0.98 0.803162 0.955787
23 -0.46 0.655569 1.079182 50 -1 0.814378 0.947120
24 -0.48 0.659437 1.070427 51 -1.02 0.827585 0.936407
25 -0.5 0.663378 1.062338 52 -1.04 0.844608 0.921828
26 -0.52 0.667396 1.054860 53 -1.06 0.884406 0.884406

Table 1: Two solutions of the equation Ψ′(x) = tk, k = 1,53

From Table 1, for an arbitrary n > 7, the following inequality holds:

(n− 1)x1(tk) + x2(tk+1) > nx1(tk) + (x2(tk+1)− x1(tk)) > 0.58n,

since x1(tk) > 0.5830 and x2(tk+1)− x1(tk) > 0. Using the condition

(n− 1)x1(t) + x2(t) = 2
√
γn,

we assume that 2
√
γn = 0.58n. Thus, γn = 0.084n2, that is,

when γ ∈ (0; 0.084n2] then the sum (n− 1)x1(t) +x2(t) is less than 0.58n.
Thus, for n > 7 and γ ∈ (0,γn], we obtain

Jn(γ) 6

(
2
√
γ

)n [
S

(
2
√
γ

n

)]n/2
.



Sharp estimates of products of inner radii of non-overlapping domains 25

k tk x1(tk) + x2(tk+1) k tk x1(tk) + x2(tk+1)
0 0 27 -0,54 1,715340
1 -0,02 3,189098 28 -0,56 1,713044
2 -0,04 2,679623 29 -0,58 1,711318
3 -0,06 2,436820 30 -0,6 1,710138
4 -0,08 2,286492 31 -0,62 1,709482
5 -0,1 2,181647 32 -0,64 1,709336
6 -0,12 2,103324 33 -0,66 1,709690
7 -0,14 2,042145 34 -0,68 1,710540
8 -0,16 1,992846 35 -0,7 1,711889
9 -0,18 1,952207 36 -0,72 1,713753
10 -0,2 1,918125 37 -0,74 1,716163
11 -0,22 1,889163 38 -0,76 1,719200
12 -0,24 1,864297 39 -0,78 1,723061
13 -0,26 1,842775 40 -0,8 1,726598
14 -0,28 1,824031 41 -0,82 1,729814
15 -0,3 1,807630 42 -0,84 1,732815
16 -0,32 1,793230 43 -0,86 1,735640
17 -0,34 1,780559 44 -0,88 1,738307
18 -0,36 1,769398 45 -0,9 1,740820
19 -0,38 1,759569 46 -0,92 1,743176
20 -0,4 1,750923 47 -0,94 1,745356
21 -0,42 1,743337 48 -0,96 1,747326
22 -0,44 1,736709 49 -0,98 1,749015
23 -0,46 1,730953 50 -1 1,750281
24 -0,48 1,725996 51 -1,02 1,750785
25 -0,5 1,721775 52 -1,04 1,749413
26 -0,52 1,718238 53 -1,06 1,729015

Table 2: Minimum of the sum x1(tk) + x2(tk+1), k = 1,53

The equality case is straightforward to verify. Theorem 1 is proved. �

From Theorem 1, we obtain the following results.

Corollary 1. Let n ∈ N, n > 2, γ ∈ (0,γn], γ2 = 0.7304, γ3 = 1.4175,
γ4 = 2.2983, γ5 = 3.3683, γ6 = 4.6244, and γn = 0.084n2, n > 7.
Then for any n-radial system of points An = {ak}nk=1 such that L (An) =
= 1, and any system of mutually non-overlapping domains B0, B∞, Bk,
a0 = 0 ∈ B0 ⊂ C,∞ ∈ B∞ ⊂ C, ak ∈ Bk ⊂ C, k = 1, n, the inequality (2)
holds. Equality is attained in the same case as in Theorem 1.

Corollary 2. Under the conditions of Theorem 1, the following inequa-
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lity holds:

[r(B0, 0)r(B∞,∞)]γ
n∏
k=1

r(Bk, ak)6

(
4

n

)n (
4γ
n2

) 2γ
n∣∣1− 4γ

n2

∣∣ 2γn +n
2

∣∣∣∣n−2
√
γ

n+2
√
γ

∣∣∣∣2
√
γ

. (10)

Equality in this inequality is achieved when 0, ∞, ak and B0, B∞, Bk,
k = 1, n, are, respectively, poles and circular domains of the quadratic
differential (3).

k tk 2x1(tk) + x2(tk+1) k tk 2x1(tk) + x2(tk+1)
0 0 27 -0.54 2.382735
1 -0.02 3.770519 28 -0.56 2.384539
2 -0.04 3.263814 29 -0.58 2.386998
3 -0.06 3.023816 30 -0.6 2.390093
4 -0.08 2.876325 31 -0.62 2.393807
5 -0.1 2.774353 32 -0.64 2.398133
6 -0.12 2.698938 33 -0.66 2.403067
7 -0.14 2.640704 34 -0.68 2.408612
8 -0.16 2.594388 35 -0.7 2.414780
9 -0.18 2.556771 36 -0.72 2.421594
10 -0.2 2.525751 37 -0.74 2.429099
11 -0.22 2.499892 38 -0.76 2.437386
12 -0.24 2.478172 39 -0.78 2.446665
13 -0.26 2.459841 40 -0.8 2.455806
14 -0.28 2.444333 41 -0.82 2.464831
15 -0.3 2.431215 42 -0.84 2.473869
16 -0.32 2.420146 43 -0.86 2.482985
17 -0.34 2.410858 44 -0.88 2.492232
18 -0.36 2.403133 45 -0.9 2.501659
19 -0.38 2.396792 46 -0.92 2.511314
20 -0.4 2.391692 47 -0.94 2.521252
21 -0.42 2.387712 48 -0.96 2.531538
22 -0.44 2.384750 49 -0.98 2.542243
23 -0.46 2.382725 50 -1 2.553443
24 -0.48 2.381565 51 -1.02 2.565162
25 -0.5 2.381211 52 -1.04 2.576998
26 -0.52 2.381615 53 -1.06 2.573623

Table 3: Minimum of the sum 2x1(tk) + x2(tk+1), k = 1,53

Corollary 3. Let n ∈ N, n > 2, γ ∈ (0,γn], γ2 = 0.7304, γ3 = 1.4175,
γ4 = 2.2983, γ5 = 3.3683, γ6 = 4.6244, and γn = 0.084n2, n > 7. Then,
for any other points of the unit circle |w| = 1 and any set of mutually
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non-overlapping domains B0, B∞, Bk, a0 = 0 ∈ B0 ⊂ C, ∞ ∈ B∞ ⊂ C,
ak ∈ Bk ⊂ C, k = 1, n, the inequality (2) holds. Equality is attained in
the same case as in Theorem 1.

If we consider a sufficiently strict restriction on the distribution of the
angles αk, k = 1, n, then we can get a stronger result.

Let y0 ≈ 0.884414 be a root of the equation

ln
y2

1− y2
=

1

y2
. (11)

Then the following proposition is true.

Theorem 2. Let n ∈ N, n > 2, γ ∈ (0, γn), γn = 1
4
y20n

2. Then
for any n-radial system of points An = {ak}nk=1 such that L (An) = 1,
0 < αk 6 y0/

√
γ, where y0 is a root of equation (11), k = 1, n, and for any

collection of pairwise nonoverlapping domains B0, B∞, Bk,
a0 = 0 ∈ B0 ⊂ C, ∞ ∈ B∞ ⊂ C, ak ∈ Bk ⊂ C, k = 1, n, the inequali-
ty (10) holds. Equality is attained in the same case as in Corollary 2.

Proof. The proof of Theorem 2 practically repeats the proof of Theorem 1,
only the logarithmic convexity of the function S(x) on the segment (0, y0]
and relation below are used in the final stage of the proof. The reation is

1

n

n∑
k=1

lnS (xk) 6 lnS

( n∑
k=1

xk

n

)
.

It is equivalent to

ln

(
n∏
k=1

S (xk)

) 1
n

6 ln

(
S

(
2

n

√
γ

))
.

Equality in this inequality is attained if

τ1 = τ2 = . . . = τn =
2
√
γ

n
,

i. e., if αk = 2
n
, k = 1,n. In this case, relation (7) yields

Jn(γ) 6 J0
n(γ) =

(
4

n

)n [
(r (D0, 0) r (D∞,∞))

4γ

n2 · r (D1,− i) r (D2, i)

|(−i)− i|2

]n
2

,
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where D0, D∞, D1 and D2 are the circular domains of the quadratic
differential

Q(z)dz2 = −

4γ

n2
z4 + 2

(
4γ

n2
− 2

)
z2 +

4γ

n2

z2(z2 + 1)2
dz2. (12)

From whence, we have, eventually,

Jn(γ) 6

(
2
√
γ

)n [
S

(
2

n

√
γ

)]n
2

.

Using a specific formula for S (x), we get the basic inequality of Theorem 2.
Changing the variable in (12) by the formula z = −iw n

2 , we get the
quadratic differential (3). The sign of equality in inequality (10) is verified
directly. Theorem 2 is proved. �

Corollary 1. Let n ∈ N, n > 2, γ ∈ (0, γn], γn = 0.19n2. Then
for any n-radial system of points An = {ak}nk=1 such that L (An) = 1,
0 < αk 6 y0/

√
γ, y0 ≈ 0.88441, k = 1, n, and any set of mutually non-

overlapping domains B0, B∞, Bk, a0 = 0 ∈ B0 ⊂ C, ∞ ∈ B∞ ⊂ C,
ak ∈ Bk ⊂ C, k = 1, n, the inequality (2) holds. Equality is attained in
the same case as in Theorem 1.

Consider the following problem, which was formulated as an open prob-
lem in the case γ = 1 in the paper by Dubinin [7].

Problem 2. Find, for any fixed value of γ ∈ (0, n], the maximum of
the functional

rγ(B0, 0)
n∏
k=1

r(Bk, ak),

where B0, B1, B2,. . . , Bn, n > 2, is any system of pairwise non-overlapping
domains in C, where the domains B1, . . . , Bn have symmetry with respect
to the unit circle, a0 = 0, |ak| = 1, k = 1, n, ak ∈ Bk ⊂ C, k = 0, n;
describe all extremals of the functional.

This problem was solved for γ = 1 and n > 2 by Kovalev [13, 14].
The following theorem substantially complements the results of the papers
[4,13,14]. We obtain the following results assuming that B0 ⊂ U (here U
denotes the unit circle).

Theorem 3. Let n ∈ N, n > 2, γ ∈ (0, γn), γn = 1
2
y20n

2. Then,
for any n-radial system of points An = {ak}nk=1, such that |ak| = 1,
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0 < αk 6 y0/
√
γ, where y0 is a root of equation (11), k = 1, n, and

any set of mutually non-overlapping domains B0, Bk, a0 = 0 ∈ B0 ⊂ U ,
ak ∈ Bk ⊂ C, k = 1, n, where the domains Bk have symmetry with respect
to the unit circle |w| = 1 for all k = 1, n, the following inequality holds:

rγ (B0, 0)
n∏
k=1

r (Bk, ak) 6 rγ (Λ0, 0)
n∏
k=1

r (Λk, λk) . (13)

Equality in (13) is attained when 0, λk and Λ0, Λk, k = 1,n, are, respec-
tively, the poles and the circular domains of the quadratic differential

Q(w)dw2 = −γw
2n + 2(n2 − γ)wn + γ

w2(wn − 1)2
dw2. (14)

Proof. Note (see [6, p.59]) that if the domains Bk have symmetry with
respect to the unit circle |w| = 1 for all k = 1, n, and the domain B0 ⊂
U , then the extremal problem for the functional rγ (B0, 0)

n∏
k=1

r (Bk, ak)

can be reduced, by easy transformations, to the study of the functional

rγ/2(B0, 0) rγ/2(B∞,∞)
n∏
k=1

r(Bk, ak). Thus, using this property and proofs

of Theorem 1 and Theorem 2, we obtain the result of Theorem 3. �

Using Corollary 3 and proofs of Theorem 3 and Theorem 1, it is not
difficult to obtain the following result.

Theorem 4. Let n ∈ N, γ ∈ (0, γn], γ2 = 1.4608, γ3 = 2.8350,
γ4 = 4.5966, γ5 = 6.7366, γ6 = 9.2488, γn = 0.168n2, n > 7. Then,
for any other points of the unit circle |w| = 1 and any system of mutu-
ally non-overlapping domains B0, Bk, a0 = 0 ∈ B0 ⊂ U , ak ∈ Bk ⊂ C,
k = 1, n, where the domains Bk have symmetry with respect to the unit
circle |w| = 1 for all k = 1, n, the following inequality holds:

rγ (B0, 0)
n∏
k=1

r (Bk, ak) 6

(
4

n

)n (
2γ
n2

) γ
n∣∣1− 2γ

n2

∣∣n2+ γ
n

∣∣∣∣n−√2γ

n+
√

2γ

∣∣∣∣
√
2γ

.

Equality in the inequality is achieved when ak and Bk, k = 0, n, are,
respectively, poles and circular domains of the quadratic differential (14).
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