ON THE CONVERGENCE OF MAPPINGS WITH k-FINITE DISTORTION.

Abstract. We prove that a locally uniform limit of a sequence of homeomorphisms with finite k-distortion is also a mapping with finite k-distortion. We obtain also an estimation for the distortion coefficient of the limit mapping.

Key words: mapping with k-finite distortion, distortion coefficient, passing to the limit, differential form.

2010 Mathematical Subject Classification: 30C65

1. Introduction. It is well known that the limit of a uniformly converging sequence of analytic functions is an analytic function. Reshetnyak generalized this result to mappings with bounded distortion: the limit of a locally uniformly converging sequence of mappings with bounded distortion is a mapping with bounded distortion.

Definition 1. [8] A mapping $f : \Omega \rightarrow \mathbb{R}^n$ is called mapping with bounded distortion if f is continuous, $f \in W^1_{n,loc}(\Omega)$, the Jacobian $J(x, f)$ does not change the sign in the domain Ω and

$$|Df(x)|^n \leq K|J(x,f)| \quad \text{for almost all } x \in \Omega. \quad (1)$$

The smallest constant in this inequality is called the distortion coefficient of the mapping f and is denoted by the symbol $K(f)$. It is clear that

$$K(f) = \sup \left\{ \frac{|Df(x)|^n}{|J(x,f)|} : x \in \Omega, \quad J(x,f) \neq 0 \right\}.$$

Reshetnyak used the weak convergence of Jacobians to prove the following theorem on the limit of a sequence of mappings with bounded distortion.

© Petrozavodsk State University, 2018
Theorem 1. [8] Let \(f_m : \Omega \to \mathbb{R}^n, m = 1, 2, \ldots, \) be an arbitrary sequence of mappings with bounded distortion, locally converging in \(L_n(\Omega) \) to a mapping \(f_0 : \Omega \to \mathbb{R}^n \). Assume that the sequence of distortion coefficients \(K(f_m), m = 1, 2, \ldots, \) is bounded. Then the limit mapping \(f_0 \) is a mapping with bounded distortion and the following inequality holds:

\[
K(f_0) \leq \lim_{k \to \infty} K(f_m).
\]

We briefly outline the proof in the case of non-negative Jacobians. For a test function \(\varphi \in C_0^\infty(\Omega) \) we have

\[
\int_{\Omega} |Df_0(x)|^n \varphi(x) \, dx \leq \lim_{m \to \infty} \int_{\Omega} |Df_m(x)|^n \varphi(x) \, dx \leq K \lim_{m \to \infty} \int_{\Omega} J(x,f_m) \varphi(x) \, dx = K \int_{\Omega} J(x,f_0) \varphi(x) \, dx.
\]

To justify the limit in the last equality, we apply the weak convergence of Jacobians. Consequently, for the limit mapping, the point-wise inequality \(|Df_0(x)|^n \leq KJ(x,f_0) \) holds a.e. in \(\Omega \).

More recently, research has begun on mappings with finite distortion. They are a natural generalization of mappings with bounded distortion.

Definition 2. [7] Let a mapping \(f : \Omega \to \mathbb{R}^n \) belong to the Sobolev class \(W_{n,\text{loc}}^1(\Omega) \) and \(J(x,f) \geq 0 \). We define the pointwise distortion coefficient \(K(x,f) \) of the mapping \(f \) as a value

\[
K(x,f) = \begin{cases}
\frac{|Df(x)|^n}{|J(x,f)|} & \text{if } J(x,f) > 0, \\
1 & \text{otherwise}.
\end{cases}
\]

The mapping \(f : \Omega \to \mathbb{R}^n \) is called mapping with finite distortion \((f \in FD(\Omega))\) if

\[
|Df(x)|^n \leq K(x,f)J(x,f) \quad \text{where } 1 \leq K(x,f) < \infty \text{ for almost all } x \in \Omega.
\]

Remark. In other words, the condition of finite distortion is that the partial derivatives of the mapping \(f \in W_{n,\text{loc}}^1(\Omega) \) vanish a.e. on the set of zeros of the Jacobian \(J(x,f) \).
For the first time, the essential properties of mappings with finite distortion were investigated in the paper [15] in the study of homeomorphisms inducing a bounded composition operator. The name "mapping with finite distortion" was proposed much later in the paper [7].

In [5] F. Gehring and T. Iwaniec showed that the limit of a weakly converging sequence of mappings with finite distortion is also a mapping with finite distortion, and they obtained also an estimation for the distortion coefficient of the limit mapping.

Theorem 2. [5] Let $f_m : \Omega \to \mathbb{R}^n$, $m = 1, 2, \ldots$, be an arbitrary sequence of mappings with finite distortion converging weakly in $W^{1,n}_{\text{loc}}(\Omega)$ to a mapping $f_0 : \Omega \to \mathbb{R}^n$. Assume that
\[
K(x, f_m) \leq M(x) < \infty, \quad m = 1, 2, \ldots,
\]
where $\Omega \ni x \mapsto M(x) \in [1, \infty]$ is a measurable function. Then the limit mapping f_0 is a mapping with finite distortion and the inequality
\[
K(x, f_0) \leq M(x)
\]
holds.

More precisely, in this paper existence of a subsequence f_{m_k} such that
\[
K(x, f_0) \leq b \ast \lim_{k \to \infty} K(x, f_{m_k})
\]
was shown. Here the limit is understood in the sense of so-called biting convergence.

Definition 3. [2] Let h and h_k, $k \in \mathbb{N}$, be Lebesgue measurable functions defined on a set $E \subset \mathbb{R}^n$. The sequence h_k is said to converge in the biting sense on E to h if there exists an increasing sequence E_ν of measurable subsets of E,
\[
\bigcup_\nu E_\nu = E,
\]
such that
\[
\lim_{k \to \infty} \int_{E_\nu} \varphi h_k \, dx = \int_{E_\nu} \varphi h \, dx
\]
for any function $\varphi \in L_\infty(E_\nu)$.

In the paper [4] the limit of a sequence of homeomorphisms with finite distortion converging weakly in W^1_1 was shown to have, also, a finite distortion under the condition that the limit mapping is a homeomorphism.

Theorem 3. [4] Let Ω, Ω' be bounded domains in \mathbb{R}^n, $f_j : \Omega \to \Omega'$, $j \in \mathbb{N}$, $f : \Omega \to \Omega'$, be homeomorphisms belonging to $W^1_1(\Omega)$, and $f_j \to f$ weakly in $W^1_1(\Omega)$. Assume that $|Df_j(x)|^n \leq K(x,f_j)J(x,f_j)$ for almost all $x \in \Omega$, where $K(x,f_j) : \Omega \to [1,\infty)$ are Borel functions for all j, and the sequence $K(x,f_j)$ converges in the biting sense to $K(x)$ as $j \to \infty$. Then the limit mapping f is a mapping with finite distortion and the inequality $K(x,f) \leq K(x)$ holds for almost all $x \in \Omega$.

In the paper [1] mappings with bounded (q,p)-distortion ($n - 1 < q \leq p < \infty$) were defined and investigated; these mappings coincide with the class of mappings with bounded distortion if $q = p = n$.

In the paper [17] a locally uniform limit of a sequence of mappings with bounded $(\theta,1)$-weighted (q,p)-distortion was shown to be, also, a mapping with a bounded $(\theta,1)$-weighted (q,p)-distortion and an estimation similar to (2) was established. The proofs of the theorems like those in the article [17] and in this work are based on the method developed in [11] for extending Reshetnyak’s result to Carnot groups.

In this paper we extend the above-mentioned assertions to the class of mappings with k-finite distortion, which arise naturally in the problem of operating with differential forms of degree k (see [12]).

2. Preliminaries. Let U be a domain in \mathbb{R}^n. We consider the Banach space $\mathcal{L}_p(U,\Lambda^k)$ of differential forms ω of degree k, $k = 1, \ldots, n$, with measurable coefficients, which have the following finite norm: $\|\omega\|_p = (\int_U |\omega|^p \, dx)^{1/p}$.

A mapping $f : U \to \mathbb{R}^n$ is said to be approximate differentiable at a point $x \in U$ [3], if there exists a linear mapping $L : \mathbb{R}^n \to \mathbb{R}^n$ such that

$$\lim_{r \to 0} \frac{\left| \{ y \in B(x,r) : |f(y) - f(x) - L(y-x)| > \varepsilon \} \right|}{r^n} = 0$$

for any $\varepsilon > 0$. Here the symbol $| \cdot |$ denotes the Lebesgue measure. It is well known that the approximate differential is unique [3] if x is a density point. In what follows, it is denoted by the symbol $ap \, Df(x)$.
In our paper we consider the mappings belonging to some Sobolev class. Such mappings are unconditionally approximately differentiable.

Let \(\omega = \sum \omega_\beta \, dy^\beta \) be any \(k \)-form, \(k = 1, \ldots, n \), in \(W \) with continuous coefficients \(\omega_\beta : W \to \mathbb{R} \), where the summation is over all \(k \)-dimensional ordered multi-indices \(\beta = (\beta_1, \ldots, \beta_k) \), \(1 \leq \beta_1 < \cdots < \beta_k \leq n \), and \(dy^\beta = dy_{\beta_1} \wedge dy_{\beta_2} \wedge \cdots \wedge dy_{\beta_k} \). Let a mapping \(f = (f_1, \ldots, f_n) : U \to W \) of Euclidean domains \(U, W \subset \mathbb{R}^n \) be approximately differentiable almost everywhere in \(U \). We write the pull-back of the \(k \)-form \(\omega \) in the following way:

\[
f^* \omega(x) = \sum_\beta \omega_\beta(f(x)) \, df_{\beta_1} \wedge df_{\beta_2} \wedge \cdots \wedge df_{\beta_k} = \sum_\alpha \sum_\beta \omega_\beta(f(x)) M_{\alpha \beta}(x) \, dx^\alpha.
\]

In other words, it is a \(k \)-form with measurable coefficients, which are defined for almost all \(x \in U \) (here \(df_{\beta_k} = \sum_{i=1}^n \frac{\partial f_{\beta_k}}{\partial x_i} \, dx_i \) and the partial derivatives are understood in the approximate sense, \(M_{\alpha \beta}(x) \) are \((k \times k)\)-minors of the matrix \(ap Df(x) = (\frac{\partial f_j}{\partial x_i}) \), \(i, j = 1, \ldots, n \), with ordered lines and columns).

We recall that the approximate differential \(ap Df(x) : T_x U \to T_{f(x)} W \) is defined a.e. in \(U \). It generates canonically the linear mapping \(\Lambda_k f(x) : \Lambda_k T_x U \to \Lambda_k T_{f(x)} W \) of the spaces of \(k \)-vectors, and the pullback operation \(f^* \) of \(k \)-forms. We denote the norm of the last linear mapping by the symbol \(|\Lambda_k f(x)| \).

The minimal analytic and geometric properties of the mapping \(f \) were obtained in [12] for generating a bounded pullback operator

\[
f^* : \mathcal{L}_p(W, \Lambda^k) \to \mathcal{L}_q(U, \Lambda^k), \quad 1 \leq q \leq p \leq \infty,
\]

of differential forms of degree \(k = 1, \ldots, n \).

We say that an approximately differentiable mapping \(f : U \to W \) has \(k \)-finite distortion, \(1 \leq k \leq n \), (shortly \(f \in CD^k(U; W) \)) if rank \(ap Df(x) < k \) almost everywhere on a set \(Z \). (Hereinafter \(Z = \{ x \in U : \det ap Df(x) = 0 \} \).) For \(k = 1 \) \((k = n - 1) \) and \(f \in W^1_{1, \text{loc}}(U) \) \((f \in W^1_{n-1, \text{loc}}(U)) \), this notion is well-known in literature: it is just the class of Sobolev mappings with finite distortion (codistortion), which is characterized by the property: \(ap Df(x) = 0 \) \((\text{adj } Df(x) = 0) \) almost everywhere on \(Z \) (see [10], [14] for the second notion).

Besides of the property of \(k \)-finite distortion we consider mappings with a certain behavior of some characteristics of the distortion containing in
itself the ratio \(\frac{|\Lambda^k f(x)|^q}{|J(x,f)|} \), where \(J(x,f) = \det ap Df(x) \) \cite{12}: operator (4) is bounded if and only if the mapping \(f \in CD^k(U;W) \) and the distortion function \(W \ni y \mapsto H_{k,q}(y) = \)

\[
\left\{ \begin{array}{ll}
\left(\sum_{x \in f^{-1}(y) \setminus (\Sigma \cup Z)} \frac{|\Lambda^k f(x)|^q}{|J(x,f)|^{1/p}} \right)^{1/q} & \text{if } f^{-1}(y) \setminus (\Sigma \cup Z) \neq \emptyset, \\
0 & \text{otherwise},
\end{array} \right.
\]

belongs to \(L_\varkappa(W) \) where \(\frac{1}{\varkappa} = \frac{1}{q} - \frac{1}{p} \) if \(q < p \), and \(\varkappa = \infty \) \((\varkappa = q) \) if \(q = p \) \((p = \infty) \). Moreover, the norm of the operator \(f^* \) is comparable with the value \(\|H_{k,q}(\cdot) | L_\varkappa(\Omega)\| : \alpha_{q,p} \|H_{k,q}(\cdot) | L_\varkappa(\Omega)\| \leq \|f^*\| \leq \|H_{k,q}(\cdot) | L_\varkappa(\Omega)\| \)

where \(\alpha_{q,p} \) is some constant.

Hereinafter \(\Sigma \subset U \) is a set of measure zero outside of which the mapping \(f \) has the Luzin property \(\mathcal{N} \).

For homeomorphic mappings one can use a simpler characteristic.

Corollary 1. \cite{12} Let \(f : U \to W \) be an approximately differentiable homeomorphism. The operator \(f^* : L_p(W, \Lambda^k) \to L_q(U, \Lambda^k), 1 \leq q \leq p \leq \infty, \]

\[k = 1, \ldots, n, \]

is bounded if and only if the following conditions are satisfied:

1) \(f : U \to W \) has the \(k \)-finite distortion;

2) the function \(K_{k,p}(x,f) = \)

\[\left\{ \begin{array}{ll}
\frac{|\Lambda^k f(x)|}{|J(x,f)|^{1/p}} & \text{if } J(x,f) \neq 0, \\
0 & \text{otherwise},
\end{array} \right. \]

belongs to \(L_\varkappa(U) \), where \(\frac{1}{\varkappa} = \frac{1}{q} - \frac{1}{p} \) if \(q < p \), and \(\varkappa = \infty \) \((\varkappa = q) \) if \(q = p \) \((p = \infty) \).

In this case, the norm of the operator \(f^* \) is comparable with

\[\|K_{k,p}(\cdot,f) | L_\varkappa(\Omega)\| : \alpha_{q,p} \|K_{k,p}(\cdot,f) | L_\varkappa(\Omega)\| \leq \|f^*\| \leq \|K_{k,p}(\cdot,f) | L_\varkappa(\Omega)\| , \]

where \(\alpha_{q,p} \) is some constant.

3. Main results.

Definition 4. \cite{12} An approximately differentiable homeomorphism \(f : U \to W \) belongs to the class \(CD^k_{q,p}(U;W) \) if the following conditions hold

1) \(f \in CD^k(U;W); \)
Theorem 4. Let \(f_m \in CD_{q,p}^k(U;W), m \in \mathbb{N}, \) be a sequence of homeomorphisms of the Sobolev class \(W^1_{l,\text{loc}}(U) \) with \(k < l, q \leq l/k, 1 < q \leq p < \infty. \) Suppose that the sequence \(f_m \) is locally bounded in \(W^1_l(U), \) and locally uniformly converges to a homeomorphism \(f: U \to W \) as \(m \to \infty. \) Assume also that there exists a sequence of functions \(U \ni x \mapsto M_m(x), \) belonging to \(L_\kappa(U), \) that is bounded in \(L_\kappa(U), \) for which the inequality

\[
K_{k,p}(x,f_m) \leq M_m(x) \text{ for almost all } x \in U
\]

is true. Then there exists a function \(U \ni x \mapsto M(x) \) of \(L_\kappa(U) \) such that some subsequence

(i) in the case \(1 < q < p < \infty: \) of functions \(\{M_m(x)^{\kappa}\}_{m \in \mathbb{N}} \) converges in the biting sense to \(M(x)^\kappa; \)

(ii) in the case \(1 < q = p < \infty: \) of numbers \(\{\|M_m| L_\infty(U)\|\}_{m \in \mathbb{N}} \) converges to

\[
M = \lim_{m \to \infty} \|M_m| L_\infty(U)\|
\]

the limit mapping \(f \) belongs to \(CD^k_{q,p}(U;W) \) and \(K_{k,p}(\cdot,f) \in L_\kappa(U), \)

where \(\frac{1}{\kappa} = \frac{1}{q} - \frac{1}{p}. \)

Moreover, the inequalities

\[
\begin{cases}
K_{k,p}(x,f) \leq M(x) & \text{in the case } q < p,
K_{k,p}(x,f) \leq M & \text{in the case } q = p,
\end{cases}
\]

hold for almost all \(x \in U. \)

In the proof we use some arguments from the paper [17], where Theorem 4 is proved for \(k = 1. \)

Proof. It follows from the conditions of the theorem that \(f \in W^1_{l,\text{loc}}(U). \) First, we show that the limit mapping \(f \) belongs to \(CD^k(U;W). \) For doing this, we show that the mapping \(f \) induces a bounded operator \(f^* : \mathcal{L}_p(W, \Lambda^k) \to \mathcal{L}_q(U, \Lambda^k), 1 < q \leq p < \infty. \) Since every mapping \(f_m \in CD_{q,p}^k(U;W), \) it follows from Corollary 1 that the homeomorphism \(f_m : U \to W \) induces the bounded operator \(f_m^* : \mathcal{L}_p(W, \Lambda^k) \to \mathcal{L}_q(U, \Lambda^k), 1 < q \leq p < \infty, m \in \mathbb{N}. \) Moreover, the norms of the operators \(f_m^* \) are totally bounded

\[
\|f_m^*\| \leq \|K_{k,p}(\cdot,f_m)| L_\kappa(U)\| \leq \|M_m(\cdot)| L_\kappa(U)\| \leq \tilde{M} < \infty.
\]
Take a k-form $\omega \in \mathcal{L}_p(W,\Lambda^k) \cap \mathcal{C}(W,\Lambda^k)$ and set $\sigma_m = f_m^*(\omega)$. Since $\|f_m^*\| \leq \tilde{M}$, the sequence of forms σ_m is bounded in $\mathcal{L}_q(U,\Lambda^k)$. Therefore, we can extract a weakly converging subsequence. We assume that the sequence σ_m converges weakly in $\mathcal{L}_q(U,\Lambda^k)$ to a form σ_0. The weak convergence of forms means that coefficients of the forms σ_m converge weakly in $L_q(U)$ to the corresponding coefficients of the form σ_0. Since the sequence σ_m converges weakly in $\mathcal{L}_q(U,\Lambda^k)$ to σ_0 as $m \to \infty$, we have

$$\|\sigma_0 \mid L_q(U)\| \leq \lim_{m \to \infty} \|\sigma_m \mid L_q(U)\| = \lim_{m \to \infty} \|f_m^* \omega \mid L_q(U)\| \leq \lim_{k \to \infty} \|f_m^*\| \cdot \|\omega \mid L_p(U)\| \leq \tilde{M} \cdot \|\omega \mid L_p(U)\|. \quad (6)$$

The following lemma is proved in the book [8, Chapter 2, §4].

Lemma 1. [8] Suppose U is an open subset in \mathbb{R}^n, and suppose that $\varphi_m = (\varphi_{m1}, \varphi_{m2}, \ldots, \varphi_{mk})$, $1 \leq k \leq n$, $m = 1, 2, \ldots$, is a sequence of vector-functions of $W^1_{1,\text{loc}}(U)$, $k \leq l$, locally bounded in $W^1_l(U)$. Assume that, as $m \to \infty$, the functions φ_m converge in $L_{1,\text{loc}}$ to a vector function $\varphi_0 = (\varphi_{01}, \varphi_{02}, \ldots, \varphi_{0k})$, and set $\omega_m = d\varphi_m \wedge d\varphi_{m2} \wedge \ldots \wedge d\varphi_{mk}$. Then the sequence of forms ω_m weakly converges in $L_{l/k,\text{loc}}(U)$ to a form ω_0.

Since the homeomorphisms f_m locally uniformly converge to f and the form ω has continuous coefficients, the functions $\omega_\beta(f_m(x))$ converge locally uniformly to $\omega_\beta(f(x))$ as $m \to \infty$. Lemma 1 implies that the minors of the matrices Df_m converge weakly in $L_{l/k,\text{loc}}(U)$ to minors of the matrix Df. Therefore, the forms σ_m converge weakly in $L_{l/k,\text{loc}}(U)$ to $f^*(\omega)$.

It is not hard to see that both limits σ_0 and $f^*(\omega)$ coincide: $\sigma_0 = f^*(\omega)$. In view of (6) the mapping f induces a bounded operator $f^* : \mathcal{L}_p(W,\Lambda^k) \to \mathcal{L}_q(U,\Lambda^k)$, $1 < q < p < \infty$. By Corollary 1, $f \in \mathcal{CD}^k(U;W)$.

First, we consider the case $q < p$. The following lemma is valid.

Lemma 2. [2] Every sequence of mappings h_m, $m = 1, 2, \ldots$, that is bounded in $L_1(U)$, contains a subsequence, converging in the biting sense to some function $h \in L_1(U)$.

This lemma implies existence of a function $U \ni x \mapsto M(x)$ of $L_\infty(U)$ such that some subsequence of the function $h_m = M_m(x)x$ converges

1It means that the sequence of forms ω_m converges weakly in $L_{l/k}(D)$ to a form ω_0 on every subdomain $D \subseteq U$.
in the biting sense to \(h = M(x) \). We assume that the given sequence \(M_m(x) \) converges in the biting sense to the function \(M(x) \) (the set of the Definition 3 is denoted by \(E_\nu \)).

Now we estimate the distortion coefficient of the limit mapping \(f \). For this, we consider estimates on a set \(E_\nu \). Let \(Z_m \) be the set of zeros of the Jacobian of the mapping \(f_m \). Since the rank of the matrix \(Df_m \) on the set \(Z_m \) is less then \(k \), it follows that all \(k \)-th-order minors are equal to zero on the set \(Z_m \).

Applying the Hölder inequality, and taking into account that \(\frac{q}{p} + \frac{q}{p} = 1 \) on each intersection \(E_\nu \cap B(x_0,r) \), where \(x_0 \in E_\nu, B(x_0,r) \subseteq U \), in view of (5) we have

\[
\int_{E_\nu \cap B(x_0,r)} |\Lambda^k f_m(x)|^q \, dx = \int_{(E_\nu \cap B(x_0,r)) \setminus Z_m} |\Lambda^k f_m(x)|^q \, dx \leq \left(\int_{(E_\nu \cap B(x_0,r)) \setminus Z_m} \left| \frac{\Lambda^k f_m(x)}{|J(x,f_m)|} \right|^{\frac{q}{p}} \, dx \right)^{\frac{q}{p}} \leq \left(\int_{E_\nu \cap B(x_0,r)} (K_{k,p}(f_m))^{\alpha(x)} \, dx \right)^{\frac{q}{p}} \left(\int_{E_\nu \cap B(x_0,r)} |J(x,f_m)| \, dx \right)^{\frac{q}{p}} \leq \left(\int_{E_\nu \cap B(x_0,r)} M_m^\alpha(x) \, dx \right)^{\frac{q}{p}} \left(\int_{B(x_0,r)} |J(x,f_m)| \, dx \right)^{\frac{q}{p}}. \tag{7}
\]

Elements of the matrix \(\Lambda^k(f_m)(x) \) are the \(k \)-th-order minors of ap \(D_m f(x) \). In view of Lemma 1, they converge weakly in \(L_{\ell/k, loc}(U) \) to elements of the matrix \(\Lambda^k(f)(x) \). Since \(q < \ell/k \), \(\Lambda^k(f_m)(x) \) converges weakly in \(L_{q, loc}(U) \) to \(\Lambda^k(f)(x) \). Since the norm is semicontinuous in the Banach space \(L_q \), the left-hand side of the inequality can be estimated as

\[
\int_{E_\nu \cap B(x_0,r)} |\Lambda^k f(x)|^q \, dx \leq \lim_{m \to \infty} \int_{E_\nu \cap B(x_0,r)} |\Lambda^k f_m(x)|^q \, dx.
\]

We have also \(\int_{B(x_0,r)} |J(x,f_m)| \, dx \leq |f_m(B(x_0,r))| \).

Since \(|f(B(x_0,r))| < \infty \) and the mapping \(f \) is a homeomorphism, the images \(f(S(x_0,r)) \) of the spheres \(S(x_0,r) \) do not intersect under different
r. It follows that the n-measure of the image of any sphere is zero for almost all \(r \): \(|f(S(x_0, r))| = 0\). We fix \(r \) so that

\[|f(S(x_0, r))| = 0 \]

and surround the image of the sphere \(f(S(x_0, r)) \) by an \(\varepsilon \)-neighborhood \(U_\varepsilon \). Since the mappings \(f_m \) converge locally uniformly to the mapping \(f \), it follows that, starting from a number \(m_0 \), the images of the spheres \(f_m(S(x_0, r)) \), \(m \geq m_0 \), are contained in this \(\varepsilon \)-neighborhood. It is clear that \(|U_\varepsilon| \to 0 \) as \(\varepsilon \to 0 \), and hence \(|f_m(B(x_0, r))| \to |f(B(x_0, r))|\) as \(m \to \infty \).

Taking into account that \(M_m(x)^\kappa \) converge in the biting sense to \(M(x)^\kappa \), we pass to the lower limit in (7) as \(m \to \infty \). We get

\[
\int_{B(x_0, r)} |\Lambda^k f(x)|^q \chi_{E^\nu}(x) \, dx \leq \left(\int_{B(x_0, r)} M^\kappa(x) \chi_{E^\nu}(x) \, dx \right)^\frac{q}{\kappa} |f(B(x_0, r)|^\frac{q}{p}.
\]

Dividing both sides of this inequality by the measure of the ball \(B(x_0, r) \), we obtain the following inequality

\[
\frac{1}{|B(x_0, r)|} \int_{B(x_0, r)} |\Lambda^k f(x)|^q \chi_{E^\nu}(x) \, dx \leq \left(\frac{1}{|B(x_0, r)|} \int_{B(x_0, r)} M^\kappa(x) \chi_{E^\nu}(x) \, dx \right)^\frac{q}{\kappa} \left(\frac{|f(B(x_0, r))|}{|B(x_0, r)|} \right)^\frac{q}{p}. \tag{8}
\]

Since the homeomorphism \(f \) is Sobolev differentiable, then by [13, Section 2.3, formula (2.5)] we have

\[
\frac{|f(B(x_0, r))|}{|B(x_0, r)|} \to |J(x_0, f)| \quad \text{as} \quad r \to 0 \quad \text{for almost all} \quad x_0 \in E^\nu.
\]

Hence, by the Lebesgue differentiability theorem, letting \(r \) go to 0 we obtain that

\[
|\Lambda^k f(x)|^q \leq M^q(x) |J(x, f)|^\frac{q}{p} \quad \text{for almost all} \quad x \in E^\nu. \tag{9}
\]

As \(U = \bigcup_{\nu} E^\nu \), the point-wise inequality (9) holds in \(U \) almost everywhere.

In the case \(1 < q = p < \infty \) we can assume that a sequence of numbers \(\{\|M_m \mid L_\infty(U)\|\}_{m \in \mathbb{N}} \) converges to \(M = \lim_{m \to \infty} \|M_m \mid L_\infty(U)\| \in \mathbb{R} \). In
this case, instead of (7), for any \(\varepsilon > 0 \) there exists \(m_1 \) such that for all \(m \geq m_1 \) we have
\[
\int_{B(x_0, r)} \left| \Lambda^k f_m(x) \right|^q \, dx \leq (M + \varepsilon) \left(\int_{B(x_0, r)} \left| J(x, f_m) \right| \, dx \right).
\]

Further, proceeding as in the case \(q < p \), we obtain the estimation
\[
K_{k,p}(x, f) \leq (M + \varepsilon) \text{ for almost all } x \in U.
\]
Since \(\varepsilon > 0 \) is an arbitrary number, we get the desired estimation.

By the Corollary 1, we have proved that the limit mapping \(f \) belongs to \(C\mathcal{D}^{k}_{q,p}(U; W) \).

□

As a straightforward consequence of Theorem 4 we get the following

Corollary. [16] Let \(f_m \in C\mathcal{D}^{k}_{q,p}(U; W) \), \(m \in \mathbb{N} \), be a sequence of homeomorphisms of the Sobolev class \(W^{1,1}_{l,\text{loc}}(U) \) with \(k < l \), \(q \leq l/k \), \(1 < q \leq \leq p < \infty \). Suppose that the sequence \(f_m \) is locally bounded in \(W^1_l(U) \), and converge locally uniformly to a homeomorphism \(f : U \to W \) as \(m \to \infty \). Assume also that there exists a function \(M(x) \in L^{1/q}(U) \), \(\frac{1}{q} = \frac{1}{q} - \frac{1}{p} \), such that
\[
K_{k,p}(\cdot, f_m)(x) \leq M(x) \text{ for all } m \in \mathbb{N}
\]
in \(U \) almost everywhere. Then the limit mapping \(f \) belongs to \(C\mathcal{D}^{k}_{q,p}(U; W) \) and \(K_{k,p}(\cdot, f) \in L^{1/q}(U) \), where \(\frac{1}{q} = \frac{1}{q} - \frac{1}{p} \).

Moreover, the inequality \(K_{k,p}(x, f) \leq M(x) \) holds almost everywhere.

Remark. There exists a misprint in the paper [16]: in the statement of the main result the condition \(q \leq l/k \) is missing.

Acknowledgment. This work was supported by Russian Foundation for Basic Research, agreement 17-01-00875 for the first author, and by the program of fundamental scientific researches of the SB RAS I.1.2., project 0314-2016-0006 for the second author.

References

On the convergence of mappings

Received May 31, 2018.
In revised form, June 18, 2018.
Accepted September 18, 2018.
Published online September 27, 2018.

N. A. Kudryavtseva
Novosibirsk State University
1 Pirogova str., Novosibirsk 630090, Russia
E-mail: nkudr@itam.nsc.ru

S. K. Vodopyanov
Sobolev Institute of Mathematics
4 Akademika Koptyuga pr., Novosibirsk 630090, Russia
E-mail: vodopis@math.nsc.ru