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N-FRACTIONAL CALCULUS OPERATOR METHOD TO
THE EULER EQUATION

Abstract. We can obtain the explicit solutions of the Euler equa-
tion by using the fractional calculus methods. So, we apply the N
operator method in the fractional calculus to solve this equation in
this paper. We take advantage of some results of previous studies
related to the fractional calculus.
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1. Introduction and Preliminaries. The theory of fractional
calculus (fractional integrals and fractional derivatives) has a 300 year-
long history and it has always been a subject of interest. Popularity
of fractional calculus continues via important studies in the field, e. g.,
[1–3,5, 8–10].

In the recent years, by making use of the following definition, pro-
perties, and characteristics of a fractional differintegral operator of order
ν ∈ R, many scientists have explicitly obtained particular solutions of a
number of families of homogeneous (as well as non- homogeneous) linear
ordinary and partial fractional differintegral equations [6, 11–14].

We find it convenient to recall here the following definition of a frac-
tional differintegral of y(z) of order ν:

Definition 1. Let C := {C−, C+}. Here C− is a contour along the cut
joining the points z and −∞ + i Im(z) that starts at −∞, encircles the
point z once counter-clockwise, and returns to −∞, and C+ is a contour
along the cut joining the points z and ∞ + i Im(z) that starts at ∞,
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encircles the point z once counter-clockwise, and returns to ∞. Let a
function y(z) be analytic and have no branch points inside and on C,

yν(z) :=
Γ(ν + 1)

2πi

∫
C

y(ξ)dξ

(ξ − z)ν+1
(ν /∈ Z−),

and,
y−n(z) := lim

ν→−n
yν(z) (n ∈ Z+),

where ξ 6= z, −π 6 arg(ξ − z) 6 π for C−, and 0 6 arg(ξ − z) 6 2π for
C+. Then yν(z) (ν > 0) is said to be the fractional derivative of y(z) of
order ν and yν(z) (ν < 0) is said to be the fractional integral of y(z) of
order −ν, provided that |yν(z)| <∞ (ν ∈ R) [4].

We need the following lemmas and properties to solve ordinary and
partial differential equations [4].

Lemma 1. [Linearity] Consider analytic and single-valued functions y(z)
and u(z) and assume that yν(z) and uν(z) exist. Then

[hy(z) + ku(z)]ν = hyν(z) + kuν(z),

where h and k are constants and ν ∈ R, z ∈ C.

Lemma 2. [Index law] Consider an analytic and single-valued function
y(z) and assume that (yρ)ν(z) and (yν)ρ(z) exist. Then

(yρ)ν(z) = (yρ+ν)(z) = (yν)ρ(z),

where ν,ρ ∈ R, z ∈ C and
∣∣∣ Γ(ν+ρ+1)

Γ(ν+1)Γ(ρ+1)

∣∣∣ <∞.

Lemma 3. [Generalized Leibniz rule] Consider analytic and single-valued
functions y(z) and u(z) and assume that yν(z) and uν(z) exist. Then

N ν [y(z)u(z)] = [y(z)u(z)]ν =
∞∑
n=0

Γ(ν + 1)

Γ(ν + 1− n)Γ(n+ 1)
yν−n(z)un(z),

where ν ∈ R, z ∈ C and
∣∣∣ Γ(ν+1)

Γ(ν+1−n)Γ(n+1)

∣∣∣ <∞.

Remark. When λ (λ 6= 0) is a constant,

(eλz)ν = λνeλz (ν ∈ R, z ∈ C),
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(e−λz)ν = e−iπνλνe−λz (ν ∈ R, z ∈ C),

(zλ)ν = e−iπν
Γ(ν − λ)

Γ(−λ)
zλ−ν

(
ν ∈ R, z ∈ C,

∣∣∣∣Γ(ν − λ)

Γ(−λ)

∣∣∣∣ <∞) .
Although our present study is similar to the Nishimoto’s study in 2010

(see [7]), we have explicitly obtained the fractional solutions of the non-
homogeneous Euler equation by a theorem; also we have presented the
fractional solutions of the homogeneous Euler equation and general solu-
tion of this equation via the results of this theorem. Besides, fractional
solutions of the partial differential equation of the second order were also
exhibited differently from Nishimoto’s article.

2. N operator method for the Euler equation. The non-
homogeneous Euler equation of second order is reduced to a non-homoge-
neous linear ordinary fractional differintegral equation by means of the N
operator method in the following theorem. This fractional differintegral
equation is a special case of the general linear ordinary fractional differin-
tegral equation involving the polynomials P (z; p) and Q(z; q) presented by
Tu et al. [12]. Thus, the fractional solutions in this article can be obtained
by means of the general results proven by Tu et al. [12], when degrees of
these polynomials are zero.

Theorem 1. Consider y ∈ {y : 0 6= |yν | < ∞; ν ∈ R} and
f ∈{f : 0 6= |fν |<∞; ν ∈ R}. Then the non-homogeneous Euler equation

L[y, x;α, β] = y2x
2 + y1αx+ yβ = f (x 6= 0), (1)

has particular solutions in fractional differintegral form, as follows:

y =
{
x−(1+

√
∆)
[
f 1

2
[(1−α)+

√
∆]x
−(1−

√
∆)
]
−1

}
−1+ 1

2
[(α−1)−

√
∆]
≡ yI , (2)

y =
{
x−(1−

√
∆)
[
f 1

2
[(1−α)−

√
∆]x
−(1+

√
∆)
]
−1

}
−1+ 1

2
[(α−1)+

√
∆]
≡ yII , (3)

y =
{
x−1
[
f 1

2
(1−α)x

−1
]
−1

}
1
2

(α−3)
≡ yIII . (4)

Here yν = dνy/dxν for ν > 0, y0 = y(x), f = f(x) and yI , yII , yIII are
three particular solutions of equation (??) and α, β are constants.

Proof. Applying the N operator method to equation (1), we have

(y2x
2)ν + (y1αx)ν + (yβ)ν = fν . (5)
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Now we have

N ν(y2x
2) = (y2x

2)ν =
2∑

n=0

Γ(ν + 1)

n!Γ(ν + 1− n)
(y2)ν−n(x2)n =

= y2+νx
2 + y1+ν2νx+ yνν(ν − 1),

(y1αx)ν =
1∑

n=0

Γ(ν + 1)

n!Γ(ν + 1− n)
(y1)ν−n(αx)n =

= y1+ναx+ yννα,

and,
(yβ)ν = yνβ, (6)

by Lemmas 1, 2, and 3, respectively.
Therefore, we have

y2+νx
2 + y1+ν(2ν + α)x+ yν [ν

2 + ν(α− 1) + β] = fν . (7)

We chose ν such that

ν2 + ν(α− 1) + β = 0,

that is,

ν =
1

2
[(1− α)±

√
∆], (8)

where ∆ = (α− 1)2 − 4β.
When ν = 1

2
[(1− α) +

√
∆] and ∆ 6= 0, we have

y2+ 1
2

[(1−α)+
√

∆]x
2 + y1+ 1

2
[(1−α)+

√
∆](1 +

√
∆)x = f 1

2
[(1−α)+

√
∆], (9)

from equation (7).
Set

y1+ 1
2

[(1−α)+
√

∆] = φ = φ(x) (y = φ−1+ 1
2

[(α−1)−
√

∆]); (10)

we have then

φ1 + φ(1 +
√

∆)x−1 = f 1
2

[(1−α)+
√

∆]x
−2, (11)

from equation (9). Then, a particular solution to this first order equation
is given by

φ = x−(1+
√

∆)
[
f 1

2
[(1−α)+

√
∆]x
−(1−

√
∆)
]
−1
. (12)
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Therefore, we obtain equation (2) from (10) and (12).
When ν = 1

2
[(1− α)−

√
∆] and ∆ 6= 0, we have

y2+ 1
2

[(1−α)−
√

∆]x
2 + y1+ 1

2
[(1−α)−

√
∆](1−

√
∆)x = f 1

2
[(1−α)−

√
∆], (13)

from equation (7).
Set

y1+ 1
2

[(1−α)−
√

∆] = ϕ = ϕ(x) (y = ϕ−1+ 1
2

[(α−1)+
√

∆]); (14)

we have then

ϕ1 + ϕ(1−
√

∆)x−1 = f 1
2

[(1−α)−
√

∆]x
−2, (15)

from equation (13). Then, a particular solution to this first order equation
is given by

ϕ = x−(1−
√

∆)
[
f 1

2
[(1−α)−

√
∆]x
−(1+

√
∆)
]
−1
. (16)

Therefore, we obtain equation (3) from (14) and (16).
When ∆ = 0, we have

y2+ 1
2

(1−α)x
2 + y1+ 1

2
(1−α)x = f 1

2
(1−α), (17)

from equation (7).
Set

y1+ 1
2

(1−α) = ψ = ψ(x) (y = ψ 1
2

(α−3)), (18)

we have then
ψ1 + ψx−1 = f 1

2
(1−α)x

−2, (19)

from equation (17). Then, a particular solution to this first order equation
is given by

ψ = x−1
[
f 1

2
(1−α)x

−1
]
−1
. (20)

Therefore, we obtain equation (4) from (18) and (20). �

Corollary 1. Consider the following homogeneous Euler equation:

y2x
2 + y1αx+ yβ = 0 (x 6= 0), (21)

where y ∈ {y : 0 6= |yν | <∞; ν ∈ R}.
When f = 0 in Theorem 1, we have

φ1 + φ(1 +
√

∆)x−1 = 0, (22)
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ϕ1 + ϕ(1−
√

∆)x−1 = 0, (23)

ψ1 + ψx−1 = 0, (24)

instead of (11), (15) and (19), respectively, and so, equation (21) has
solutions of the forms:

y = h
[
x−(1+

√
∆)
]
−1+ 1

2
[(α−1)−

√
∆]
≡ y(I), (25)

y = h
[
x−(1−

√
∆)
]
−1+ 1

2
[(α−1)+

√
∆]
≡ y(II), (26)

y = h
[
x−1
]

1
2

(α−3)
≡ y(III). (27)

where h is an arbitrary constant and y(I), y(II), y(III) are three particular
solutions of equation (21).

Therefore, we obtain (25) from (22), (26) from (23), and (27) from (24).

Corollary 2. Consider y ∈ {y : 0 6= |yν | < ∞; ν ∈ R} and
f ∈ {f : 0 6= |fν | < ∞; ν ∈ R}. Then the non-homogeneous Euler’s
equation (??) is satisfied by the following equality:

y = yI + y(I). (28)

3. Partial differential equations.

Theorem 2. A partial differential equation of the second order

∂2η

∂x2
x2 +

∂η

∂x
αx+ δη = M

∂2η

∂t2
+N

∂η

∂t
(η = η(x, t)), (29)

has solutions of the forms:

η = h
[
x−(1+

√
∆)
]
−1+ 1

2
[(α−1)−

√
∆]

exp
[−N ±√N2 + 4M(δ − β)

2M
t
]
, (30)

(MN 6= 0),

η = h
[
x−(1−

√
∆)
]
−1+ 1

2
[(α−1)+

√
∆]

exp
[−N ±√N2 + 4M(δ − β)

2M
t
]
, (31)

(MN 6= 0),

η = h
[
x−1
]

1
2

(α−3)
exp

[−N ±√N2 + 4M(δ − β)

2M
t
]

(MN 6= 0), (32)
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η = h
[
x−(1+

√
∆)
]
−1+ 1

2
[(α−1)−

√
∆]

exp
[
±
(δ − β

M

)1/2

t
]
, (33)

(M 6= 0, N = 0),

η = h
[
x−(1−

√
∆)
]
−1+ 1

2
[(α−1)+

√
∆]

exp
[
±
(δ − β

M

)1/2

t
]
, (34)

(M 6= 0, N = 0),

η = h
[
x−1
]

1
2

(α−3)
exp

[
±
(δ − β

M

)1/2

t
]

(M 6= 0, N = 0), (35)

η = h
[
x−(1+

√
∆)
]
−1+ 1

2
[(α−1)−

√
∆]

exp
[(δ − β

N

)
t
]

(M = 0, N 6= 0), (36)

η = h
[
x−(1−

√
∆)
]
−1+ 1

2
[(α−1)+

√
∆]

exp
[(δ − β

N

)
t
]

(M = 0, N 6= 0), (37)

η = h
[
x−1
]

1
2

(α−3)
exp

[(δ − β
N

)
t
]

(M = 0, N 6= 0), (38)

where α, β and δ are given constants, β = δ−Mλ2−Nλ with (α−1)2 > 4β,
and h is an arbitrary constant.

Proof. Let η(x,t) = y(x)eλt (λ 6= 0) be a solution of equation (29). So,

∂η

∂t
= λyeλt,

∂2η

∂t2
= λ2yeλt,

∂η

∂x
= y1e

λt,
∂2η

∂x2
= y2e

λt,

and equation (29) becomes

y2x
2 + y1αx+ y(δ −Mλ2 −Nλ) = 0. (39)

Here, we choose λ as δ −Mλ2 −Nλ = β, that is

λ =
−N ±

√
N2 + 4M(δ − β)

2M
(MN 6= 0),

λ = ±
(δ − β

M

)1/2

(M 6= 0, N = 0),

λ =
δ − β
N

(M = 0, N 6= 0).

Then, equation (39) becomes

y2x
2 + y1αx+ yβ = 0.
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By Corollary 1, the solutions are given by

y = h
[
x−(1+

√
∆)
]
−1+ 1

2
[(α−1)−

√
∆]
≡ y(I),

y = h
[
x−(1−

√
∆)
]
−1+ 1

2
[(α−1)+

√
∆]
≡ y(II),

y = h
[
x−1
]

1
2

(α−3)
≡ y(III).

Thus, for MN 6= 0, the partial differential equation (29) has the solutions
of the forms (30)–(32). Moreover, for M 6= 0 and N = 0, the solutions
of equation (29) are given by (33)–(35), and for M = 0 and N 6= 0 by
(36)–(38). �

4. Conclusion. The Nishimoto fractional calculus operator method
was applied to the Euler equation and fractional solutions (unlike the
known ones) were obtained for this equation. This different method of
solution has added originality to this paper. This study may serve as a
base for new works. In addition, this method is more practical and faster
than other methods, e. g., the traditional Euler method.
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