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ON APPROXIMATION OF THE RATIONAL FUNCTIONS,
WHOSE INTEGRAL IS SINGLE-VALUED ON C, BY

DIFFERENCES OF SIMPLEST FRACTIONS

Abstract. We study a uniform approximation by differences
Θ1 −Θ2 of simplest fractions (s.f.’s), i. e., by logarithmic deriva-
tives of rational functions on continua K of the class Ωr, r > 0
(i. e., any points z0, z1 ∈ K can be joined by a rectifiable curve in
K of length 6 r). We prove that for any proper one-pole fraction
T of degree m with a zero residue there are such s.f.’s Θ1,Θ2 of
order 6 (m− 1)n that ‖T + Θ1 −Θ2‖K 6 2r−1A2n+1n!2/(2n)!2,
where the constant A depends on r, T and K. Hence, the rate of
approximation of any fixed individual rational function R, whose
integral is single-valued on C, has the same order. This result
improves the famous estimate ‖R + Θ1 − Θ2‖C(K) 6 2errn/n!,
given by Danchenko for the case ‖R‖C(K) 6 1.
Key words: difference of simplest fractions, rate of uniform
approximation, logarithmic derivative of rational function
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1. Introduction. By a simplest fraction (s.f.) of order n, n ∈ N, we
mean a logarithmic derivative of polynomial of degree n:

Θ(z) =

n∑
j=1

1

z − zj
, zj ∈ C (n > 1).

The function Θ(z) ≡ 0 is the s.f. of order n = 0.
The approximation properties of s.f.’s have become an object of inten-

sive study after the paper [5] was published. It turned out, for example,
that the rate of the approximation by s.f.’s for a wide class of functions
and sets has the same order as for the polynomial approximation [5], [9].
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The first result on approximation by differences of s.f.’s, i.e., by lo-
garithmic derivatives of rational functions, was also proved in [5] (Theo-
rem A below). Let R∗n be the class of rational functions of degree 6 n,
whose integral is single-valued on C. We say that a set K ⊂ C is of the
class Ωr, r > 0, if any points z0,z1 ∈ K can be joined by a rectifiable
curve in K of length 6 r. Let ‖ · ‖K be a sup-norm over K.

Theorem A. [5] Let K ∈ Ωr, R ∈ R∗N , ‖R‖K 6 1. There are s.f.’s Θ1,
Θ2 of order 6 (N + 1)n such that

‖R+ Θ1 −Θ2‖K 6 2errn/n! (n > 5r). (1)

The author has proved the following much more strong estimate in the
case where R = M is a polynomial [7], [8] (hereinafter n0(x) = 14+ex2/4):

Theorem B. [8] Let M 6≡ 0 be a polynomial of degree N > 0, K ∈ Ωr,
‖M‖K 6 c. There are s.f.’s Θ1, Θ2 of order (N + 1)n, such that

‖M + Θ1 −Θ2‖K 6
2

r
(cr)2n+1 n!2

(2n)!2
(n > n0(cr)). (2)

In this paper we prove that the approximation of any given function
R ∈ R∗N has the same order. The crucial point is the following theorem
on approximation of a one-pole fraction.

Denote by K∞ the unbounded component of the complement of con-
tinuum K, and let K0 = C\{K ∪K∞}.

Theorem 1. Let K ∈ Ωr, a ∈ C\K, δ = dist(a,K) > 0,

T (z) =

m∑
j=2

cj
(z − a)j

, m > 2, (3)

and C = ‖T (z)(z − a)2‖K . There are s.f.’s Θ1,Θ2 of order 6 (m − 1)n
such that

∆ := ‖T + Θ1 −Θ2‖K 6
2

r

(
Cr

δ2

)2n+1
n!2

(2n)!2
(n > n0(Cr/δ2)). (4)

If |cm| > 1 and a ∈ K0, then

∆ 6
2

r

(
16r3‖T‖1+2/m

K

)2n+1 n!2

(2n)!2
(n > n0(16r3‖T‖1+2/m

K )). (5)
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In the case where |cm| > 1, δ 6 (diamK)/6 and a ∈ K∞, the estimate
(5) is also true, but the factor 16 must be replaced by (28/3)2.

Theorem 1 is proved in Section 4. In Section 2 we consider the general
case where R ∈ R∗N . The following example shows that the conditions
R ∈ R∗N and T ∈ R∗m are essential for Theorem A and Theorem 1,
respectively.

Denote by dn = dn(f) the best approximation of the function

f(x) =
1

2(x+ a)
, a ∈ R, a > 1,

over x ∈ [−1, 1] by all differences of s.f.’s of order at most n.

Proposition 1. If a =: 1
2 (ρ+ ρ−1) > 3

2 (ρ > 3+
√

5
2 ), then

dn(f) > µn(1 + o(1)), µn := 21−2n(ρ+
√
ρ2 − 1− λρ−1)−2n−1

as n→∞ for some λ ∈ [− 1
2 ,

1
2 ].

Proof. Set ‖ · ‖ = ‖ · ‖[−1,1]. There is a difference D(x) of s.f.’s of order
6 n, such that ‖D−f‖ = dn · (1 +o(1)) as n→∞ (‖ · ‖ := ‖ · ‖[−1,1]). Let
R(x) be the rational function of degree at most n such that R(0) =

√
a

and D = R′/R.
Set I(x) =

∫ x
0

(D(t)− f(t)) dt. Obviously, ‖I‖ 6 dn · (1 + o(1)),

(eI(x) − 1)
√
x+ a = R(x)−

√
x+ a, −1 6 x 6 1.

Since dn → 0 as n→∞, we have

µ = µ(R) := ‖(R(x)−
√
x+ a)/

√
x+ a‖ 6 e‖I‖ − 1 < dn · (1 + o(1)).

But infR µ = µn(1 + o(1)) (over all rationals R(x) of degree 6 n) [1]. �

In Section 5 we study the approximation of arbitrary rational functions
by the quotients between two differences of s.f.’s. This useful method for
the calculation of values of rational functions and polynomials was intro-
duced in [2]. Recall, that the Horner scheme is usually applied for this.
However, if the values of arguments and coefficients of these functions are
large, using this scheme may lead to loss of accuracy because of multiple
multiplications (see examples in [4, § 3]).
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2. Corollaries of Theorem 1. Set

R(z) =

p∑
k=1

Tk(z), Tk(z) :=

mk∑
j=2

ck,j
(z − zk)j

, mk > 2, (6)

zk 6= zj (k 6= j), m1 + · · ·+mp = N, p > 1.

Corollary 1. Let R be a function (6), m = maxkmk, c = maxk,j |ck,j |,
δk = dist(zk,K). If K ∈ Ωr, δ := mink δk > 0 and A := c

∑m
j=2 δ

−j , then
there are s.f.’s Θ1,Θ2 of order 6 (N − p)n such that

∆1 := ‖R+ Θ1 −Θ2‖K 6
2p

r
(Ar)2n+1 n!2

(2n)!2
(n > n0(Ar)). (7)

This assertion follows from (4), because R is the sum of p functions
Tk of the form (3),

∑p
k=1(mk − 1)n = (N − p)n and

Ck
δ2
k

6
mk∑
j=2

c

δjk
6

m∑
j=2

c

δj
= A (Ck := ‖Tk(z)(z − zk)2‖K , 1 6 k 6 p).

The estimate (7) is better than (1) for any fixed individual function R
of the form (6). On the other hand, (1) is a universal estimate (i. e., (1)
only depends on ‖R‖K and r), whereas (7) depends on the norms ‖Tk‖K
of all p components of the function R =

∑
Tk, and it is easy to construct

such a fraction R = T1 + T2 that ‖Tk‖K � 1 while ‖R‖K 6 1.
We now consider the case where the set K has special form and in

this case we get new estimates of ∆1 of the same order as in (7) but
with more universal constants. Let R be a function of the form (6). We
write K ∈ Ω∗r(R) if K ∈ Ωr and all poles zk ∈ K0, and every bounded
component K0

j of the complement of the set K (
⋃
K0
j = K0) contains at

most one of the poles zk, i. e., “poles of R(z) are separated by K”.

Corollary 2. If K ∈ Ω∗r(R) and ‖R‖K 6 1, then (see (7))

∆1 6
2p

r

(
50mr3

δ2

)2n+1
n!2

(2n)!2
(n > n0(50mr3/δ2)).

If, in addition, |ck,mk | > 1 for all 1 6 k 6 p (see (6)), then

∆1 6
2p

r

(
16 · 104r3

)2n+1 n!2

(2n)!2
(n > n0(16 · 104r3)).
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Indeed, because of K ∈ Ω∗r(R), the singularities of the function R =
=
∑
Tk are separated [3]: ‖Tk‖K 6 50mk‖R‖K , 1 6 k 6 p. Thus, the

assertion follows from the estimates (4), (5) and ‖z − a‖K 6 r. To prove
the last estimate of ∆1 we also use the fact that the function (50x)1+2/x

is decreasing for x > 2, and hence (see (5)),

max
k
‖Tk‖K1+2/mk 6 max

k
(50mk)1+2/mk 6 (50 · 2)2 = 104.

Remark 1. Let R̃(z) = M(z) + R(z), where M be a polynomial and R
be a fraction of the form (6). Let c̃ := ‖M‖K > 0. Under the assumptions
of Corollary 1 we have the following assertion: there are s.f.’s Θ1,Θ2 of
order at most (degM + 1 +N − p)n such that

‖R̃+ Θ1 −Θ2‖K 6 2r2n(c̃2n+1 + pA2n+1)
n!2

(2n)!2
(n > n0(max{A,c̃}r)).

3. Auxiliary results. Our first lemma is trivial:

Lemma 1. Let B(z) 6≡ 0 be a polynomial of degree N1 > 0, H(v) 6≡ 0
be a polynomial of degree N2 > 0,

F (z) = H

(
1

B(z)

)
B′(z)

B2(z)
. (8)

Let q1(v), q2(v) be polynomials of degree (N2 + 1)n > 0. Then the func-
tions Sj(z) := (B(z))(N2+1)nqj(1/B(z)), j = 1, 2, are polynomials of de-
gree at most N1(N2 + 1)n, and the following identity holds:

F (z) +
S1
′(z)

S1(z)
− S2

′(z)

S2(z)
≡ B′(z)

B2(z)

(
H(v)− q1

′(v)

q1(v)
+
q2
′(v)

q2(v)

)
, v =

1

B(z)
.

Let K and a be an arbitrary fixed set and a point in C. Put

Ka = {v : v = (z − a)−1, z ∈ K}.

Lemma 2. IfK ∈ Ωr, a ∈ C\K and δ := dist(a,K) > 0, thenKa ∈ Ωra ,
where ra := rδ−2.

Proof. For any fixed points v0, v1 ∈ Ka we put zj = a + v−1
j , j = 0, 1.

Since K ∈ Ωr, there is a rectifiable curve z(s), 0 6 s 6 s1 (z(0) = z0,
z(s1) = z1) in K of the length

∫ s1
0
|z′(s)|ds 6 r (s is a natural parameter).
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Then the curve v(s) = (z(s) − a)−1, 0 6 s 6 s1 (v(0) = v0, v(s1) = v1)
belongs to Ka, and the length of this curve

s1∫
0

|v′(s)|ds =

s1∫
0

|z′(s)|
|z(s)− a|2

ds 6
1

δ2

s1∫
0

|z′(s)|ds 6 rδ−2.

Thus, the lemma is proved. �

Lemma 3. LetK be a continuum in C, T (z) be a function of the form (3).
If δ := dist(a,K) > 0 and cm 6= 0, then

1

δ
6 4ν m

√
‖T‖K/|cm|, ν :=

{
1, a ∈ K0,
2, a ∈ K∞ and δ 6 (diamK)/6.

(9)

Proof. Put v = 1/(z − a), T (z)/cm ≡ tm(v),

tm(v) = c̃2v
2 + · · ·+ c̃m−1v

m−1 + vm, c̃j = cj/cm.

Let τ(Ka) be the transfinite diameter of the setKa. We have the following
estimate [6]: τ(Ka) 6 m

√
‖tm‖Ka ≡ m

√
‖T‖K/|cm|. ButK is a continuum,

therefore [6], diamKa 6 4τ(Ka) 6 4 m
√
‖T‖K/|cm|.

We now need to prove that diamKa > 1/(νδ).
In the case a ∈ K0, the estimate diamKa > 1/δ is trivial.
Let a ∈ K∞ and δ 6 (diamK)/6. Let z1 ∈ K be a point such that

|z1 − a| = δ. Then we have maxz∈K |z − a| > maxz∈K |z − z1| − δ and

diamK = max
z,z̃∈K

|z − z̃| 6 max
z∈K
|z − z1|+ max

z̃∈K
|z1 − z̃| = 2 max

z∈K
|z − z1|,

therefore maxz∈K |z − a| > (diamK)/2− δ > 3δ − δ = 2δ. Thus,

diamKa >
1

minK |z − a|
− 1

maxK |z − a|
>

1

δ
− 1

2δ
=

1

2δ
,

and the lemma follows. �

4. Proof of Theorem 1. Firstly, we prove the estimate (4).
Assume that T (z) 6≡ 0 (the other case is trivial). The function (3)

has the form (8) with B(z) = z − a, H(v) =
∑m
j=2 cjv

j−2 (degH(v) =

= m1 − 2 6 m − 2). By Lemma 2 we have Ka ∈ Ωra , where ra = rδ−2.
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Obviously, H(v) ≡ T (z)(z − a)2, therefore ‖H‖Ka = C. By Theorem B,
there are s.f.’s θj(v) = qj

′(v)/qj(v), j = 1, 2, of order (m1−1)n, such that

‖H − θ1 + θ2‖Ka 6 2C(Cra)2nn!2/(2n)!2 (n > n0(Cra)). (10)

Estimate (4) follows by (10), Lemma 1 and the equality ‖B′/B2‖K = δ−2.
We have C 6 ‖T‖K(diamK)2 for a ∈ K0. Thus, the estimate (5)

follows by the estimates (4), (9) and diamK 6 r. Similarly, in the case
a ∈ K∞ and δ 6 (diamK)/6 we have

C 6 ‖T‖K(δ + diamK)2 6 ‖T‖K((7/6)diamK)2,

and the theorem follows.

5. On approximation by special rational functions. Consider
the following special fractions, introduced in [2, § 8.2]:

Θ̃(z) =
Θ1(z)−Θ2(z)

Θ3(z)−Θ4(z)
, (11)

where Θj denotes a s.f. of order mj , j = 1, 2, 3, 4. Fractions (11) have
strong approximative properties [2]:

Theorem C. [2] Let K be a compact set, R be a rational function of
degree N > 1, and r := ‖R‖K < ∞. There is a fraction Θ̃ of the form
(11) with orders mj 6 Nn such that

‖Θ̃−R‖K 6 2errn+1/n! (n > 5r).

We now get a stronger estimate for the case K ∈ Ωr:

Corollary 3. Let P , Q be polynomials of degree at most N , K ∈ Ωr,
‖P‖K 6 1, infK |Q(z)| =: c0 > 0. Put c2 = ‖Q‖K . There is a fraction Θ̃
of the form (11) with orders mj 6 (N + 1)n such that

‖Θ̃− P/Q‖K 6
4c2
c20
r2n(1 + c2n2 )

n!2

(2n)!2
(n > n2).

Proof. Let Θ1 −Θ2 (Θ3 −Θ4) be the difference of s.f.’s of order at most
(N + 1)n that approximates the polynomial −P (−Q, respectively), as in
Theorem B. Let n2 be an integer such that n > n0(r), n > n0(c2r) and
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c2‖Θ3 − Θ4 − Q‖K 6 c20/2, if n > n2. Thus, the statement follows from
(2) and the identity

Θ1 −Θ2

Θ3 −Θ4
− P

Q
=

(P + Θ1 −Θ2)Q− (Q+ Θ3 −Θ4)P

−Q2 + (Q+ Θ3 −Θ4)Q
.

Corollary 3 is proved. �
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