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MULTIVARIATE IYENGAR TYPE INEQUALITIES
FOR RADIAL FUNCTIONS

Abstract. Here we present a variety of multivariate Iyengar type
inequalities for radial functions defined on the shell and ball. Our
approach is based on the polar coordinates in RN , N > 2, and the
related multivariate polar integration formula. Via this method we
transfer well-known univariate Iyengar type inequalities and uni-
variate author’s related results into multivariate Iyengar inequali-
ties.
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1. Background. In the year 1938, Iyengar [5] proved the following
interesting inequality.

Theorem 1. Let f be a differentiable function on [a,b] and |f ′ (x)| 6M1.
Then∣∣∣∣

b∫
a

f (x) dx− 1

2
(b− a) (f (a) + f (b))

∣∣∣∣ 6 M1 (b− a)2

4
− (f (b)− f (a))2

4M1

.

(1)

In 2001, X.-L. Cheng [4] proved that

Theorem 2. Let f ∈ C2 ([a, b]) and |f ′′ (x)| 6M2. Then∣∣∣∣
b∫

a

f (x) dx− 1

2
(b− a) (f (a) + f (b)) +

1

8
(b− a)2 (f ′ (b)− f ′ (a))

∣∣∣∣ 6
6
M2

24
(b− a)3 − (b− a)

16M2

∆2
1, (2)
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where
∆1 = f ′ (a)− 2 (f (b)− f (a))

(b− a)
+ f ′ (b) .

In 1996, Agarwal and Dragomir [1] obtained a generalization of (1):

Theorem 3. Let f : [a, b]→ R be a differentiable function such that for
all x ∈ [a, b] with M > m we have m 6 f ′ (x) 6M . Then

∣∣∣∣
b∫

a

f (x) dx− 1

2
(b− a) (f (a) + f (b))

∣∣∣∣ 6
6

(f (b)− f (a)−m (b− a)) (M (b− a)− f (b) + f (a))

2 (M −m)
. (3)

In [7], Qi proved

Theorem 4. Let f : [a, b] → R be a twice differentiable function such
that for all x ∈ [a, b] with M > 0 we have |f ′′ (x)| 6M . Then

∣∣∣∣
b∫

a

f (x) dx− (f (a) + f (b))

2
(b− a)+

(1 +Q2)

8
(f ′ (b)− f ′ (a)) (b−a)2

∣∣∣∣ 6
6
M (b− a)3

24

(
1− 3Q2

)
, (4)

where

Q2 =

(
f ′ (a) + f ′ (b)− 2

(
f(b)−f(a)

b−a

))2
M2 (b− a)2 − (f ′ (b)− f ′ (a))2

. (5)

In 2005, Zheng Liu, [6], proved the following:

Theorem 5. Let f : [a, b] → R be a differentiable function such that f ′
is integrable on [a, b] and for all x ∈ [a, b] with M > m we have

m 6
f ′ (x)− f ′ (a)

x− a
6M and m 6

f ′ (b)− f ′ (x)

b− x
6M. (6)

Then

∣∣∣ b∫
a

f (x) dx−(f (a) + f (b))

2
(b− a)+

(
1 + P 2

8

)
(f ′ (b)− f ′ (a)) (b− a)2−
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−
(

1 + 3P 2

48

)
(m+M) (b− a)3

∣∣∣∣ 6 (M −m) (b− a)3

48

(
1− 3P 2

)
, (7)

where

P 2 =

(
f ′ (a) + f ′ (b)− 2

(
f(b)−f(a)

b−a

))2
(
M−m

2

)2
(b− a)2 −

(
f ′ (b)− f ′ (a)−

(
m+M

2

)
(b− a)

)2 . (8)

We need

Remark. We define the ball B (0, R) = {x ∈ RN : |x| < R} ⊆ RN ,
N > 2, R > 0, and the sphere

SN−1 :=
{
x ∈ RN : |x| = 1

}
,

where |·| is the Euclidean norm. Let dω be the element of surface measure
on SN−1 and

ωN =

∫
SN−1

dω =
2π

N
2

Γ
(
N
2

)
be the area of SN−1.

For x ∈ RN − {0} we can write uniquely x = rω, where r = | x| > 0

and ω = x
r
∈ SN−1, |ω| = 1. Note that

∫
B(0,R)

dy = ωNRN

N
is the Lebesgue

measure on the ball, that is the volume of B (0, R), which exactly is

V ol (B (0, R)) =
π

N
2 RN

Γ
(
N
2

+ 1
) .

Following [8, pp. 149–150, exercise 6], and [9, pp. 87–88, Theorem 5.2.2]
we can write for F : B (0, R)→ R a Lebesgue integrable function that

∫
B(0,R)

F (x) dx =

∫
SN−1

( R∫
0

F (rω) rN−1dr

)
dω, (9)

and we use this formula a lot.
Typically here the function f : B (0, R) → R is radial; that is, there

exists a function g such that f (x) = g (r), where r = |x|, r ∈ [0, R],
∀x ∈ B (0, R).

Remark. Let the spherical shell A := B (0, R2)−B (0, R1), 0 < R1 < R2,
A ⊆ RN , N > 2, x ∈ A. Consider that f : A→ R is radial; that is, there
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exists g such that f (x) = g (r), r = |x|, r ∈ [R1,R2], ∀ x ∈ A. Here x
can be written uniquely as x = rω, where r = |x| > 0 and ω = x

r
∈ SN−1,

|ω| = 1, see ( [8, p. 149 –150], and [2, p.421]), furthermore for F : A→ R
a Lebesgue integrable function we have that

∫
A

F (x) dx =

∫
SN−1

( R2∫
R1

F (rω) rN−1dr

)
dω. (10)

Here

V ol (A) =
ωN

(
RN

2 −RN
1

)
N

=
π

N
2

(
RN

2 −RN
1

)
Γ
(
N
2

+ 1
) . (11)

In this article we derive multivariate Iyengar type inequalities on the
shell and ball of RN , N > 2, for radial functions. Our results are based
on Theorem 1 – Theorem 5 and several other results by the author.

2. Main Results. We present the following multivariate Iyengar type
inequalities on the shell and the ball:

We start with

Theorem 6. Let the spherical shell A := B (0, R2)−B(0, R1), A ⊆ RN ,
N > 2, 0 < R1 < R2. Consider f : A → R that is radial, that is, there
exists g such that f (x) = g (r), r = |x|, r ∈ [R1, R2], ∀x ∈ A; x = rω,
ω ∈ SN−1. We assume that g ∈ C1 ([R1, R2]).

Then∣∣∣∣ ∫
A

f (y) dy − (R2 −R1)
[
g (R1)R

N−1
1 + g (R2)R

N−1
2

] π
N
2

Γ
(
N
2

)∣∣∣∣ 6
6

π
N
2

2Γ
(
N
2

)[∥∥ (g (s) sN−1
)′ ∥∥
∞,[R1,R2]

(R2 −R1)
2−

−
(
g (R2)R

N−1
2 − g (R1)R

N−1
1

)2∥∥(g (s) sn−1)′
∥∥
∞, [R1,R2]

]
. (12)

Proof. Here g ∈ C1([R1, R2]) and clearly h(s) := g(s)sN−1 ∈ C1([R1, R2]),
N > 2. We set ‖h′‖∞, [R1,R2]

= M . By (1) we get

∣∣∣∣
R2∫

R1

h (x) dx− 1

2
(R2 −R1) (h (R1) + h (R2))

∣∣∣∣ 6
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6
M (R2 −R1)

2

4
− (h (R2)− h (R1))

2

4M
=

=

∥∥∥(g (s) sN−1
)′∥∥∥
∞, [R1,R2]

(R2 −R1)
2

4
−

−
(
g (R2)R

N−1
2 − g (R1)R

N−1
1

)2
4
∥∥ (g (s) sN−1)′

∥∥
∞, [R1,R2]

=: λ. (13)

Equivalently, we have

− λ 6
R2∫

R1

g (s) sN−1ds− 1

2
(R2 −R1)

(
g (R1)R

N−1
1 + g (R2)R

N−1
2

)
6 λ,

(14)

− λ 6
R2∫

R1

f (sω) sN−1ds−
(
R2 −R1

2

)(
g (R1)R

N−1
1 + g (R2)R

N−1
2

)
6 λ.

(15)
Hence it holds

−λ
∫

SN−1

dω 6
∫

SN−1

( R2∫
R1

f(sω)sN−1ds

)
dω−

−
(
R2 −R1

2

)(
g (R1)R

N−1
1 + g (R2)R

N−1
2

) ∫
SN−1

dω 6 λ

∫
SN−1

dω, (16)

that is (by (10))

− λ 2π
N
2

Γ
(
N
2

) 6 ∫
A

f (y) dy −
(
R2 −R1

2

)[
g (R1)R

N−1
1 +

+ g (R2)R
N−1
2

] 2π
N
2

Γ
(
N
2

) 6 λ
2π

N
2

Γ
(
N
2

) . (17)

Therefore we get∣∣∣∣ ∫
A

f (y) dy − (R2 −R1)
[
g (R1)R

N−1
1 + g (R2)R

N−1
2

] π
N
2

Γ
(
N
2

)∣∣∣∣ 6 λ
2π

N
2

Γ
(
N
2

) .
(18)
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The theorem is proved. �

We give

Corollary. (to Theorem 6) Let f : B(0, R)→ R be radial, that is, there
exists a function g such that f (x) = g (r), where r = |x|, r ∈ [0, R],
R > 0, ∀ x ∈ B (0, R); N > 2. We assume that g ∈ C1 ([0, R]). Then∣∣∣∣ ∫

B(0,R)

f(y)dy −RNg(R)
π

N
2

Γ
(
N
2

)∣∣∣∣ 6
6

π
N
2

2Γ
(
N
2

) [∥∥ (g(s)sN−1
)′ ∥∥
∞, [0, R]

R2 − g2 (R)R2(N−1)∥∥ (g (s) sN−1)′
∥∥
∞, [0, R]

]
. (19)

Proof. Similar to Theorem 6, use of (9). �

We also give

Theorem 7. Let f : A → R be radial; that is, there exists g such that
f (x) = g (r), r = |x|, r ∈ [R1, R2], ∀ x ∈ A; x = rω, ω ∈ SN−1, N > 2.
We assume that g ∈ C2 ([R1, R2]).

Then∣∣∣∣ ∫
A

f (y) dy −
[

(R2 −R1)
(
g (R1)R

N−1
1 + g (R2)R

N−1
2

)
+

+
(R2 −R1)

2

4

((
g (s) sN−1

)′
(R2)−

(
g (s) sN−1

)′
(R1)

)] π
N
2

Γ
(
N
2

)∣∣∣∣ 6
6

[∥∥ (g (s) sN−1
)′′ ∥∥

∞, [R1,R2]

12
(R2 −R1)

3−

−

(
(R2 −R1)

8
∥∥(g (s) sN−1)′′

∥∥
∞, [R1, R2]

)
∆2

1

]
π

N
2

Γ
(
N
2

) , (20)

where

∆1:=
(
g (s) sN−1

)′
(R1)−

2
(
g (R2)R

N−1
2 − g (R1)R

N−1
1

)
(R2 −R1)

+
(
g(s)sN−1

)′
(R2).

(21)

Proof. Here g ∈ C2([R1, R2]) and clearly h(s) :=g(s)sN−1∈C2([R1, R2]),
N > 2. We set ‖h′′‖∞, [R1,R2]

= M . By (2) we get
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∣∣∣∣
R2∫

R1

h (s) ds− 1

2
(R2 −R1) (h (R1) + h (R2)) +

1

8
(R2−

−R1)
2 (h′(R2)− h′(R1))

∣∣∣∣ 6 M

24
(R2 −R1)

3 − (R2 −R1)

16M
∆2

1, (22)

where
∆1 = h′ (R1)−

2 (h (R2)− h (R1))

(R2 −R1)
+ h′ (R2) . (23)

That is∣∣∣∣
R2∫

R1

g (s) sN−1ds− (R2 −R1)

2

(
g (R1)R

N−1
1 + g (R2)R

N−1
2

)
+

+
(R2 −R1)

2

8

((
g (s) sN−1

)′
(R2)−

(
g (s) sN−1

)′
(R1)

) ∣∣∣∣ 6
6
M

24
(R2 −R1)

3 − (R2 −R1)

16M
∆2

1 =: ψ, (24)

where

∆1 :=
(
g (s) sN−1

)′
(R1)−

2
(
g (R2)R

N−1
2 − g (R1)R

N−1
1

)
(R2 −R1)

+

+
(
g (s) sN−1

)′
(R2) . (25)

Equivalently, we have

−ψ 6
R2∫

R1

f (sω) sN−1ds− (R2 −R1)

2

(
g (R1)R

N−1
1 + g (R2)R

N−1
2

)
+

+
(R2 −R1)

2

8

((
g (s) sN−1

)′
(R2)−

(
g (s) sN−1

)′
(R1)

)
6 ψ. (26)

Hence it holds

− ψ
∫

SN−1

dω 6
∫

SN−1

 R2∫
R1

f (sω) sN−1ds

 dω−
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−
[

(R2 −R1)

2

(
g (R1)R

N−1
1 + g (R2)R

N−1
2

)
+

+
(R2 −R1)

2

8

( (
g(s)sN−1

)′
(R2)−

− (g(s)sN−1)′(R1)
)] ∫

SN−1

dω 6 ψ

∫
SN−1

dω, (27)

that is (by (10))

−ψ 2π
N
2

Γ
(
N
2

) 6 ∫
A

f (y) dy −
[

(R2 −R1)

2

(
g (R1)R

N−1
1 + g (R2)R

N−1
2

)
+

+
(R2 −R1)

2

8

((
g(s)sN−1

)′
(R2)−

(
g (s) sN−1

)′
(R1)

)] 2π
N
2

Γ(N
2

)
6 ψ

2π
N
2

Γ(N
2

)
.

(28)
Therefore we get∣∣∣∣ ∫

A

f(y)dy −
[
(R2 −R1)

(
g(R1)R

N−1
1 + g(R2)R

N−1
2

)
+

+
(R2−R1)

2

4

((
g(s)sN−1

)′
(R2)−

−
(
g(s)sN−1

)′
(R1)

)]
π

N
2

Γ
(
N
2

)∣∣∣∣ 6 ψ
2π

N
2

Γ(N
2

)
. (29)

The theorem is proved. �

We give

Corollary. (to Theorem 7) Let f : B (0, R)→ R be radial, that is, there
exists a function g such that f (x) = g (r), where r = |x|, r ∈ [0, R],
R > 0, ∀ x ∈ B (0, R); N > 2. We assume that g ∈ C2 ([0, R]). Then∣∣∣∣ ∫

B(0, R)

f (y) dy −
[
RNg (R) +

R2

4

( (
g (s) sN−1

)′
(R)−

−
(
g (s) sN−1

)′
(0)
)] π

N
2

Γ(N
2

)

∣∣∣∣ 6
[∥∥ (g (s) sN−1

)′′ ∥∥
∞, [0,R]

12
R3−
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− R

8
∥∥ (g(s)sN−1)′′

∥∥
∞, [0, R]

∆∗21

]
π

N
2

Γ
(
N
2

) , (30)

where

∆∗1 :=
(
g (s) sN−1

)′
(0)− 2g (R)RN−2 +

(
g (s) sN−1

)′
(R) . (31)

If N > 2, then
(
g (s) sN−1

)′
(0) = 0.

Proof. Similar to Theorem 7, use of (9). �

We present

Theorem 8. Consider f : A → R that is radial; that is, there exists g
such that f (x) = g (r), r = |x|, r ∈ [R1, R2], ∀ x ∈ A; x = rω, ω ∈ SN−1,
N > 2. We assume that g ∈ C1 ([R1, R2]).

Then∣∣∣∣ ∫
A

f (y) dy − (R2 −R1)
[
g (R1)R

N−1
1 + g (R2)R

N−1
2

] π
N
2

Γ
(
N
2

)∣∣∣∣ 6
6
(
g (R2)R

N−1
2 − g (R1)R

N−1
1 −m (R2 −R1)

)
×

×
(
M (R2 −R1)− g (R2)R

N−1
2 + g (R1)R

N−1
1

)
(M −m)

(
π

N
2

Γ(N
2

)

)
, (32)

where M > m with

m 6
(
g (s) sN−1

)′
6M , ∀ s ∈ [R1, R2] . (33)

Proof. Here g∈ C1 ([R1, R2]) and clearly h (s) := g (s) sN−1∈ C1 ([R1, R2]),
N > 2. We assume here m 6 h′ (s) 6M , ∀ s ∈ [R1, R2] with M > m. By
(3) we get ∣∣∣∣

R2∫
R1

h (s) ds− 1

2
(R2 −R1) (h (R1) + h (R2))

∣∣∣∣ 6 (34)

6
(h (R2)− h (R1)−m (R2 −R1)) (M (R2 −R1)− h (R2) + h (R1))

2 (M −m)
.

That is∣∣∣∣
R2∫

R1

g (s) sN−1ds− 1

2
(R2 −R1)

(
g (R1)R

N−1
1 + g (R2)R

N−1
2

) ∣∣∣∣ 6
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6
(
g (R2)R

N−1
2 − g (R1)R

N−1
1 −m (R2 −R1)

)
×

×
(
M (R2 −R1)− g (R2)R

N−1
2 + g (R1)R

N−1
1

)
2 (M −m)

=: ρ. (35)

Equivalently, we have

− ρ 6
R2∫

R1

g (s) sN−1ds−
(
R2 −R1

2

)(
g (R1)R

N−1
1 + g (R2)R

N−1
2

)
6 ρ,

(36)

− ρ 6
R2∫

R1

f (sω) sN−1ds−
(
R2 −R1

2

)(
g (R1)R

N−1
1 + g (R2)R

N−1
2

)
6 ρ.

(37)
Hence it holds

−ρ
∫

SN−1

dω 6
∫

SN−1

( R2∫
R1

f (sω) sN−1ds

)
dω−

−
(
R2 −R1

2

)(
g (R1)R

N−1
1 + g (R2)R

N−1
2

) ∫
SN−1

dω 6 ρ

∫
SN−1

dω, (38)

that is (by (10))

− ρ 2π
N
2

Γ
(
N
2

) 6 ∫
A

f (y) dy −
(
R2 −R1

2

)(
g(R1)R

N−1
1 +

+ g (R2)R
N−1
2

) 2π
N
2

Γ(N
2

)
6 ρ

2π
N
2

Γ(N
2

)
. (39)

Therefore we get∣∣∣∣ ∫
A

f (y) dy − (R2 −R1)
(
g (R1)R

N−1
1 + g (R2)R

N−1
2

) π
N
2

Γ
(
N
2

)∣∣∣∣ 6 ρ
2π

N
2

Γ
(
N
2

) .
(40)

The theorem is proved. �

We give
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Corollary. (to Theorem 8) Let f : B (0, R)→ R be radial, that is, there
exists a function g such that f (x) = g (r), where r = |x|, r ∈ [0, R],
R > 0, ∀ x ∈ B (0, R); N > 2. We assume that g ∈ C1 ([0, R]). Then∣∣∣∣ ∫

A

f (y) dy −RNg (R)
π

N
2

Γ
(
N
2

)∣∣∣∣ 6
6

(
g (R)RN−1 −mR

) (
MR− g (R)RN−1)

(M −m)

(
π

N
2

Γ
(
N
2

)), (41)

where M > m with

m 6
(
g (s) sN−1

)′
6M , ∀ s ∈ [0, R] . (42)

Proof. Similar to Theorem 8, use of (9). �

We continue with

Theorem 9. Let f : A → R be radial; that is, there exists g such that
f (x) = g (r), r = |x|, r ∈ [R1, R2], ∀ x ∈ A; x = rω,
ω ∈ SN−1, N > 2. We assume that g ∈ C2 ([R1, R2]). We call
M1 :=

∥∥ (g (s) sN−1
)′′ ∥∥

∞, [R1, R2]
.

Then∣∣∣∣ ∫
A

f(y)dy −
[ (
g(R1)R

N−1
1 + g(R2)R

N−1
2

)
(R2 −R1) +

(1 +Q2
1)

4
×

×
((
g (s) sN−1

)′
(R2)−

(
g (s) sN−1

)′
(R1)

)
(R2 −R1)

2 ] π
N
2

Γ
(
N
2

)∣∣∣∣ 6
6
M1 (R2 −R1)

3

12

(
1− 3Q2

1

) π
N
2

Γ
(
N
2

) , (43)

where

Q2
1 :=

[(
g (s) sN−1

)′
(R1)+

(
g (s) sN−1

)′
(R2)− 2

(
g(R2)R

N−1
2 −g(R1)R

N−1
1

R2−R1

)]2
M2

1 (R2 −R1)
2−
(
(g (s) sN−1)′ (R2)− (g (s) sN−1)′ (R1)

)2 .

(44)

Proof. Similar to the proof of Theorem 7 by the use of Theorem 4. �

We give



14 George A. Anastassiou

Corollary. (to Theorem 9) Let f : B (0, R)→ R be radial, that is, there
exists a function g such that f (x) = g (r), where r = |x|, r ∈ [0, R],
R > 0, ∀ x ∈ B(0, R); N > 2. We assume that g ∈ C2 ([0, R]). We call
M2 :=

∥∥ (g (s) sN−1
)′′ ∥∥

∞, [0, R]
. Then∣∣∣∣ ∫

A

f(y)dy −
[
g(R)RN +

(1 +Q2
2)

4

[ (
g (s) sN−1

)′
(R)−

−
(
g (s) sN−1

)′
(0)
]
R2

]
π

N
2

Γ
(
N
2

)∣∣∣∣ 6 M2

12
R3
(
1− 3Q2

2

) π
N
2

Γ
(
N
2

) , (45)

where

Q2
2 :=

[(
g (s) sN−1

)′
(0) +

(
g (s) sN−1

)′
(R)− 2g (R)RN−2

]2
M2

2R
2 −

(
(g (s) sN−1)′ (R)− (g (s) sN−1)′ (0)

)2 . (46)

Proof. Similar to Corollary to Theorem 7. �

We present

Theorem 10. Here all as in Theorem 6 and M1 > m1. Assume that

m1 6

(
g (s) sN−1

)′
(s)−

(
g (s) sN−1

)′
(R1)

s−R1

6M1 (47)

and

m1 6

(
g (s) sN−1

)′
(R2)−

(
g (s) sN−1

)′
(s)

R2 − s
6M1, (48)

for all s ∈ [R1, R2] . Then∣∣∣∣ ∫
A

f (y) dy −
[(
g (R1)R

N−1
1 + g (R2)R

N−1
2

)
(R2 −R1) +

+

(
1 + P 2

1

4

)((
g (s) sN−1

)′
(R2)−

(
g (s) sN−1

)′
(R1)

)
(R2 −R1)

2−

−
(

1 + 3P 2
1

24

)
(m1 +M1) (R2 −R1)

3

]
π

N
2

Γ
(
N
2

)∣∣∣∣∣ 6
6

(M1 −m1) (R2 −R1)
3

24

(
1− 3P 2

1

) π
N
2

Γ
(
N
2

) , (49)
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where
P 2
1 =[(

g (s) sN−1
)′

(R1) +
(
g (s) sN−1

)′
(R2)− 2

(
g(R2)R

N−1
2 −g(R1)R

N−1
1

R2−R1

)]2
(M1−m1

2
)2(R2−R1)2−

[
(g(s)sN−1)′(R2)−(g(s)sN−1)′(R1)−(m1+M1

2
)(R2−R1)

]2
(50)

Proof. Similar to Theorem 6 by the use of Theorem 5. �

We give

Corollary. (to Theorem 10) Here all as in Corollary to Theorem 6 and
M2 > m2. Assume that

m2 6

(
g (s) sN−1

)′
(s)−

(
g (s) sN−1

)′
(0)

s
6M2 (51)

and

m2 6

(
g (s) sN−1

)′
(R)−

(
g (s) sN−1

)′
(s)

R− s
6M2, (52)

for all s ∈ [0, R] . Then∣∣∣∣ ∫
A

f (y) dy −
[
g (R)RN+

(
1 + P 2

2

4

)((
g (s) sN−1

)′
(R)−

−
(
g (s) sN−1

)′
(0)
)
R2 −

(
1 + 3P 2

2

24

)
(m2 +M2)R

3

]
π

N
2

Γ
(
N
2

)∣∣∣∣ 6
6

(M2 −m2)R
3

24
(1− 3P 2

2 )
π

N
2

Γ
(
N
2

) , (53)

where

P 2
2 =

[(
g (s) sN−1

)′
(0) +

(
g (s) sN−1

)′
(R)− 2g (R)RN−2

]2
(
M2−m2

2

)2
R2−

[
(g (s) sN−1)′ (R)−(g (s) sN−1)′ (0)−

(
m2+M2

2

)
R
]2 .
(54)

Proof. Similar to Corollary to Theorem 6, based on Theorem 5. �

We continue with some author’s results to be used later in this article:

Theorem 11. [3] Let n ∈ N, f ∈ ACn ([a, b]) (i. e. f (n−1) ∈ AC ([a, b]),
absolutely continuous functions). We assume that f (n) ∈ L∞ ([a, b]). Then
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i) ∀ t ∈ [a, b]

∣∣∣∣
b∫

a

f (x) dx−
n−1∑
k=0

1

(k + 1)!

[
f (k) (a) (t−a)k+1+(−1)kf (k) (b) (b−t)k+1

] ∣∣∣∣ 6
6

∥∥f (n)
∥∥
L∞([a, b])

(n+ 1)!

[
(t− a)n+1 + (b− t)n+1] , (55)

ii) at t = a+b
2
, the right hand side of (55) is minimized, and we get:

∣∣∣∣
b∫

a

f (x) dx−
n−1∑
k=0

1

(k + 1)!

(b− a)k+1

2k+1

[
f (k) (a) + (−1)kf (k) (b)

] ∣∣∣∣ 6
6

∥∥f (n)
∥∥
L∞([a, b])

(n+ 1)!

(b− a)n+1

2n
, (56)

iii) if f (k) (a) = f (k) (b) = 0, for all k = 0, 1, . . . , n− 1, we obtain

∣∣∣∣
b∫

a

f (x) dx

∣∣∣∣ 6
∥∥f (n)

∥∥
L∞([a, b])

(n+ 1)!

(b− a)n+1

2n
, (57)

which is a sharp inequality,
iv) more generally, for j = 0, 1, 2, . . . , N ∈ N, it holds

∣∣∣∣
b∫

a

f (x) dx−
n−1∑
k=0

1

(k + 1)!

(
b− a
N

)k+1 [
jk+1f (k) (a) +

+ (−1)k (N − j)k+1 f (k) (b)
]∣∣∣∣ 6

∥∥f (n)
∥∥
L∞([a, b])

(n+ 1)!

(
b− a
N

)n+1

×

×
[
jn+1 + (N − j)n+1] , (58)

v) if f (k) (a) = f (k) (b) = 0, k = 1, . . . , n− 1, from (58) we get:

∣∣∣∣
b∫

a

f (x) dx−
(
b− a
N

)
[jf (a) + (N − j) f (b)]

∣∣∣∣ 6
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6

∥∥f (n)
∥∥
L∞([a, b])

(n+ 1)!

(
b− a
N

)n+1 [
jn+1 + (N − j)n+1] , (59)

for j = 0, 1, 2, . . . , N ∈ N,
vi) when N = 2 and j = 1, (59) turns to

∣∣∣∣
b∫

a

f (x) dx−
(
b− a

2

)
(f (a) + f (b))

∣∣∣∣ 6

6

∥∥f (n)
∥∥
L∞([a, b])

(n+ 1)!

(b− a)n+1

2n
, (60)

vii) when n = 1 (without any boundary conditions), we get from (60)
that∣∣∣∣

b∫
a

f (x) dx−
(
b− a

2

)
(f (a) + f (b))

∣∣∣∣ 6 ‖f ′‖∞, [a, b]

(b− a)2

4
, (61)

a similar to Iyengar inequality (1).

Theorem 12. [3] Let f ∈ ACn ([a, b]), n ∈ N. Then
i) ∀ t ∈ [a, b]

∣∣∣∣
b∫

a

f (x) dx−
n−1∑
k=0

1

(k + 1)!

[
f (k)(a) (t− a)k+1 +

+ (−1)kf (k)(b) (b− t)k+1 ]∣∣∣∣ 6
∥∥f (n)

∥∥
L1([a, b])

n!
[(t− a)n + (b− t)n] , (62)

ii) at t = a+b
2
, the right hand side of (62) is minimized, and we get:

∣∣∣∣
b∫

a

f (x) dx−
n−1∑
k=0

1

(k + 1)!

(b− a)k+1

2k+1

[
f (k) (a) + (−1)kf (k) (b)

] ∣∣∣∣ 6

6

∥∥f (n)
∥∥
L1([a, b])

n!

(b− a)n

2n−1 , (63)
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iii) if f (k) (a) = f (k) (b) = 0, for all k = 0, 1, . . . , n− 1, we obtain∣∣∣∣
b∫

a

f (x) dx

∣∣∣∣ 6
∥∥f (n)

∥∥
L1([a,b])

n!

(b− a)n

2n−1 , (64)

which is a sharp inequality,
iv) more generally, for j = 0, 1, 2, . . . , N ∈ N, it holds

∣∣∣∣
b∫

a

f(x)dx−
n−1∑
k=0

1

(k + 1)!

(
b− a
N

)k+1[
jk+1f (k)(a)+

+(−1)k(N−j)k+1f (k)(b)
]∣∣∣∣ 6

∥∥f (n)
∥∥
L1([a, b])

n!

(
b−a
N

)n

[jn+(N−j)n] ,

(65)

v) if f (k) (a) = f (k) (b) = 0, k = 1, . . . ,n− 1, from (65) we get:∣∣∣∣∣∣
b∫

a

f(x)dx−
(
b− a
N

)
[jf (a) + (N − j) f (b)]

∣∣∣∣∣∣ 6
6

∥∥f (n)
∥∥
L1([a,b])

n!

(
b− a
N

)n

[jn + (N − j)n] , (66)

for j = 0,1,2, . . . , N ∈ N,
vi) when N = 2 and j = 1, (66) turns to∣∣∣∣

b∫
a

f(x)dx− (b− a)

2
(f (a) + f (b))

∣∣∣∣ 6
6

∥∥f (n)
∥∥
L1([a, b])

n!

(b− a)n

2n−1 , (67)

vii) when n = 1 (without any boundary conditions), we get from (67)
that ∣∣∣∣

b∫
a

f(x)dx−
(
b− a

2

)
(f(a) + f(b))

∣∣∣∣ 6 ‖f ′‖L1([a, b])
(b− a). (68)

Theorem 13. [3] Let f ∈ ACn ([a, b]), n ∈ N; p, q > 1 : 1
p

+ 1
q

= 1, and
f (n) ∈ Lq ([a, b]). Then
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i) ∀ t ∈ [a, b]∣∣∣∣
b∫

a

f (x) dx−
n−1∑
k=0

1

(k + 1)!

[
f (k)(a)(t− a)k+1+(−1)kf (k)(b)(b− t)k+1

] ∣∣∣∣ 6
6

∥∥f (n)
∥∥
Lq([a, b])

(n− 1)!
(
n+ 1

p

)
(p (n− 1) + 1)

1
p

[
(t− a)n+

1
p + (b− t)n+

1
p

]
, (69)

ii) at t = a+b
2
, the right hand side of (69) is minimized, and we get:∣∣∣∣

b∫
a

f (x) dx−
n−1∑
k=0

1

(k + 1)!

(b− a)k+1

2k+1

[
f (k) (a) + (−1)kf (k) (b)

] ∣∣∣∣ 6
6

∥∥f (n)
∥∥
Lq([a, b])

(n− 1)!
(
n+ 1

p

)
(p (n− 1) + 1)

1
p

(b− a)n+
1
p

2n− 1
q

, (70)

iii) if f (k) (a) = f (k) (b) = 0, for all k = 0, 1, . . . , n− 1, we obtain∣∣∣∣
b∫

a

f (x) dx

∣∣∣∣ 6
∥∥f (n)

∥∥
Lq([a, b])

(n− 1)!
(
n+ 1

p

)
(p (n− 1) + 1)

1
p

(b− a)n+
1
p

2n− 1
q

, (71)

which is a sharp inequality,
iv) more generally, for j = 0, 1, 2, . . . , N ∈ N, it holds

∣∣∣∣
b∫

a

f (x) dx−
n−1∑
k=0

1

(k + 1)!

(
b− a
N

)k+1 [
jk+1f (k) (a) +

+ (−1)k (N − j)k+1 f (k)(b)
]∣∣∣∣ 6

∥∥f (n)
∥∥
Lq([a, b])

(n− 1)!
(
n+ 1

p

)
(p(n− 1) + 1)

1
p

×

×
(
b− a
N

)n+ 1
p [
jn+

1
p + (N − j)n+

1
p

]
, (72)

v) if f (k) (a) = f (k) (b) = 0, k = 1, . . . , n− 1, from (72) we get:∣∣∣∣
b∫

a

f (x) dx−
(
b− a
N

)
[jf (a) + (N − j) f (b)]

∣∣∣∣ 6
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6

∥∥f (n)
∥∥
Lq([a, b])

(n− 1)!
(
n+ 1

p

)
(p (n− 1) + 1)

1
p

(
b− a
N

)n+ 1
p [
jn+

1
p + (N − j)n+

1
p

]
,

(73)
for j = 0, 1, 2, . . . , N ∈ N,

vi) when N = 2 and j = 1, (73) turns to

∣∣∣∣
b∫

a

f (x) dx− (b− a)

2
(f (a) + f (b))

∣∣∣∣ 6
6

∥∥f (n)
∥∥
Lq([a, b])

(n− 1)!
(
n+ 1

p

)
(p (n− 1) + 1)

1
p

(b− a)n+
1
p

2n− 1
q

, (74)

vii) when n = 1 (without any boundary conditions), we get from (74)
that∣∣∣∣

b∫
a

f (x) dx−
(
b− a

2

)
(f (a) + f (b))

∣∣∣∣ 6 ‖f ′‖Lq([a, b])(
1 + 1

p

) (b− a)1+
1
p

2
1
p

. (75)

Next, we extend Theorems 11–13 to the multivariate case over shells
and balls for radial functions. The proving method is the same as in our
earlier results of this article, as such we omit these next proofs.

We present (use of Theorem 11)

Theorem 14. Consider f : A → R which is radial; that is, there exists
g such that f (x) = g (r), r = |x|, r ∈ [R1, R2], ∀ x ∈ A; x = rω,
ω ∈ SN−1, N > 2. We assume that g (s) sN−1 ∈ ACn ([R1, R2]) and(
g (s) sN−1

)(n) ∈ L∞ ([R1, R2]), n ∈ N. Then
i) ∀ t ∈ [R1, R2]∣∣∣∣ ∫
A

f (y) dy −

{
n−1∑
k=0

1

(k + 1)!

[(
g (s) sN−1

)(k)
(R1) (t−R1)

k+1 +

+ (−1)k
(
g (s) sN−1

)(k)
(R2) (R2 − t)k+1

]} 2π
N
2

Γ
(
N
2

)∣∣∣∣ 6
6

2π
N
2

Γ
(
N
2

) ∥∥ (g (s) sN−1
)(n) ∥∥

L∞([R1, R2])

(n+ 1)!

[
(t−R1)

n+1 + (R2 − t)n+1] , (76)
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ii) at t = R1+R2

2
, the right hand side of (76) is minimized, and we get:∣∣∣∣ ∫

A

f (y) dy −

{
n−1∑
k=0

1

(k + 1)!

(R2 −R1)
k+1

2k

[(
g (s) sN−1

)(k)
(R1) +

+ (−1)k
(
g (s) sN−1

)(k)
(R2)

]} π
N
2

Γ
(
N
2

)∣∣∣∣ 6
6

π
N
2

Γ
(
N
2

) ∥∥ (g (s) sN−1
)(n) ∥∥

L∞([R1, R2])

(n+ 1)!

(R2 −R1)
n+1

2n−1 , (77)

iii) if (g(s)sN−1)(k)(R1)=(g(s)sN−1)(k)(R2)=0, for all k=0,1, . . . ,n−1,
we obtain∣∣∣∣ ∫

A

f (y) dy

∣∣∣∣ 6 π
N
2

Γ
(
N
2

) ∥∥ (g (s) sN−1
)(n) ∥∥

L∞([R1, R2])

(n+ 1)!

(R2 −R1)
n+1

2n−1 , (78)

which is a sharp inequality,
iv) more generally, for j = 0, 1, 2, . . . , N ∈ N, it holds∣∣∣∣ ∫

A

f (y) dy −

{
n−1∑
k=0

1

(k + 1)!

(
R2 −R1

N

)k+1 [
jk+1

(
g (s) sN−1

)(k)
(R1) +

+ (−1)k (N − j)k+1 (g (s) sN−1
)(k)

(R2)
]} 2π

N
2

Γ
(
N
2

)∣∣∣∣ 6
6

2π
N
2

Γ
(
N
2

) ∥∥ (g (s) sN−1
)(n) ∥∥

L∞([R1, R2])

(n+ 1)!

(
R2 −R1

N

)n+1(
jn+1 + (N − j)n+1

)
,

(79)
v) if

(
g (s) sN−1

)(k)
(R1) =

(
g (s) sN−1

)(k)
(R2) = 0, k = 1, . . . , n − 1,

from (79) we get:∣∣∣∣ ∫
A

f (y) dy −
{(

R2 −R1

N

)[
jg (R1)R

N−1
1 +

+ (N − j) g (R2)R
N−1
2

]} 2π
N
2

Γ
(
N
2

)∣∣∣∣ 6 2π
N
2

Γ
(
N
2

)×
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×

∥∥ (g (s) sN−1
)(n) ∥∥

L∞([R1, R2])

(n+ 1)!

(
R2 −R1

N

)n+1 (
jn+1 + (N − j)n+1) ,

(80)
for j = 0, 1, 2, . . . , N ∈ N,

vi) when N = 2 and j = 1, (80) turns to∣∣∣∣ ∫
A

f (y) dy − (R2 −R1)
(
g (R1)R

N−1
1 + g (R2)R

N−1
2

) π
N
2

Γ
(
N
2

)∣∣∣∣ 6
6

π
N
2

Γ
(
N
2

) ∥∥ (g (s) sN−1
)(n) ∥∥

L∞([R1, R2])

(n+ 1)!

(R2 −R1)
n+1

2n−1 , (81)

vii) when n = 1 (without any boundary conditions), we get from (81)
that ∣∣∣∣ ∫

A

f (y) dy − (R2 −R1)
(
g (R1)R

N−1
1 + g (R2)R

N−1
2

) π
N
2

Γ
(
N
2

)∣∣∣∣ 6
6

π
N
2

Γ
(
N
2

)∥∥ (g (s) sN−1
)′ ∥∥

L∞([R1, R2])

(R2 −R1)
2

2
, (82)

which is related to (12).

We present (use of Theorem 12)

Theorem 15. Consider f : A→ R which is radial; that is, there exists g
such that f (x) = g (r), r = |x|, r ∈ [R1, R2], ∀ x ∈ A; x = rω, ω ∈ SN−1,
N > 2. We assume that g (s) sN−1 ∈ ACn ([R1, R2]), n ∈ N. Then

i) ∀ t ∈ [R1, R2]∣∣∣∣ ∫
A

f(y)dy −

{
n−1∑
k=0

1

(k + 1)!

[(
g (s) sN−1

)(k)
(R1) (t−R1)

k+1 +

+ (−1)k
(
g (s) sN−1

)(k)
(R2) (R2 − t)k+1

]} 2π
N
2

Γ
(
N
2

)∣∣∣∣ 6
6

2π
N
2

Γ
(
N
2

) ∥∥ (g (s) sN−1
)(n) ∥∥

L1([R1, R2])

n!
[(t−R1)

n + (R2 − t)n] , (83)
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ii) at t = R1+R2

2
, the right hand side of (83) is minimized, and we get:∣∣∣∣ ∫

A

f (y) dy −

{
n−1∑
k=0

1

(k + 1)!

(R2 −R1)
k+1

2k

[(
g (s) sN−1

)(k)
(R1) +

+ (−1)k
(
g (s) sN−1

)(k)
(R2)

]} π
N
2

Γ
(
N
2

)∣∣∣∣ 6
6

π
N
2

Γ
(
N
2

) ∥∥ (g (s) sN−1
)(n) ∥∥

L1([R1, R2])

n!

(R2 −R1)
n

2n−2 , (84)

iii) if
(
g (s) sN−1

)(k)
(R1) =

(
g (s) sN−1

)(k)
(R2) = 0, for all k = 0,1, . . . ,

n− 1, we obtain∣∣∣∣ ∫
A

f (y) dy

∣∣∣∣ 6 π
N
2

Γ
(
N
2

) ∥∥ (g (s) sN−1
)(n) ∥∥

L1([R1,R2])

n!

(R2 −R1)
n

2n−2 , (85)

which is a sharp inequality,
iv) more generally, for j = 0, 1, 2, . . . , N ∈ N, it holds∣∣∣∣ ∫

A

f (y) dy −

{
n−1∑
k=0

1

(k + 1)!

(
R2 −R1

N

)k+1 [
jk+1

(
g (s) sN−1

)(k)
(R1) +

+ (−1)k (N − j)k+1 (g (s) sN−1
)(k)

(R2)
]} 2π

N
2

Γ
(
N
2

)∣∣∣∣ 6
6

2π
N
2

Γ
(
N
2

) ∥∥ (g (s) sN−1
)(n) ∥∥

L1([R1, R2])

n!

(
R2 −R1

N

)n

(jn + (N − j)n) ,

(86)
v) if

(
g (s) sN−1

)(k)
(R1) =

(
g (s) sN−1

)(k)
(R2) = 0, k = 1, . . . , n − 1,

from (86) we get:∣∣∣∣ ∫
A

f (y) dy −
{(

R2 −R1

N

)[
jg (R1)R

N−1
1 +

+ (N − j) g (R2)R
N−1
2

]} 2π
N
2

Γ
(
N
2

)∣∣∣∣ 6 2π
N
2

Γ
(
N
2

)×
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×

∥∥ (g (s) sN−1
)(n) ∥∥

L1([R1, R2])

n!

(
R2 −R1

N

)n

(jn + (N − j)n) , (87)

for j = 0, 1, 2, . . . , N ∈ N,
vi) when N = 2 and j = 1, (87) turns to∣∣∣∣ ∫

A

f (y) dy − (R2 −R1)
(
g (R1)R

N−1
1 + g (R2)R

N−1
2

) π
N
2

Γ
(
N
2

)∣∣∣∣ 6
6

π
N
2

Γ
(
N
2

) ∥∥ (g (s) sN−1
)(n) ∥∥

L1([R1,R2])

n!

(R2 −R1)
n

2n−2 , (88)

vii) when n = 1 (without any boundary conditions), we get from (88)
that ∣∣∣∣ ∫

A

f (y) dy − (R2 −R1)
(
g (R1)R

N−1
1 + g (R2)R

N−1
2

) π
N
2

Γ
(
N
2

)∣∣∣∣ 6
6

2π
N
2

Γ
(
N
2

)∥∥ (g (s) sN−1
)′ ∥∥

L1([R1,R2])
(R2 −R1) . (89)

We present (use of Theorem 13)

Theorem 16. Consider f : A → R which is radial; that is, there exists
g such that f (x) = g (r), r = |x|, r ∈ [R1, R2], ∀ x ∈ A; x = rω,
ω ∈ SN−1, N > 2. We assume that g (s) sN−1 ∈ ACn ([R1, R2]) and(
g (s) sN−1

)(n) ∈ Lq ([R1, R2]), where p, q > 1 : 1
p

+ 1
q

= 1, and n ∈ N.
Then

i) ∀ t ∈ [R1, R2]∣∣∣∣ ∫
A

f (y) dy −

{
n−1∑
k=0

1

(k + 1)!

[(
g (s) sN−1

)(k)
(R1) (t−R1)

k+1 +

+ (−1)k
(
g (s) sN−1

)(k)
(R2) (R2 − t)k+1

]} 2π
N
2

Γ
(
N
2

)∣∣∣∣ 6
6

2π
N
2

Γ
(
N
2

) ∥∥ (g (s) sN−1
)(n) ∥∥

Lq([R1, R2])

(n− 1)!
(
n+ 1

p

)
(p (n− 1) + 1)

1
p

[
(t−R1)

n+ 1
p + (R2 − t)n+

1
p

]
,

(90)
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ii) at t = R1+R2

2
, the right hand side of (90) is minimized, and we get:∣∣∣∣ ∫

A

f (y) dy −

{
n−1∑
k=0

1

(k + 1)!

(R2 −R1)
k+1

2k

[(
g (s) sN−1

)(k)
(R1) +

+ (−1)k
(
g (s) sN−1

)(k)
(R2)

]} π
N
2

Γ
(
N
2

)∣∣∣∣ 6
6

π
N
2

Γ
(
N
2

) ∥∥ (g (s) sN−1
)(n) ∥∥

Lq([R1, R2])

(n− 1)!
(
n+ 1

p

)
(p (n− 1) + 1)

1
p

(R2 −R1)
n+ 1

p

2n−1− 1
q

, (91)

iii) if
(
g(s)sN−1

)(k)
(R1) =

(
g(s)sN−1

)(k)
(R2) = 0, for all k = 0, 1, . . . ,

n− 1, we obtain∣∣∣∣ ∫
A

f (y) dy

∣∣∣∣ 6 π
N
2

Γ
(
N
2

) ∥∥ (g (s) sN−1
)(n) ∥∥

Lq([R1, R2])

(n− 1)!
(
n+ 1

p

)
(p (n− 1) + 1)

1
p

(R2 −R1)
n+ 1

p

2n−1− 1
q

,

(92)
which is a sharp inequality,

iv) more generally, for j = 0, 1, 2, . . . , N ∈ N, it holds∣∣∣∣ ∫
A

f (y) dy −

{
n−1∑
k=0

1

(k + 1)!

(
R2 −R1

N

)k+1 [
jk+1

(
g (s) sN−1

)(k)
(R1) +

+ (−1)k (N − j)k+1 (g (s) sN−1
)(k)

(R2)
]} 2π

N
2

Γ
(
N
2

)∣∣∣∣ 6
6

2π
N
2

Γ
(
N
2

) ∥∥ (g (s) sN−1
)(n) ∥∥

Lq([R1, R2])

(n− 1)!
(
n+ 1

p

)
(p (n− 1) + 1)

1
p

(
R2 −R1

N

)n+ 1
p

×

×
(
jn+

1
p + (N − j)n+

1
p

)
, (93)

v) if
(
g (s) sN−1

)(k)
(R1) =

(
g (s) sN−1

)(k)
(R2) = 0, k = 1, . . . , n − 1,

from (93) we get:∣∣∣∣ ∫
A

f (y) dy −
{(

R2 −R1

N

)[
jg (R1)R

N−1
1 +



26 George A. Anastassiou

+ (N − j) g (R2)R
N−1
2

]} 2π
N
2

Γ
(
N
2

)∣∣∣∣ 6 2π
N
2

Γ
(
N
2

)×
×

∥∥ (g (s) sN−1
)(n) ∥∥

Lq([R1,R2])

(n− 1)!
(
n+ 1

p

)
(p (n− 1) + 1)

1
p

(
R2 −R1

N

)n+ 1
p(
jn+

1
p + (N − j)n+

1
p

)
,

(94)
for j = 0, 1, 2, . . . , N ∈ N,

vi) when N = 2 and j = 1, (94) turns to∣∣∣∣ ∫
A

f (y) dy − (R2 −R1)
(
g (R1)R

N−1
1 + g (R2)R

N−1
2

) π
N
2

Γ
(
N
2

)∣∣∣∣ 6

6
π

N
2

Γ
(
N
2

) ∥∥ (g (s) sN−1
)(n) ∥∥

Lq([R1, R2])

(n− 1)!
(
n+ 1

p

)
(p (n− 1) + 1)

1
p

(R2 −R1)
n+ 1

p

2n−1− 1
q

, (95)

vii) when n = 1 (without any boundary conditions), we get from (95)
that ∣∣∣∣ ∫

A

f (y) dy − (R2 −R1)
(
g (R1)R

N−1
1 + g (R2)R

N−1
2

) π
N
2

Γ
(
N
2

)∣∣∣∣ 6
6

2
1
qπ

N
2

Γ
(
N
2

) ∥∥ (g (s) sN−1
)′ ∥∥

Lq([R1,R2])(
1 + 1

p

) (R2 −R1)
1+ 1

p . (96)

We continue with

Remark. Theorems 14 – 16 can easily be converted to results for the
ball B (0, R), R > 0. Their corresponding same assumptions will be for
f : B (0, R) → R which is radial. All we need to do then is set R1 = 0
and R2 = R, and we get a plethora of interesting similar results for the
ball that are simpler. Due to lack of space we omit this tedious task.
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Edition, Birkhaüser, Boston, Basel, Berlin, 1999.

Received November 20, 2018.
In revised form, March 15, 2019.
Accepted March 18, 2019.
Published online March 27, 2019.

Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, U.S.A.
E-mail: ganastss@memphis.edu


	Anastassiou George A.Multivariate Iyengar type inequalities for radial functions



