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Abstract. In this paper we obtain results related to the mem-
brane theory of convex shells with piecewise smooth boundary
of its median surface. Within this theory we study the prob-
lem of realisation of the momentless tense state of equilibrium
of the thin elastic shell, the median surface of which is a part
of an ovaloid of the strictly positive Gaussian curvature. De-
velopment of this theory is based on the usage of generalized
analytic functions and is needed for the extended statement of
the basic boundary problem. We provide such a further devel-
opment for a shell with a simply connected median surface using
the Riemann–Gilbert special boundary condition. In the paper
we identify surface classes for which the index of the correspond-
ing discontinuous boundary condition is efficiently calculated and
find sufficent boundary conditions for quasi-correctness of the ba-
sic boundary problem in the geometric form.
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The results considered below originate from two sources: research pa-
pers of I. N. Vekua [8, 9] into the membrane theory of convex shells with
smooth edges (i. e., smooth boundary of their median surfaces) and re-
search papers of A. L. Gol’denveizer [1], who formulated the mathemati-
cal statement of the problem of membrane theory for shells with piecewise
smooth edges. The method of I. N. Vekua was developed in author’s pa-
pers [3,5,7] and leads to the statement of the corresponding mathematical
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problem for shells with simply connected median surface. In [7] the au-
thor considered two particular cases of the main boundary value problem
which are essential for applications. The purpose of this work is the proof
of the new sufficient conditions of solvability for the main boundary value
problems of the membrane theory of convex shells with piecewise smooth
edge formulated in [1, 8].

1. Mathematical statement of the problem. In this article we
use the terminology and notations introduced in our previous paper [8].

Let V be a thin elastic shell, thereby its median surface is a simply

connected surface S with piecewise-smooth edge L =

n⋃
j=1

Lj and corner

pointsMj . We assume that S is the inner part of the surface S0 of strictly
positive Gaussian curvature of regularity class W 3,p, p > 2, and each of
the curves Lj belongs to the class C1,ε, 0 < ε < 1. Denote by ν(k)

j (k = 1,
2) the vectors tangent to L at the angle point Mj . The interior angle
between these vectors is νjπ (0 < νj < 2) at this point. The pointMi ∈ L
is outbound, if 0 < νj < 1.

The shell V is a symmetric dome (S∗-dome), if all the corner pointsMj

of the boundary of the median surface are outbound, and the vectors ν(k)
j

(k = 1, 2; j = 1, . . . , n) meet at the point Mj at equal angles with one
of the major directions on the surface.

According to [7], let us consider the problem T of realization of the
state of momentless tense equilibrium of a shell under the condition that
the projection ΠrU(c) of the force vector U(c) onto the direction of the
vector r(c) is described by the following equation at each point of smooth-
ness of the boundary:

ΠrU(c) = σ(c), (1)

and at each corner from the set
n⋃
j=1

Mj is described by the equations

lim
c→M±0

ΠrkU(c) = σk, (k = 1, 2), (2)

lim
c→M

∣∣U(c)
∣∣ =∞. (3)

Here σ(c) and r(c) are piecewise continuous scalar function of the point of
the contour L and the vector field at the surface S, rk, σk are unilateral
limits of the functions r(c), σ(c) at the point M in tracing the boundary
L in the given direction.
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One can say that equations (2), (3) set the infinite symbolic Vr,σ-vec-
tor at the point M , introduction of which specifies the condition (3) (the
concentration condition, according to the terminology of A. L. Gol’den-
veizer).

Let us specify now the statement of the problem (1)–(3), adjusting
it to the condition of stress concentration (3) using the suitable vector
of the vector field r.

Let us assume that at each smoothness point the vector r(c) is di-
rected outside the surface S, classifying thereby the vector field r on L as
admissible. Let r(c) be the admissible vector field r of the singular vector
on L, setting the continuous field of directions r(c). It is clear that in this
case the corresponding vectors rk (k = 1, 2) are collinear in any point M

from the set
n⋃
j=1

Mj .

Let us denote the set of continuous vector fields on L determined by
the admissible vector field r(c) by L. The direction of the field l ∈ L at
the corner pointM is called the direction of the generalized normal, if the
corresponding vectors r1, r2 have different directions.

Definition 1. Let us say that the field of the directions l ∈ L belongs to
the class N(M), if l(M) is the direction of the generalized normal in the
corner point M .

Let us assume that the projection σ = σ(s) of the force vector onto
the direction of the Hölder vector r = {α(s), β(s)} on every curve Lj is
a function of the positive natural parameter s together with the tangent
line and normal component α(s), β(s) (α2 +β2 = 1; β > 0). Let J be the
projection of the surface S0 onto the complex plane z = x+iy, determined
by the selection of the conformal isometric parametrization (x, y) on S0;
D = J(S) be a field limited by the complex surface z with the boundary

Γ =
n⋃
j=1

J(Lj) and the corner points ζj = J(Mj). According to [8], the

elliptical system of equations of momentless tense equilibrium of the shell
V for the complex function w(z) is the following

wz̄(z)−B(z)w̄(z) = F (z), z ∈ D, (4)

wz̄ ≡
1

2
(wx + iwy), B(z), F (z) are function of the class Lp(D), p > 2, on

the surface S, and the condition (2) is the boundary condition of Riemann–
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Gilbert:
Re
{
λ(ζ)w(ζ)

}
= f(σ,K), ζ ∈ Γ, (5)

where
λ(ζ) =

dζ

ds

(
β
dζ

dt
− αdζ

ds

)
, (6)

dζ

ds
= s1 + is2, si (i = 1, 2) are coordinates of the unit vector tangent

to Γ at the point ζ;
dζ

dt
= t1 + it2, ti (i = 1, 2) are coordinates of the

unit vector on the plane, which is J-image of the tangent direction on the
surface in the point J−1(ζ), K is the Gaussian curvature of the surface,
superposition f is determined [9] by the statement T and as a function of
the Hölder argument ζ on each curve Lj . We call the statement (4)–(6)
statement R, corresponding to the statement T .

Let us consider the vector-function s(ζ) =
{
s1(ζ), s2(ζ)

}
, t(ζ) =

=
{
t1(ζ), t2(ζ)

}
on Γ denoting left (right) limits of the functions s(ζ) and

t(ζ) as s(1)
j and t(1)

j (s(2)
j and t(2)

j ) accordingly at the point ζj = J(Mj) in
tracing the field D in the positive direction. Let us set the vector-function

ρ(ζ) =
{
ρ1(ζ), ρ2(ζ)

}
, where ρ1(ζ) + iρ2(ζ) = β

dζ

dt
− αdζ

ds
, denoting the

right and left limits at the point ζj by ρ
(j)
k (k = 1, 2). We considered the

problem of calculation of the index of boundary condition of the type (5)
in [6]. In the same source we provide the proof for the following lemma:

Lemma 1. If the vector field r(c) of the problem T sets the continuous
field of directions l(c) ∈ L, the index to the corresponding problem R in
the class of limited solutions is calculated according to the formula

κ = −4 +

n∑
j=1

[
1

π

(
ϕj + ψj

)]
, (7)

where [a] is an integer part of a, ϕj (ψj) is the value of the angle between
the vectors s(1)

j and s(2)
j (ρ(1)

j and ρ(2)
j )), set by the rotation of the first

one in the positive direction up to superimposition with the second one.

According to [5], the condition of concentration of stress (3) at the
corner point Mi when getting to the problem R can be described in the
following way ∣∣w(z)

∣∣ 6 K∣∣z − ζj∣∣−αj , 0 < αj < 1, (8)
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where αj is defined by the function λ(ζ). Let us denote the solutions w(ζ)
of the problem R, corresponding to the conditions (8), as solutions of the
class H∗ (class of N. I. Muskhelishvili [2]). We need the description of
singular nodes (in the sense of N. I. Muskhelishvili) of the coefficient λ(ζ)
for the boundary condition (5) for solving the stipulated class of problems.

Suppose M is one of the corner points Mi (i = 1, . . . , n) of the
boundary of S∗-dome, σ(k) (k = 1, 2) are the limit values at the point M
of the tangent to L of the vector σ(c); τ (k) are the corresponding limit
values of a singular vector of the normal τ (c), directed outwards from
S∗; k1, k2 are the main directions on the surface S at the point M ;
k1, k2 are their main curvatures, k1 > k2; γ(a, b) is the value of the
angle between vectors a and b on the surface with the initial point M
(0 6 γ(a, b) 6 π). Note that the vectors (−1)σ(1), σ(2) create the interior
angle at the point M , thereby one of the equations is true for that point
γ(σ(1),km) = γ(σ(2),km), (m = 1, 2), (0 6 γ(σ(k),km) 6 π/2). For
specification let us consider that

γ(σ(1),k2) = γ(σ(2),k2) = ν, (9)

0 < ν 6 arctg

√
k2

k1
, 2ν is the value of the interior angle in the corner

point M . Let us denote such a point as M (2ν), and the corresponding set
(sector) of directions of the generalized normal in this point as K(2ν).

Remark. Direction of the field l in the corner point M (2ν) is direction
of the generalized normal iff γ(l,k2) 6

π

2
− ν, so that the angle γ(l,k2)

between two directions l and k2 in the point M is one of the two adjacent
angles, the value of which is not bigger than

π

2
.

Definition 2. Let us call the direction l ∈ K(2ν) a singular direction
in the point M (2ν), if the corresponding point ζ = J(M) from the set
of corner points ζj = J(Mj) (j = 1, . . . , n) is a singular node of the
problem R.

Let us introduce notation for the singular nodes of the problem R: i, j
is a pair of ortonormal vectors on the surface z, set at the point J(M) by
the directions J(k1), J(k2) accordingly, thereby the vector i is oriented
outside the field D; vectors s(1), s(2) (t(1), t(2)) are left and right limits of
the vector field J(σ(c)) (field J(τ (c))) at the point ζ = J(M) if we trace
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the curve Γ positively. Noting νs = γ
(
i, s(2)

)
, νt = γ

(
j, t(1)

)
, we obtain

the equation

s(k) = (−1)k cos νs · i− sin νs · j (k = 1, 2),

t(k) = − sin νt · i+ (−1)k−1 cos νt · j (k = 1, 2).

Now let us consider the point M (2ν) and fix some direction l ∈ K(2ν)

of the generalized normal. This direction S in the point M can be set by
any of the two collinear vectors r1(θ), r2(θ):

r1 = − sin(θ + ν)σ(1) + cos(θ + ν)τ (1),

r2 = sin(ν − θ)σ(2) + cos(ν − θ)τ (2),

θ = γ
(
r1,k1

)
, −π

2
+ ν 6 θ 6

π

2
− ν. Then the expression for the vectors

ρ1(θ), ρ2(θ) at the point M (2ν), set by the boundary condition (5)–(6), is
the following:

ρ1(θ,ν) = cos(θ + ν)t(1) + sin(θ + ν)s(1),

ρ2(θ,ν) = cos(ν − θ)t(2) − sin(ν − θ)s(2),
(10)

thereby s(1) · s(2) < 0, t(1) · t(2) < 0, s(1) · t(2) < 0, s(1) · t(2) = −s(2) · t(1).

Lemma 2. There is the unique value µ ∈

(
0, arctg

√
k2

k1

)
with such

properties that the direction k1 of the generalized normal in the point M
is a special direction of the point M (2µ).

Proof. In our case, according to the definition of the singular node [2]
of the problem R, ϕ + ψ = π, ϕ and ψ are defined by Lemma 1. If the
vector r(θ) sets the direction l of class K(2ν), then the collinearity of the
vectors ρ2(0, ν) and s1 follows from the latter equation. As the vector r(0)
corresponds to the collinear direction k1 and |ρ1(0,ν)| = |ρ2(0,ν)|, then,
taking into account (9), (10), we get

sin ν · sin 2νs = cos ν · cos(νs + νt). (11)

As according to the well-known property of conjugate isometric parametriza-
tions [9, Chapter 2],

sin νt =

(
1 +

1

α
ctg2 ν

)− 1
2

, sin νs =
(
1 + α ctg2 ν

)− 1
2

(
α =

k2

k1
< 1

)
,
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then, from (11), after a number of transformations with the subsequent
substitution ctg2 ν = t, we get the equation

1

2
√
α
· (t− 1) =

(
1 + α−1t

) 1
2 (1 + αt)

− 1
2 . (12)

Basing on the obvious graphic considerations, we make the conclusion
that the equation (12) has the singular route t = t0 < α−1; this implies
the statement of the lemma. �

Lemma 3. There is the unique value η ∈
(

arctg

√
k2

k1
,
π

2

)
such that

the direction k1 of the generalized normal at the point M is a singular
direction of the point M (2η).

Proof. If η > arctg

√
k2

k1
, then the direction of the vector k1 in the

point M (2η) is singular under the condition ϕ + ψ = 0, which is possible
only in the case of orthogonality of the vectors ρ2(0, ν) and s(1). Hence,
taking into account the equations (12), we deduce the equation

sin ν · cos 2νs = − cos ν · sin (νs + νt).

After the corresponding transformations with the subsequent substitution
t = tg2 ν, we get the equation (α+ 1)−1(t−α) = (αt+ 1)−

1
2 (t+α)

1
2 with

the singular route t = t0 > 1. �

Let us consider the symmetric point M (2ν) from the number of the
corner points Mi (i = 1, . . . , n) and the function

χ(θ,ν) ≡ ϕ(ν) + ψ(θ,ν)

(
|θ| < π

2
− ν, 0 < ν 6 arctg

√
k2

k1

)
, (13)

corresponding to it, in which ϕ ≡ ϕ(ν), ψ ≡ ψ(θ, ν) accordingly coincide
with the values ϕi, ψi, set at the point Mi by the equation (7). Let us
note that the function ψ(θ, ν) is even, according to the argument θ. The
following statements directly follow from Lemma 2

Statement 1. π < χ(0, ν) < 2π, if 0 < ν < µ, and 0 < χ(0, ν) < π,
if µ < ν < η; here µ, η are the numbers defined in lemmas 2 and 3,
0 < χ(0, ν) < π, if η < ν <

π

2
. The following statement also holds true.
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Statement 2. The function ψ(θ, ν) for any ν ∈

(
0, arctg

√
k2

k1

)
mono-

tonously decreases on [0,ν] for any argument θ; thereby, ψ
(π

2
− ν, ν

)
> π

∀ν ∈ (0, µ), where µ is defined by Lemma 2. The proof of Statements 1
and 2 is made according to the scheme [4] with inconsiderable changes.

Remark. Monotonous decreasing of the function ψ(θ, ν) is set in the sim-

ilar way for any ν ∈

(
arctg

√
k2

k1
,
π

2

)
as the function of the argument θ.

Let us consider a S∗-dome with the corner points Mi (i = 1, . . . , n)
of the boundary and introduce the following notation: k(i)

1 , k(i)
2 are the

major directions on the surface S0 at the pointMi, k
(i)
1 , k(i)

2 are the major
curvatures corresponding to them (k(i)

2 < k
(i)
1 ). Let us denote the numbers

defined in the points Mi (i = 1, . . . , n) by lemmas 2 and 3, accordingly,
by µi, ηi. Let us refer the projecting partMj to 1-type (2-type, 3-type), if
the condition 0 < πνj < 2µj (2µj < πνj < 2ηj , 2ηj < πνj < π) holds true
for the value νjπ of the interior angle. Let us consider the vector field l,
belonging to the class N(Mi) in every point Mi (i = 1, . . . , n). Let us
denote the class of such fields by N(S∗).

Lemma 4. If n(k) is the number of corner points of the k-type (k = 1, 2,
3; n(1)+n(2)+n(3) = n) of the boundary L, then the index of the boundary
condition of the problem R in the class H∗ is calculated according to the
formula

κ = 2n(1) + n(2) − 4 (14)

∀l ∈ N(S∗).

The statement of the lemma follows from (7) and Statements 1–2.

2. Formulation of the outcomes.

Definition 3. Let us call the problem T unconditionally solvable for the
given field of the directions l ∈ L and B∗l -solvable, if the problem R(T )
is unconditionally solvable in the class H∗ the same as the problem of
Riemann–Gilbert with inhomogeneous boundary condition. Let us also
say that the equilibrium condition B∗l (m) is observed for the dome S∗,
if the solution of the problem R(T ) depends on m random real-valued
parameters.
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Theorem 1. If s = 2n(1) + n(2) > 3, then B∗l (s)-state is observed for
any l ∈ N(S∗) of S∗-dome.

Theorem 2. If πνik coincides with one of the numbers 2µik , 2ηik in
the point Mik (k = 1, . . . , m), then B∗l (s)-state is observed for any

l ∈ N(S∗) \
m⋃
k=1

{
k

(ik)
1

}
.

The validity of Theorems 1, 2 follows from Lemmas 2, 3 and out-
comes [3].

The following theorem ensues from Theorem 1:

Theorem 3. If among the corner points of the boudary L the points of
1-type are missing, and the number of corner points of 2-type does not
exceed two, then the problem R is well-defined.

In the conclusion let us note that µi =
π

6
, ηi =

π

3
in an ombilic point

Mi, and any direction of l class N(Mi) is singular.
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