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Abstract. A characterization of h-convex function via Hermite-
Hadamard inequality related to the h-convex functions is inves-
tigated. In fact it is determined that under what conditions a
function is h-convex, if it satisfies the h-convex version of Hermite-
Hadamard inequality.
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1. Introduction. The following result is well-known in the litera-
ture:

Theorem 1. [6] A function f : (a, b) ⊂ R→ R is convex if and only if

f

(
x+ y

2

)
6

1

y − x

b∫
a

f(t)dt 6
f(x) + f(y)

2
(1)

holds for all x, y ∈ (a, b) with x 6= y.

Inequality (1) is known as the Hermite-Hadamard integral inequality
for convex functions. Note that the left-hand part and the right-hand part
of (1) separately are equivalent to the convexity of f (see [5, 6]).

In 2006, the concept of h-convex functions related to the nonnegative
real functions has been introduced in [9] by S. Varošanec. This class
includes a large class of nonnegative functions, such as nonnegative convex
functions, Godunova-Levin functions [3], s-convex functions in the second
sense [1], and P-functions [2]. In [4], A. Házy used the following definition
of h-convex functions, which is a generalization of convexexity:
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Definition 1. Let h : [0, 1] → R be a function, such that h 6≡ 0. We
say that f : (a, b) → R is an h-convex function, if for all x, y ∈ (a, b),
λ ∈ [0, 1], we have

f
(
λx+ (1− λ)y

)
6 h(λ)f(x) + h(1− λ)f(y). (2)

We use this definition for the real functions defined on open intervals
(a, b) ⊆ R in this paper. The h-convex version of the Hermite-Hadamard
inequality was introduced in [8] by Sarikaya et al. as the following:

Theorem 2. Let f : I → [0,∞] be an integrable h-convex function. If
a, b ∈ I, with a < b, then

1

2h(1
2
)
f

(
a+ b

2

)
6

1

b− a

b∫
a

f(x)dx 6
[
f(a) + f(b)

]( 1∫
0

h(t)dt

)
. (3)

Motivated by the abovementioned works and results, we, in this paper,
reply to the problem of conditions h-convexity of a function that satisfies
(3). Since inequality (3) is double, we separate the problem to the right-
hand and the left-hand versions, for the sake of convenience.

2. Main results. To achieve our main results about the characteri-
zation of an h-convex function via (3), we introduce a primary definition
along with an example and then establish a basic lemma related to h-
convex functions.

Definition 2. A function h : [0, 1]→ R is said to be self-concave if

h
(
zx+ (1− z)y

)
> h(z)h(x) + h(1− z)h(y),

for all z ∈ (0, 1) and x, y ∈ [0, 1].

We can find some simple functions that are self concave.
Example. Consider the function h(x) = xn for n ∈ N and x ∈ [0, 1].
It is not hard to see that this function is self-concave. In fact, since the
function h is nonnegative,

h
(
λx+ (1− λ)y

)
=
(
λx+ (1− λ)y

)n
=
∑n

i=0

(
n
i

)(
λx
)n−i(

(1− λ)y
)i
>

>
(
n
0

)(
λx
)n

+
(
n
n

)(
(1− λ)y

)n
= h(λ)h(x) + h(1− λ)h(y).

Now consider the function h(x) = tan(x), for x ∈ (0, 1) and z ∈ (0, 1).
Expanding this function and using the self-concavity of xn for n ∈ N and
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x ∈ [0, 1], we get

tan
(
λx+ (1− λ)y

)
=
(
λx+ (1− λ)y

)
+

1

3

(
λx+ (1− λ)y

)3
+

+
2

15

(
λx+(1−λ)y

)5
+

17

315

(
λx+(1−λ)y

)7
+

62

2835

(
λx+(1−λ)y

)9
+ . . . >

> λx+
1

3
(λx)3 +

2

15
(λx)5 +

17

315
(λx)7 +

62

2835
(λx)9 + · · ·+

(
(1− λ)y

)
+
1

3

(
(1−λ)y

)3
+

2

15

(
(1−λ)y

)5
+

17

315

(
(1−λ)y

)7
+

62

2835

(
(1−λ)y

)9
+ · · · =

= tan(λx) + tan((1− λ)y) > tan(λ) tan(x) + tan(1− λ) tan(y),

which implies the self-concavity of h(x) = tan(x) on (0, 1). Note that we
have used the fact that tan(xy) > tan(x) tan(y) for all x, y ∈ (0, 1).

The following lemma plays an important role in obtaining our expected
results.

Lemma 1. Let f : (a, b) → R be a continuous function and h : [0, 1]→R
be a continuous self-concave function. Suppose that for any x, y ∈ (a, b)
with x 6= y there is a λ ∈ (0, 1) such that f

(
λx+ (1− λ)y

)
6 h(λ)f(x) +

+ h(1− λ)f(y). Then f is h-convex on (a, b).

Proof. Without loss of generality, consider x,y ∈ (a, b) with x < y. Define

Mx, y =
{
λ ∈ [0, 1]; f

(
λx+ (1− λ)y

)
6 h(λ)f(x) + h(1− λ)f(y)

}
.

It is obvious that Mx, y is nonempty. Since f and h are continuous on
their domains, Mx, y is closed in [0, 1]. We prove that Mx, y = [0, 1]. On
the contrary, suppose that Mx, y is a proper subset of [0, 1]; then we can
find α, β ∈Mx, y such that (α, β) ⊂ [0, 1] \Mx, y. Set

w = αx+ (1− α)y , z = βx+ (1− β)y. (4)

From the assumption, there is a λ ∈ (0, 1) such that

f
(
λw + (1− λ)z

)
6 h(λ)f(w) + h(1− λ)f(z). (5)

Also {
f(w) = f

(
αx+ (1− α)y

)
6 h(α)f(x) + h(1− α)f(y),

f(z) = f
(
βx+ (1− β)y

)
6 h(β)f(x) + h(1− β)f(y). (6)
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Set t = λα+ (1− λ)β. It is clear that t ∈ (α, β) and t /∈Mx, y. Therefore,
from the self-concavity of h and relations (4)-(6), we have

f
(
tx+ (1− t)y

)
> h(t)f(x) + h(1− t)f(y) =

= h
(
λα + (1− λ)β

)
f(x) + h

(
1− (λα + (1− λ)β)

)
f(y) =

= h
(
λα + (1− λ)β

)
f(x) + h

(
λ(1− α) + (1− λ)(1− β)

)
f(y) >

>
[
h(λ)h(α)+h(1−λ)h(β)

]
f(x)+

[
h(λ)h(1−α)+h(1−λ)h(1−β)

]
f(y) =

= h(λ)
[
h(α)f(x) + h(1−α)f(y)

]
+ h(1− λ)

[
h(β)f(x) + h(1− β)f(y)

]
>

> h(λ)f(w) + h(1− λ)f(z) > f
(
λw + (1− λ)z

)
.

On the other hand,

λw + (1− λ)z = λ
(
αx+ (1− α)y

)
+ (1− λ)

(
βx+ (1− β)y

)
=

=
[
λα + (1− λ)β

]
x+

[
λ(1− α) + (1− λ)(1− β)

]
y =

=
[
λα + (1− λ)β

]
x+

[
1−

(
λα + (1− λ)β

)]
y = tx+ (1− t)y.

So,
f
(
tx+ (1− t)y

)
= f

(
λw + (1− λ)z

)
< f

(
tx+ (1− t)y

)
,

which is a contradiction. It follows that Mx, y is not a proper subset of
[0, 1] and hence Mx, y = [0, 1]. Since this happens for any x, y ∈ (a, b) with
x < y, we conclude that f is h-convex on (a, b). �

Theorem 3. Let f : (a, b)→ R be a continuous function. Also suppose
that h : [0, 1]→ R is a continuous self-concave function, such that

1

y − x

y∫
x

f(t)dt 6
[
f(x) + f(y)

]( 1∫
0

h(t)dt

)
,

for all x, y ∈ (a, b) with x 6= y. Then f is h-convex on (a, b).

Proof. Suppose that f is not h-convex on (a, b). Then, by Lemma 1,
there are x, y ∈ (a, b) with x < y such that

f(tx+ (1− t)y) > h(t)f(x) + h(1− t)f(y) ∀t ∈ (0, 1).
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For such x and y,

1

y − x

y∫
x

f(t)dt=

1∫
0

f(tx+ (1− t)y)dt >
1∫

0

[h(t)f(x) + h(1− t)f(y)]dt =

=

( 1∫
0

h(t)dt

)
f(x) +

( 1∫
0

h(1− t)dt
)
f(y) =

[
f(x) + f(y)

]( 1∫
0

h(t)dt

)
.

This is a contradiction. Hence, f is h-convex on (a, b). �

The following lemma, along with Lemma 1, are the base for characte-
rization of a h-convex function via the left-hand side of (3).

Lemma 2. (Also see Theorem 1.1.4 in [5].) Suppose that ϕ : [a, b] → R
is a continuous function such that ϕ(a) = ϕ(b) = 0 and ϕ(t) > 0 for some
t ∈ (a, b). Then there exists an x ∈ (a, b) such that

ϕ(x) = max
a6y6b

ϕ(y) and ϕ(x) > ϕ(y) for all a 6 y < x.

Proof. From Theorem 4.16 in [7], ϕ attains its maximum α in [a, b]. From
the assumption, we have α > ϕ(t) > 0. Set M = {y ∈ [a, b];ϕ(y) = α}.
Since ϕ is continuous, M is a nonempty compact subset of [a, b], such that
a, b 6∈M . If we put x = inf{y; y ∈M}, then

ϕ(x) = α = max
a6y6b

ϕ(y),

and f(y) < f(x) for all a 6 y < x. �

In what follows, we assume that the function h : [0, 1] → R satisfies
the conditions {

h(λ) + h(1− λ) = 1 for all λ ∈ (0, 1),
h(0) = 0.

(7)

Lemma 3. Let h : [0, 1] → R be a continuous self-concave function.
Suppose that f : (a, b)→ R is a continuous function and for any x ∈ (a, b),
ε > 0, there exist y, z ∈ (a, b) ∩ (x− ε, x+ ε) with y < x < z such that

f(x) = f
(
λy + (1− λ)z

)
6 h(λ)f(y) + h(1− λ)f(z) for some λ ∈ (0, 1).

Then f is h-convex on (a, b).
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Proof. If f is not h-convex, then by Lemma 1, there are x1, x2 ∈ (a, b)
with x1 6= x2 (assume that x1 < x2) such that

f
(
λx1 + (1− λ)x2

)
> h(λ)f(x1) + h(1− λ)f(x2) for all λ ∈ (0, 1). (8)

Consider the function g : [x1, x2]→ R defined by

g(y) = g
(
λx1 + (1− λ)x2

)
=

= f
(
λx1+(1−λ)x2

)
− f(x1)−

f(x2)− f(x1)
x2 − x1

(
h(λ)x1+h(1−λ)x2−x1

)
.

It is clear that g is continuous on [x1, x2] and g(x1) = g(x2) = 0. Also,
from (7) and (8), we get

g
(
λx1 + (1− λ)x2

)
= f

(
λx1 + (1− λ)x2

)
− f(x1)− (9)

−f(x2)− f(x1)
x2 − x1

(
(1− h(λ))x2 − (1− h(λ))x1

)
=

= f
(
λx1 + (1− λ)x2

)
− h(λ)f(x1)− h(1− λ)f(x2) > 0.

Lemma 2 and (9) imply that there is an x ∈ (x1, x2) such that

g(x) = max
x16y6x2

g(y) and g(x) > g(y) for x1 6 y < x. (10)

Hence, x = tx1+(1− t)x2 for some 0 < t < 1. Now choose x0, y0 ∈ [x1, x2]
such that x1 6 x0 < x < y0 6 x2. Therefore, from (10) for any λ ∈ (0, 1),

g(x) = [h(λ) + h(1− λ)]g(x) > h(λ)g(x0) + h(1− λ)g(y0). (11)

f(x)− f(x1)−
f(x2)− f(x1)

x2 − x1

(
h(λ)x0 + h(1− λ)y0 − x1

)
> (12)

> h(λ)
[
f(x0)− f(x1)−

f(x2)− f(x1)
x2 − x1

(x0 − x1)
]
+

+h(1− λ)
[
f(y0)− f(x1)−

f(x2)− f(x1)
x2 − x1

(y0 − x1)
]
.

From (7) we deduce, simplifying (12):

f(x) > h(λ)f(x0) + h(1− λ)f(y0) for all λ ∈ (0,1). (13)
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Since x0, y0, and λ are arbitrary, (13) contradicts the assumption. Hence,
f is an h-convex function on (a, b). �

Using Lemma 3, as an immediate consequence we have two following
lemmas. For more details about this kind of results related to the convex
functions, see [6].

Corollary 1. Let h : [0, 1] → R be a continuous self-concave function.
Suppose that f : (a, b)→ R is a continuous function and for any x ∈ (a, b),
ε > 0, there exists a δ ∈ (0, ε) such that

f(x) 6 h(1/2)
[
f(x− δ) + f(x+ δ)

]
.

Then f is h-convex on (a, b).

Proof. In Lemma 3, take y = x− δ, z = x+ δ and λ = 1/2. �

Lemma 4. Let h : [0, 1] → R be a continuous self-concave function.
Suppose that f : (a, b)→ R is a continuous function and for any x ∈ (a, b),
ε > 0, there exists δ ∈ (0, ε) such that

f(x) 6
h(1/2)

δ

x+δ∫
x−δ

f(u)du.

Then f is h-convex on (a, b).

Proof. Suppose that f is not h-convex on (a, b). From Corollary 1, there
are x ∈ (a, b) and ε > 0 such that a < x− ε < x+ ε < b and

f(x) > h(1/2)
[
f(x− δ) + f(x+ δ)

]
for any 0 < δ < ε.

Integrating with respect to δ in the above inequality, we get

1

h(1/2)

δ∫
0

f(x)dt >

∫ δ

0

f(x− t)dt+
δ∫

0

f(x+ t)dt =

= −
x−δ∫
x

f(u)du+

x+δ∫
x

f(u)du =

x+δ∫
x−δ

f(u)du.

So,

f(x) · δ 6 h(1/2)

x+δ∫
x−δ

f(u)du.
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This contradicts the assumption and, hence, f is h-convex on (a, b). �

Now, using Lemma 4, we can obtain a characterization-type theorem
for h-convex functions via the left-hand side of (3).

Theorem 4. Let h : [0, 1] → R be a continuous self-concave function.
Suppose that f : (a, b)→ R is a continuous function and for all y, z ∈ (a, b)
with y 6= z we have

1

2h(1/2)
f

(
y + z

2

)
6

1

z − y

∫ z

y

f(u)du; (14)

then f is h-convex on (a, b).

Proof. Suppose that f is not h-convex on (a,b). From Lemma 4, there
exist x ∈ (a, b) and ε > 0 such that for all δ ∈ (0, ε)

f(x) >
h(1/2)

δ

x+δ∫
x−δ

f(u)du.

Now, if we choose δ < ε and y, z ∈ (a, b) with y < z such that{
x = 1

2
y + 1

2
z,

x− y = z − x = δ,

then we have

f

(
y + z

2

)
>

2h(1/2)

z − y

z∫
y

f(u)du.

This contradicts (14). Thus, f is h-convex on (a, b). �
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