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Abstract. Here we apply the Cauchy integral method for the Lap-
lace equation in multiply connected domains when the data on each
boundary component has the form of the Dirichlet condition or the
form of the Neumann condition. This analytic method gives highly
accurate results. We give examples of applications of the method.
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1. Introduction. The article extends the results of [1], where the
approximate analytical solution of the Dirichlet problem for the Laplace
equation in simply connected and doubly connected domains with smooth
boundaries was reduced to systems of linear algebraic equations and the
solution had the form of the real part of a Cauchy integral. The Laplace
equation arises in different areas, such as electrostatics (where it describes
the electrostatic potential), stationary potential incompressible fluid flows,
and steady-state heat conduction [12]. We consider the solution of the
Dirichlet problem as the base for constructing solutions of the Neumann
and the mixed problems. There exist three main methods of solving the
Dirichlet problem: the Fourier method and the Green-function method
for domains of special types; the method of double layer logarithmic
potential with the density that is the solution of a Fredholm integral
equation [5, 6]; numerical methods (the finite difference method, the fi-
nite element method, the boundary element method [14]). The numerical
finite difference method of solving of Dirichlet problems for irregular do-
mains meets difficulties connected with construction of adequate difference
schemes for such domains [7]. The solution of a Dirichlet problem by the
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numerical finite element method for irregular domains meets the difficul-
ties connected with an adequate discretization of the domain. However,
recently some boundary value problems for the Laplace equation have been
solved by the finite element method applying modern computer approches
of automatical domain discretization. Unfortunately, these solutions con-
verge only in Lp spaces [8–11].

Here we present the Cauchy integral method applied to the mixed
boundary value problem in the multiply connected domain. We reduce a
mixed boundary problem to a linear integral equation. In order to do this,
we apply the technique of the Cauchy integral and analytic functions. A
number of articles are devoted to the study of these equations from the
perspective of their reduction to infinite linear systems [16–19]. We apply
the method based on the Fourier expansions of the kernels of integral
operators. The similar technique was applied in [2, 3] for construction of
the conformal mapping. The main idea of the proposed solution is to
reconstruct the boundary values of a conjugate harmonic function. We
give an analytical approximate solution of the mixed problem through the
Fourier coefficients of the conjugate harmonic functions. The constructed
approximate solution of the mixed problem is the real part of an analytic
function i (i. e., the real part of a Cauchy integral plus certain logarithmic
summands), so it is possible to investigate this solution via differentiation.

2. The main results. Consider a multiply connected domain D,

∂D =
n⋃
k=0

Ck. Assume that {∞} 6∈D. Let the boundary components of the

domain be given as Ck :zk(t)=xk(t)+iyk(t), t∈ [0, 2π], k = 0, . . . , n. Here
C0 is the exterior boundary component. Assume that zk(t) is differentiable
and z′k(t) 6= 0, t ∈ [0, 2π], ∀k ∈ {0, . . . , n}. We pass each component of the
boundary ∂D increasing the parameter t so that the domain D remains
on the left.

The mixed problem. Let us find the function f such that

∆f(x,y) = 0, (x, y) ∈ D,

given the boundary values f |Ck
= Uk(t), t ∈ [0, 2π], for k = 1, . . . ,m, and

the normal derivatives
∂f

∂N
|Ck

= Vk(t), t ∈ [0, 2π], for k = m + 1, . . . , n.

Here the compatibility conditions
2π∫
0

Vk(t)|z′k(t)|dt = 0, k = m + 1, . . . , n,

should hold for the boundary components where the Neumann conditions
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are given [20, Ch.12, Example 5, p. 618]. Note that the boundary condi-
tion on the exterior boundary component L0 may be either of the Dirichlet
form or of the Neumann form.

Definition 1. We call the mixed boundary value problem with the Dirich-
let condition on the exterior contour the mixed boundary value prob-
lem of the first type (MBVP1).

Definition 2. We call the mixed boundary value problem with the Neu-
mann condition on the exterior contour the mixed boundary value
problem of the second type (MBVP2).

Theorem 1. The mixed boundary value problems of both types for a
domain with the smooth boundary components and the boundary data of
the class C2,α have unique solutions that can be approximately obtained
via the Cauchy integral method.

Proof. We give the constructive proof of the theorem. The differential
class of the boundary data ensures convergence of the approximate solu-
tion to the exact one.

The uniquenece of the solution of the mixed problem is easily obtained
as the consequence of the Stokes formula.

Structure of the solution depends on the type of the boundary data on
the exterior component C0.

We base our solution on reconstruction of the boundary values of the
harmonic functions conjugate to the functions defined by the boundary
conditions on the contours Cj, j = 0, . . . , n. The solution f(x, y) is the
real part of a single-valued Cauchy integral and a sum of logarithms as
in [4]. In order to construct the solution, we fix the points z∗j inside the
domains bounded by the contours Cj, j = 1, . . . ,m.

Let us consider the MBVP1. Consider the harmonic in D function
p(x, y) = f(x,y)−

m∑
j=1

Aj ln |x+ iy − z∗j |. Here

p(x, y)|Cl
= pl(t) = Ul(t)−

m∑
j=1

Aj ln |zl(t)− z∗j |, l = 0, . . . ,m.

Denote by q(x, y) the harmonic inD function conjugate to the function

p(x, y). Then q(x, y)|Cl
=ql(t) =

t∫
0

Vl(t)|z′l(t)|dt+Bl−
m∑
j=1

Ajarg(zl(t)−z∗m),
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l = m+ 1, . . . , n. Later we will find the real numbers Aj, j = 1, . . . ,m, Bl,
l = m+ 1, . . . , n.

For the MBVP2, consider the harmonic in D function

p(x, y) = f(x, y)−
m−1∑
j=1

Aj ln |x+ iy − z∗j |+ ln |x+ iy − z∗m|
m−1∑
j=1

Aj.

Here p(x, y)|Cl
= pl(t) = ul(t)−

m−1∑
j=1

Aj ln |zl(t)−z∗j |+ln |zl(t)−z∗m|
m−1∑
j=1

Aj,

l = 0, . . . ,m.
Denote by q(x, y) the harmonic in D function conjugate to the function

p(x,y). Then
q(x, y)|Cl

= ql(t) =

=

t∫
0

Vl(t)|z′l(t)|dt+Bl −
m−1∑
j=1

Ajarg(zl(t)− z∗j ) + arg(zl(t)− z∗m)
m−1∑
j=1

Aj,

l = m+1, . . . , n, 0. Later we will find the real numbers Aj, j = 1, . . . ,m−1,
Bl, l = m+ 1, . . . , n, 0.

In both cases p(t) + iq(t) represents the boundary value of an analytic
in D function if and only if [4]

p(t) + iq(t) =
1

πi

∮
∂D

p(τ) + iq(τ)

z(τ)− z(t)
dz(τ). (1)

We separate either the real or the imaginary unknown part of these
boundary values on the boundary components and get the following Fred-
holm system of equations.

For the MBVP1, we consider the imaginary part of equation (1) for
t ∈ Ck, k = 0, . . . ,m:

qk(t) =
1

π

(
−

n∑
j=0

2π∫
0

pj(τ)Re[∂τ ln(zj(τ)− zk(t))]dτ+

+
n∑
j=0

2π∫
0

qj(τ)Im[∂τ ln(zj(τ)− zk(t))]dτ

)
.
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Similarly, for t ∈ Ck, k = m + 1, . . . , n, we consider the real part of
equation (1)

pk(t) =
1

π

(
n∑
j=0

2π∫
0

qj(τ)Re[∂τ ln(zj(τ)− zk(t))]dτ+

+
n∑
j=0

2π∫
0

pj(τ)Im[∂τ ln(zj(τ)− zk(t))]dτ

)
.

For the MBVP2, the equation for t ∈ C0 is the equation of the form

p0(t) =
1

π

(
n∑
j=0

2π∫
0

qj(τ)Re[∂τ ln(zj(τ)− z0(t))]dτ+

+
n∑
j=0

2π∫
0

pj(τ)Im[∂τ ln(zj(τ)− z0(t))]dτ

)
.

These equations constitute system (1) of n+ 1 Fredholm equations of the
second kind.

For the MBVP1, we search for the solution in the form of the vector-
function (q0(t), . . . , qm(t), pm+1(t), . . . , pn(t)):

I +K0, 0 K0, 1 . . . K0,m L0,m+1 . . . L0, n

K1, 0 I +K1, 1 . . . K1,m L0,m+1 . . . L1, n

. . . . . . . . . . . . . . . . . . . . .
Km, 0 Km, 1 . . . I +Km,m Lm,m+1 . . . Lm,n
Lm+1, 0 Lm+1, 1 . . . Lm+1,m I −Km+1,m+1 . . . −Km+1, n

. . . . . . . . . . . . . . . . . . . . .
Ln, 0 Ln, 1 . . . Ln,m −Kn,m+1 . . . I −Kn, n


×

×


q0
. . .
qm
pm+1

. . .
pn

 =

 w0, 0

. . .
w0, n

+
m∑
j=1

Aj

 wj, 0
. . .
wj, n

 . (2)
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For the MBVP2, we search for the vector-function
(
q1(t), . . . , qm(t),

pm+1(t), . . . , pn(t), p0(t)
)

:

I +K1, 1 . . . K1,m L0,m+1 . . . L1, n L1, 0

. . . . . . . . . . . . . . . . . . . . .
Km, 1 . . . I +Km,m Lm,m+1 . . . Lm,n Lm, 0
Lm+1, 1 . . . Lm+1,m I −Km+1,m+1 . . . −Km+1, n −Km+1, 0

. . . . . . . . . . . . . . . . . . . . .
Ln, 1 . . . Ln,m −Kn,m+1 . . . I −Kn, n −Kn, 0

L0, 1 . . . L0,m −K0,m+1 . . . −K0, n I −K0, 0


×

×



q1
. . .
qm
pm+1

. . .
pn
p0


=


w0, 1

. . .
w0, n

w0, 0

+
m−1∑
j=1

Aj


wj, 1
. . .
wj, n
wj, 0

 . (3)

The right-hand sides of equations (2) and (3) contain the linear combina-
tions of the known functions that are either reconstructed from the boun-
dary conditions or derived from the real or imaginary parts of ln(zj(t)−
−z∗k(t)), j = 0, . . . ,m, k = 1, . . . , n, where j 6= k.

Here we have the operators

Kj, kg(t) =

2π∫
0

Im[∂τ ln(zj(τ)− zk(t))]g(τ)dτ,

Lj, kg(t) =

2π∫
0

Re[∂τ ln(zj(τ)− zk(t))]g(τ)dτ.

The second operator is a principle value integral defined for the given
density functions of a Hölder class. Systems (2) and (3) can be solved in
the space (L2[0, 2π])n+1 by reducing them to infinite systems over Fourier
coefficients of each unknown function. If the unknown function has the
form rj(t) = Dj +

∞∑
k=1

αj, k cos(kt) + βj, k sin(kt), j = 0, . . . , n, then the

values αj, k, βj, k, j = 0, . . . , n, k ∈ N, can be obtained from the infinite
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system. We find the values of Dj later. For the MBVP1, we fix D0 = 0,

and for the MBVP2, we choose B0, so that
2π∫
0

q0(t)dt = 0.

Approximate solution of the infinite system over the Fourier coefficients
is the solution of the truncated system.

Assume that each contour Cj is given as the polynomial

zj(t) =

Nj∑
k=1

cj, ke
ikt +

Mj∑
k=1

cj,−ke
−ikt, j = 0, . . . , n.

Note that

ln[zj(τ)− zj(t)] = ln(2i) + ln
(

sin
τ − t

2

)
+ i

τ + t

2
+

+ ln

(
Nj∑
k=1

cj, ke
ikt

k−1∑
l=0

eil(τ−t) −
Mj∑
k=1

cj,−ke
−ikτ

k−1∑
l=0

eil(τ−t)

)
.

So,

Re[∂τ ln(zj(τ)− zj(t))] =
1

2
cot
(τ − t

2

)
+

+Re

[
∂τ ln

(
Nj∑
k=1

cj, ke
ikt

k−1∑
l=0

eil(τ−t) −
Mj∑
k=1

cj,−ke
−ikτ

k−1∑
l=0

eil(τ−t)

)]
and

Im[∂τ ln(zj(τ)− zj(t))] =
1

2
+ Im

[
∂τ ln

(
Nj∑
k=1

cj,ke
ikt

k−1∑
l=0

eil(τ−t)−

−
Mj∑
k=1

cj,−ke
−ikτ

k−1∑
l=0

eil(τ−t)

)]
.

Solution of systems (2), (3) reduces to solution of the finite systems over
the coefficients of the Fourier polynomial expansions of the unknown func-
tions q0, . . . , qm, pm+1, . . . , pn or q1, . . . , qm, pm+1, . . . , pn, p0 for the MBVP1
or MBVP2, respectively. It is possible to replace the infinite system with
the finite one, due to the lemma similar to the following statement (see
also Lemma 1 of [2] for the (n+ 1)-dimensional case).
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Lemma 1. Let zj(t) =
T∑

p=−T
Cp, je

ipt be such that z′j(t) 6= 0, j = 0, . . . , n,

t ∈ [0, 2π], and let Uj(t), Vj(t) ∈ C2, α[0, 2π], j ∈ {0, 1, . . . , n}. Then
the approximate solution of the uniquely resolvable Fredholm system of
integral equations of the second kind (2) or (3) can be reduced to solution
of a finite linear system of rank F with the error estimated by O(1/F 2).

Proof. The solution yj(t) of this system of equations can be represented

in the form of the trigonometric series: yj(t) =
∞∑
k=1

αk, j cos kt+ βk, j sin kt.

Restrictions
2π∫
0

yj(t)dt = 0, j = 0, . . . , n, ensure the uniqueness of the

solution of the system (1). Now this system of equations can be reduced
to the infinite system of equations over the finite number of the unknown
coefficients αk, j, βk, j, j = 0, . . . , n, k = 1, . . . ,∞; in the equivalent form

Ỹ = P̃ Ỹ + Q̃, (4)

where Ỹ = (α1, 0, α1, 1, . . . , α1, n, β1, 0, β1, 1, . . . , β1, n, α2, 0, . . .) ∈ l2, the infi-
nite matrix P̃ consists of the elements

1

π2

2π∫
0

f(mt)dt

2π∫
0

g(pτ)(arg[zk(τ)− zj(t)])′τdτ or

1

π2

2π∫
0

f(mt)dt

2π∫
0

g(pτ)(ln |zk(τ)− zj(t)|)′τdτ

with f(x), g(x) equal to cosx or sinx. These elements are the Fourier co-
efficients of the double Fourier series of (arg(zk(τ)− zj(t)))′τ or ln |zk(τ)−
−zj(t)|′τ , Q̃ constitutes the sequence of the corresponding Fourier coeffi-
cients of the functions Uj(t), j = 0, . . . ,m, and Vj(t), j = m+ 1, . . . , n, in
Case 1, and Uj(t), j = 1, . . . ,m, and Vj(t), j = m+ 1, . . . , n, 0, in Case 2.

We need to construct the approximate solution ỹj(t) of system of equa-

tions (4) in the trigonometric polynomial form ỹj(t) =
M∑
k=1

αk, j cos kt +

+ βk, j sin kt in order to apply the truncated linear system approach as
in [2]. So, we have to find the vector ỸF with zero coordinates starting
with the (2M(n + 1) + 1)-th one, which approximates the infinite vector
Ỹ . Further on, we identify the vector-function Y , the integral operator P ,
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the vector-function Q with the sequence Ỹ , the infinite matrix P̃ and the
sequence Q̃, respectively.

Evidently, the kernels (arg(zj(τ)− zk(t)))′τ of system (1) are infinitely
differentiable for k 6= j. Due to the Cauchy Theorem, we have arg(zj(τ)−
−zj(t)) = argz′(t + θ(τ − t)) with θ ∈ (0, 1); so this function is well-
defined for t, τ ∈ [0, 2π] and lim

τ→t
arg(zj(τ) − zj(t))′τ = k(t)|z′(t)|/2, where

k(t) is the curvature of the boundary curve at the corresponding point.
It can be easily verified that the kernel (arg(zj(τ) − zj(t)))

′
τ is at least

twice differentiable with respect to both variables. So the double complex
Fourier coefficients of (arg(zk(τ)− zj(t)))′τ have the following estimates:

|ck, j, l, t| <
U

|l|2|t|2
.

The singular kernels (ln |zj(τ)− zj(t)|)′τ are the kernels of the integrals
with the known Hölder densities. So, these integrals are contained in the
system of equations as the free summands.

For F = (n+1)2M , integral system of equations (1) reduces to infinite
linear system (4), which can be presented as follows:(

IF − PF S
R I∞ − V

)(
Y1
Y2

)
=

(
Q1

Q2

)
.

Here PF is an F × F block matrix P =

P0, 0 . . . P0, n

. . . . . . . . .
Pn, 0 . . . Pn, n

, M × M

matrices Pj, k correspond to the integral summands of (1), j, k = 0, . . . , n,
S is an F ×∞ matrix, R is an∞×F matrix, V is an∞×∞ matrix, IF ,
and I∞ are the identity matrices of the relative sizes. Each of the vectors
Q1 and Y1 has F coordinates, the vectors Q2 and Y2 have the infinite
number of coordinates. The Fourier coefficients of the smooth functions
tend to zero as their numbers tend to infinity; so the coefficients of the
matrices S,R and V together with the coordinates of Q2 decrease rapidly
as F →∞. Due to the Lemma 1 assumptions and the Fourier coefficients
speed of convergence to zero, the matrix norm of V and the vector norm
of Y2 tend to zero as F →∞.

Let us prove that there exists the number T ∈ N, such that the matrix
operator IF − PF is invertible ∀F > T , since the limit for PF integral
operator P is compact and the operator I − P is invertible, due to the
lemma assumption. Note that we do not distinguish a finitely dimensional
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vector and the Fourier polynomial with the corresponding finite set of
coordinates in our proof. Recall first that due to chapter VI, paragraph 1
of [21], ‖P − PF‖ → 0 if F → ∞. The operator norm that we deal with
here is the usual operator norm for the Hilbert space mappings. Let us
assume that ∀T ∈ F there exists sl > T , such that the spectrum of Psl
contains 1. Then there exists an infinite sequence (vsl)l∈F ⊂ L2, such that
‖vsl‖ = 1 and Pslvsl = vsl . Let us prove that then there exists at least one
limit point for the sequence {vsl}l∈F. Since the operator P is compact,
there exist both a subsequence {vskj }j∈F and an element w0 ∈ L2, so that
Pvskj → w0 as j →∞. Then

‖Pskj vskj − w0‖ = ‖Pskj vskj − Pvskj + Pvskj − w0‖ 6
6 ‖Pskj vskj − Pvskj ‖+ ‖Pvskj − w0‖ 6
6 ‖Pskj − P‖+ ‖Pvskj − w0‖ → 0, j →∞.

Thus, ‖vskj −w0‖=‖Pskj vskj −w0‖→0, j→∞. Hence, vskj→ w0, j→∞.
Note that, since ‖vskj ‖ = 1, ∀j ∈ F, the element w0 is nondegenerate. Let
us show now that the relation Pw0 = w0 holds. Indeed, we have

‖Pw0 − w0‖ = ‖Pw0 + Pvskj − Pvskj − w0‖ 6
6 ‖P‖‖w0 − vskj ‖+ ‖Pvskj + Pskj vskj − Pskj vskj − w0‖ 6
6 ‖P‖‖w0 − vskj ‖+‖Pskj vskj − Pvskj ‖+‖w0 − Pskj vskj‖6
6 ‖P‖‖w0 + vskj ‖+‖P − Pskj ‖+‖w0 − vskj ‖→0, j→∞.

Hence, the spectrum of P contains 1. This contradicts with the uniquiness
of the corresponding mixed problem.

We now take the number F so that ‖V ‖ < 1 and the matrix IF − PF
has the inverse. Now we have the relation

(IF − PF )[IF − (IF − PF )−1S(I∞ − V )−1R]Y1 = Q1 − S(I∞ − V )−1Q2.

Obviously, one can choose the value of F so large that ‖S(I∞−V )−1R‖ =
= O(1/F 2) = r, where r < 1 is arbitrary small due to estimates of the
corresponding Fourier coefficients. Now we estimate the norm of the diffe-
rence between the solution Y1 and the solution Ỹ1 of the truncated system
(IF − PF )Ỹ1 = Q1:

‖Y1 − Ỹ1‖ 6
1

1− r
‖(IF − PF )−1‖‖S(I∞ − V )−1‖‖Q2‖+
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+
r

1− r
‖(IF − PF )−1‖‖Q1‖.

Consider the first summand on the right-hand side of the last inequa-
lity. Recall the Jackson’s inequality [22]: if f : [0,2π]→ C is a p times
differentiable periodic function such that |f (p)(x)| 6 1, 0 6 x 6 2π,
then, for every positive integer n, there exists a trigonometric polynomial

Tn−1 of degree at most n− 1, such that |f(x)−Tn−1(x)|6 C(p)

np
for any

x ∈ [0, 2π], where C(p) depends only on p. So, the vector norm of Q2

can be estimated by this inequality as K/F 2. The second summand also
behaves as O(1/F 2), due to presence of the coefficient r. So, the error due
to the series tail is O(1/F 2). �

The matrix of the truncated system consists of the Fourier coefficients
of δi, j ±Ki, j or Li, j.

Each solution of the truncated system has the form of Fourier polyno-
mial and is linear dependent on the real constants Aj, Bl and Dj.

Since p(t)+iq(t) is the boundary value of the analytic inD function, the
corresponding Cauchy integral vanishes at the points that do not belong
to D. So, we obtain the equations that constitute the linear system over
2n unknown real constants Aj, Bl, and Dj. The constants Aj, Bl together
with the free summands Dk of the function Fourier series expansions, are
the solutions of the complex system∮

∂D

p(τ) + iq(τ)

z(τ)− z∗l
d(z(τ)) = 0, l = 1, . . . , n.

Here z∗l , l = m + 1, . . . , n, are the points inside the domains bounded by
the contours Cl, respectively. Note that we have n real constants Aj, Bl.

Finally, for the MBVP1 the solution equals

f(x, y) = Re

[
1

2πi

∫
∂D

p(τ) + iq(τ)

z(τ)− x− iy
d(z(τ)) +

m∑
j=1

Aj ln(x+ iy − z∗j )

]
.

For the MBVP2 the solution has the form

f(x, y) = Re

[
1

2πi

∫
∂D

p(τ) + iq(τ)

z(τ)− x− iy
d(z(τ)) +

m−1∑
j=1

Aj ln(x+ iy − z∗j )−
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− ln(x+ iy − z∗m)
m−1∑
j=1

Aj

]
.

The proof is completed. �

2. Examples. In all of the examples we take F = 200, M = 100.

Figure 1: The contour lines of the solution in Example 1 (left), the contour
lines of the solution in Example 2 (center) and the extremal electric field
strength at the domain boundary in Example 2 (right).

Example 1. Consider the problem for the symmetric domain with the
elliptic boundary components z0(t) = 6eit−e−it, z1(t) = 0.8eit+0.2e−it+3i,
z2(t) = 0.8eit + 0.2e−it − 3i. Here we solve the mixed boundary value
problem with the following data: the unknown function possesses zero
normal derivative at the exterior boundary component and equals 1 and 2
at the inner upper and lower components, respectively. It is the MBVP2.

Figure 1 (left) demostrates the contour lines of the solution in this
case.

Example 2. Consider the problem for the asymmetric domain with
the elliptic boundary components z0(t) = 6eit− e−it, z1(t) = 0.8ei(t+π/4) +
+ 0.2e−i(t+π/4) + 3i, z2(t) = 0.8eit + 0.2e−it − 3i. Here we solve the mixed
boundary value problem with the following data: the function has zero
normal derivative at the exterior large elliptic boundary component and
equals 1 and 2 at the inner upper and lower elliptic components, respec-
tively. Figure 1 (center) shows the contour lines of the solution.
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Figure 1 (right) shows the extremal points of the electric field distri-
bution at the domain boudary. The letter A denotes the points of the
minimal electric field strength and the letter B shows the point of the
maximal electic strength.

Example 3. Consider the problem for the symmetric domain with the
elliptic boundary components z0(t) = 6eit−e−it, z1(t) = 0.8eit+0.2e−it+3i,
z2(t) = 0.8eit + 0.2e−it − 3i, z3(t) = 0.8eit − 0.3e−it. Here we solve the
following boundary value problem: the unknown function has zero normal
derivative at the exterior boundary component and equals 1, 1.5, and 2
at the inner upper, middle, and lower components, respectively. Figure 2
demonstrates the solution graph.
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Figure 2: Solution graph for Example 3.

Example 4. Consider the problem for the symmetric domain with
the elliptic boundary components z0(t) = 6eit − e−it, z1(t) = 0.8eit +
+0.2e−it+3i, z2(t) = 0.8eit+0.2e−it−3i, z3(t) = 0.8eit−0.3e−it. Here we
solve the boundary value problem with the following data: the function
possesses zero normal derivative at the exterior and the middle boundary
components and equals 1 and 2 at the inner upper and lower components,
respectively. Figure 3 (left) demonstrates the solution graph.

The letter A denotes the points of the minimal electric field strength
and the letter B shows the point of the maximal electic field strength
(Fig. 3, right).

Example 5. Consider the domain with the boundary given by the
equations z0(t) = 5.5eit− 0.5e−it and z1(t) = 0.5eit− 0.1e−it (Fig. 4, left).
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Figure 3: The solution graph for Example 4 (left) and the extremal electric
field strength at the domain boundary in Example 4 (right).

We approximate the exact solution x2 − y2 in this domain. Assume that
the function values are known at the exterior boundary component and the
normal derivatives are given at the interior boundary component. This
is the MBVP1. We have no constants of type A. Difference between
the constructed solution and the exact one inside the domain is less than
0.0006 (Fig. 4, right).
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Figure 4: The domain in (left) and the difference between the approximate
and exact solutions (right) in Example 5.

3. Conclusion. The Cauchy integral method can be applied not
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only to Dirichlet problems but also to problems with mixed boundary
conditions on multiply connected domains. The method is easily pro-
grammable. The solution is a smooth function that allows deeper insights
into the solution properties. The process of solution does not require the
domain mesh, nor construction and analysis of the weak solution.
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