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INJECTIVITY OF SECTIONS OF CLOSE-TO-CONVEX
HARMONIC MAPPINGS WITH FUNCTIONS CONVEX IN

ONE DIRECTION AS ANALYTIC PART

Abstract. In this article, we prove a two-points distortion theorem
and obtain sharp coefficient estimates for the families of close-to-
convex harmonic mappings whose analytic part is a function convex
in one direction. By making use of these results, we determine the
radius of univalence of sections of these families in terms of zeros
of a certain equation. the lower bound for the radius of univalence
has been obtained explicitly for the case α = 1/2. Comparison of
radius of univalence of the sections has been shown by providing a
table of numerical estimates for the special choices of α.
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1. Introduction and motivation. Harmonic mappings are use-
ful in the study of fluid flow problems (see [3]). Furthermore, univalent
harmonic functions having special geometric properties such as convexity,
starlikeness, and close-to-convexity arise naturally while dealing with pla-
nar fluid dynamics problems. For example, in [3, Theorem 4.5], Aleman
et al. considered a fluid flow problem on a convex domain Ω0 satisfying an
interesting geometric property. Furthermore, harmonic mappings which
appear as solutions to some of these real-world problems are very comp-
licated and, hence, evaluating values of such functions is challenging. In
this connection, it is interesting to consider the problem of approximating
harmonic mappings by harmonic polynomials without compromising the
univalency of the polynomial. With this brief motivation, we shall be-
gin to consider the partial sums for the univalent analytic functions and
univalent harmonic mappings.
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Let S denote the class of all normalized univalent analytic functions φ
defined in the unit disk D = {z : |z| < 1} such that

φ(z) = z +
∞∑
k=2

akz
k. (1)

For n > 2, the nth partial sum of φ is the polynomial defined by

sn(φ)(z) = z +
n∑
k=2

ak z
k.

In [23] Szegö proved that the partial sum sn(φ) is univalent in |z| < 1/4
for all φ ∈ S and n > 2. In [19], Robertson proved that the nth partial
sum of the Koebe function is starlike in the disk |z| < 1 − 3n−1 log n,
for n > 5, and that 3 cannot be replaced by a smaller constant. The
general theorems on convolutions [20] (see also [8, p. 256, p. 273]) allow
to infer that sn(φ) is convex, starlike, or close-to-convex in the disk |z| <
< 1 − 3n−1 log n, for n > 5, whenever φ is convex, starlike, or close-to-
convex in D (for details on the class S and its geometric subclasses, one
can refer [8]), respectively. However, the exact radius of univalence rn of
sn(φ) remains an open problem, if φ ∈ S. Jenkins [11] proved that sn(φ)
is univalent in |z| < rn for φ ∈ S, where the radius of univalence rn is at
least 1−(4 log n−log(4 log n))/n for n > 8. However, by making use of the
exact coefficient bounds, one could get rn>1−(4 log n−2 log(log n))/n for
n >7. Moreover, 1−(4 log n−2 log(log n))/n > 1−(4 log n−log(4 log n))/n
for n > 55.

Denote by H the class of all complex-valued harmonic functions
f = h + g in D normalized by h(0) = g(0) = 0 = h′(0) − 1. We call
h and g the analytic and the co-analytic parts of f , respectively, and,
obviously, they have the following power series representation:

h(z) = z +
∞∑
k=2

akz
k and g(z) =

∞∑
k=1

bkz
k, z ∈ D. (2)

We shall use this representation throughout the discussion. The Jacobian
Jf of f = h + g is Jf (z) = |h′(z)|2 − |g′(z)|2. We say that f is sense-
preserving in D if Jf (z) > 0 in D. Let SH denote the class of all sense-
preserving harmonic univalent mappings f ∈ H and set S0

H = {f ∈ SH :
fz(0) = 0}. For many basic results on univalent harmonic mappings in S0

H
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and its well-known geometric subclasses, namely, K0
H , S∗0H , and C0H that

map D onto convex, starlike, and close-to-convex domains, respectively,
we refer to [7, 15]. Here we recall a new subclass of S0

H , namely, S0
H(S)

introduced in [16], where

S0
H(S) =

{
h+ g ∈ S0

H : h+ eiθg ∈ S for some θ ∈ R
}
.

This class along with a related conjecture concerning convex harmonic
mappings were proposed in [16]; this conjecture was later disproved by
Kayumov et al in [12]. For f = h + g ∈ S0

H with the power series repre-
sentation as in (2), the sections/partial sums sn,m(f) of f are defined as

sn,m(f)(z) = sn(h)(z) + sm(g)(z),

where n > 1 and m > 2. However, the special case m = n > 2 seems in-
teresting in its own merit. From the definition above it is clear that partial
sums of f can be thought of as an approximation of f by complex-valued
harmonic polynomials and, thus, approximation of univalent harmonic
mappings by univalent harmonic polynomials might lead to new applica-
tions. For fundamental results on the partial sums of univalent harmonic
mappings, one can refer to [13, 14, 17, 18]. The coefficient problem for S0

H

remains open. For large values of n, coefficient estimates are given in [18].
On the other hand, in a recent paper [1] Ali et al. have shown that if
f = h + g ∈ S0

H , then |a2| 6 20.92 which is the best known estimation.
We recall a few results from [17] which are motivation for the problem
which we consider in this article.

Theorem A. Let f = h + g ∈ S0
H with the series representation as

in (2). Suppose that f belongs to C0H , the class of close-to-convex har-
monic mappings or S0

H(S). Then the section sn,m(f) is univalent in the
disk |z| < rn,m. Here rn,m is the unique positive root of the equation
ψ(n,m, r) = 0, where

ψ(n,m, r) =
1

12r

(
1− r
1 + r

)3
[

1−
(

1− r
1 + r

)6
]
−Rn − Tm,

with

Rn =
∞∑

k=n+1

Akr
k−1, Tm = −

∞∑
k=m+1

A−kr
k−1,

where
Ak =

k(k + 1)(2k + 1)

6
.
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In particular, every section sn, n(f)(z) is univalent in the disk |z| < rn, n,
where

rn, n > rLn, n := 1− (7 log n− 4 log(log n))

n
for n > 15.

Moreover, rn,m > rLl, l, where l = min{n,m} > 15.
We have the following interesting result for functions in the convex

family K0
H of harmonic mappings: the lower bound of rn,m can be im-

proved compared to that of the bounds in Theorem A.

Theorem B. Let f = h + g ∈ K0
H with the series representation as in

(2). Then the section sn,m(f) is univalent in the disk |z| < rn,m, where
rn,m is the unique positive root of the equation µ(n,m, r) = 0. Here

µ(n,m, r) =
1− r

(1 + r)3
−

∞∑
k=n+1

[
k(k + 1)

2
rk−1

]
−

∞∑
k=m+1

[
k(k − 1)

2
rk−1

]
. (3)

In particular, for n > 5, and θ ∈ R, the harmonic function

sn, n(f ; θ)(z) = sn(h)(z) + eiθsn(g)(z)

is univalent and close-to-convex in the disk |z| < 1 − 3n−1 log n. More-
over, we have rn,m > 1−(4 log l−2 log(log l))/l, where l = min{n,m} > 7.

For −1/2 6 α < 1, set

F(α) =

{
h+ g ∈ H : Re

(
1 +

zh′′(z)

h′(z)

)
> α,

g′(z)

h′(z)
= eiθz, ∀ z ∈ D

}
and F = F(−1/2). Note that for −1/2 6 α < 1, f ∈ F(α) has the
following integral representation (see [2]):

f(z) =

z∫
0

∫
|x|=1

1

(1− xt)2(1−α)
dµ(x)dt+

z∫
0

∫
|x|=1

eiθt

(1− xt)2(1−α)
dµ(x)dt,

for some probability measure µ defined on ∂D := {z ∈ C : |z| = 1}.
Remark 1. Let us consider the family of close-to-convex harmonic func-
tions F . A keen observation of the proof of Theorem B reveals that the
results in Theorem B are valid for the class F too (note that members
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of F are not necessarily even starlike). Comparison of this fact with
Theorem A motivates us to consider certain subclasses of close-to-convex
harmonic mappings with special condition on the analytic part of f .

In this article, we determine the radius of univalence rn,m of sn,m(f),
when f ∈ F(α), where α ∈ [−1/2, 1). The lower bound for rn,m is de-
termined for the special choice of α. The paper is organized as follows.
In Section 2, we recall a few known results from the literature, which are
helpful in the proof of our main theorems. We present our main theorems
in Section 3.

2. Useful results. The following result by Bazilevich [5] gives the
necessary and sufficient condition for a normalized analytic function to be
univalent in D.

Theorem C. An analytic function φ defined in D and determined by (1)
is univalent in D if and only if for each z ∈ D and each t ∈ [0, π/2],

φ(reiη)− φ(reiψ)

reiη − reiψ
:=

∞∑
k=1

ak
sin kt

sin t
zk−1 6= 0, (4)

where t = (η − ψ)/2, z = rei(η+ψ)/2 and
sin kt

sin t

∣∣∣∣
t=0

= k.

In [21], Starkov generalized this result to the class of normalized sense-
preserving harmonic mappings in the following form.

Theorem D. A sense-preserving harmonic function f = h+ g defined in
D determined by (2) is univalent in D if and only if for each z ∈ D \ {0}
and each t ∈ (0, π/2],

f(reiη)− f(reiψ)

reiη − reiψ
:=

∞∑
k=1

[
(akz

k − bkzk)
sin kt

sin t

]
6= 0, (5)

where t = (η − ψ)/2 and z = rei(η+ψ)/2.
Further extension of Theorem D along with its use may be obtained

from the article of Amozova et al. [4]. The following two-points distortion
theorem plays a crucial role in the proof of our main results.

Theorem E. If f ∈ S, r ∈ (0, 1), t, ψ ∈ R such that t 6= ψ, then∣∣∣∣f(reit)− f(reiψ)

reit − reiψ

∣∣∣∣ > 1− r2

r2
|f(reit)|·|f(reiψ)|.
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3. The distortion theorem and the partial sums problem. By
making use of Theorem E, we derive a two-points distortion theorem for
functions in the family F(α). This result is crucial in the proof of our
main theorem.

Theorem 1. (Two points distortion theorem) Suppose that
f = h + g ∈ F(α) for some α ∈ [−1/2, 1). For each λ ∈ C such that
|λ| = 1, define

Fλ(z) := h(z) + λg(z).

Then for 0 < r < 1 and t, ψ ∈ R such that t 6= ψ, f satisfies the following
inequalities∣∣∣∣Fλ(reit)− Fλ(reiψ)

reit − reiψ

∣∣∣∣ > 1− r2

r2
L2(r, α) =: A(r, α), (6)∣∣∣∣f(reit)− f(reiψ)

reit − reiψ

∣∣∣∣ > A(r, α) for 0 < r < 1,

where

L(r, α) :=



2r

1 + r
− log(1 + r) if α = 0,

2 log(1 + r)− r if α = 1/2,

(1 + r + 2α(1− r))(1 + r)2α−1 − (1 + 2α)

2α(2α− 1)

if α ∈ [−1/2, 1) \ {0, 1/2}.

Proof. Let f = h + g ∈ F(α) for some α ∈ [−1/2, 1) and
Fλ(z) := h(z) + λg(z). Set fλ = h + λg. It is clear that both Fλ and
fλ are univalent and close-to-convex in D for all λ such that |λ| = 1,
which follow from a result of Bharanedhar et al. [6]. For every pair of
points z1 = reit and z2 = reiψ, we can find a λ such that

(h(z1)− h(z2)) + (g(z1)− g(z2)) = (h(z1)− h(z2)) + λ(g(z1)− g(z2)).

Therefore, by using Theorem E, we get∣∣∣∣f(reit)− f(reiψ)

reit − reiψ

∣∣∣∣ =

∣∣∣∣Fλ(reit)− Fλ(reiψ)

reit − reiψ

∣∣∣∣ >
>

1− r2

r2
|Fλ(reit)|·|Fλ(reiψ)|. (7)
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In order to complete the proof, we need to find the lower bounds of |Fλ(z)|.
Let γ be the preimage under Fλ of the line segment joining 0 and Fλ(z).

Then

|Fλ(z)| =
∫
γ

|F ′λ(ζ)|·|dζ| >
∫
γ

(|h′(ζ)| − |g′(ζ)|)·|dζ| >

>
∫
γ

(1− |ζ|)·|h′(ζ)|·|dζ| >
r∫

0

(1− ρ)

(1 + ρ)2(1−α)
dρ, (8)

where the last inequality is a consequence of the following well known
distortion theorem for the convex function of order α (see [9, p. 139, Vol. 1,
Theorem 1] for the case α such that 0 6 α < 1))

|h′(z)| > 1

(1 + r)2(1−α)
, r = |z| < 1.

Also, for α ∈ [−1/2, 0), the above inequality holds true, which can be
obtained using the same proof technique. The desired conclusion follows,
if we use the inequality (8) in (7). �

Next, we provide the sharp coefficient estimates for the functions in
the family F(α).

Theorem 2. Suppose that f = h + g ∈ F(α) for some α ∈ [−1/2, 1)
with the series representation as in (2). Then, for all n > 2, the coefficients
of f satisfy the following inequalities:

|an| 6 An(α) and |bn| 6
n− 1

n− 2α
An(α), (9)

where

An(α) =
1

n!

n∏
j=2

(j − 2α). (10)

All these bounds are sharp and each inequality becomes equality for the
close-to-convex functions fα(z) = hα(z)+gα(z) and their rotations, where

fα(z) =

z∫
0

1

(1− t)2(1−α)
dt+ eiθ

∫ z

0

t

(1− t)2(1−α)
dt (11)
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Proof. The proof follows from the coefficient bounds for the convex func-
tions of order α (see [9, p. 140, Vol. 1, Theorem 2]) and a result of
T. J. Suffridge [22, Theorem 5.6]. We remark that the original proofs
given in the above references are considered for the values of α ∈ [0, 1),
which can be extended to the case of α ∈ [−1/2, 0); we skip the details
here as the computations are similar (See also [24, Lemma 3.1, Theorem
3.2]). �

Theorem 3. Let f = h + g ∈ F(α), for some α ∈ [−1/2, 1) with the
series representation as in (2). Then, for θ ∈ R, the harmonic function

sn,m(f ; θ)(z) = sn(h)(z) + eiθsm(g)(z)

is univalent in the disk |z| < rn,m, where rn,m is the unique positive root
of the equation ψ(n,m, r, α) = 0 in (0, 1). Here

ψ(n,m, r, α)=A(r, α)−
∞∑

k=n+1

[
kAk(α)rk−1

]
−

∞∑
k=m+1

[
k(k − 1)

(k − 2α)
Ak(α)rk−1

]
,

(12)
where A(r, α) and Ak(α) are defined as in (6) and (10), respectively. When
α = 1/2, we have rn,m > 1− (2 log l)/l, where l = min{n,m} > 3.

Proof. Suppose that f = h + g ∈ F(α) for some α ∈ [−1/2, 1) with the
series representation as in (2). For 0 < r < 1 and θ ∈ R, we set

Fr, θ(z) =
h(rz)

z
+ eiθ

g(rz)

z

and one could see that

Fr, θ(z) = z +
∞∑
k=2

akr
k−1zk + eiθ

∞∑
k=2

bkr
k−1zk.

It is clear, from the definition of Fr, θ, that finding the largest radius of
univalence of sn,m(f ; θ) for every value of θ ∈ [0, 2π] is equivalent to finding
the largest value r such that sn,m(Fr, θ) is univalent in D for every θ∈ [0, 2π]
(See [10] for the details). Using Theorem C, we see that sn,m(Fr, θ) is
univalent in D if and only if the associated section Pn,m, r, α(z) has the
property that

Pn,m, r, α(z) :=
M∑
k=1

[
(a′kz

k + b′kz
k)

sin kt

sin t

]
6= 0, for all z ∈ D \ {0},
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and t ∈ [0,π/2], where M = max{n,m}, l = min{n,m}, a′k = akr
k−1,

b′k = bkr
k−1 for all k 6 l,

a′k =

{
akr

k−1 for all k > l if M = n,
0 for all k > l if M > n,

b′k =

{
eiθbkr

k−1 for all k > l if M = m,
0 for all k > l if M > m.

Setting t = (η − ψ)/2, z = ρei(η+ψ)/2 ∈ D in (5) and using univalency of
Fr, θ for 0 < r < 1, we get∣∣∣∣∣

∞∑
k=1

[
(akz

k + eiθbkz
k)rk−1

sin kt

sin t

]∣∣∣∣∣ > A(r, α), (13)

where A(r, α) is defined as in (6). In order to find a lower bound for
|Pn,m, r, α(z)|, we need to find an upper bound for

|Rn,m, r, α(z)| =

∣∣∣∣∣
∞∑

k=n+1

[
akr

k−1zk
sin kt

sin t

]
+

∞∑
k=m+1

[
eiθ(bkr

k−1zk)
sin kt

sin t

]∣∣∣∣∣ .
From Theorem 2, it follows that

|Rn,m, r, α(z)| 6
∞∑

k=n+1

[
kAk(α)rk−1

]
+

∞∑
k=m+1

[
k(k − 1)

(k − 2α)
Ak(α)rk−1

]
=

= Rn(r, α) + Tm(r, α), (14)

where Ak(α) is defined as in (9). From (13) and (14), we get

|Pn,m, r, α(z)| > A(r, α)−Rn(r, α)− Tm(r, α) = ψ(n,m, r, α).

The quantity Pn,m, r, α(z) 6=0 holds for all z∈D\{0}, whenever ψ(n,m, r, α)
defined by (12) is positive. This gives ψ(n,m, r, α) > 0 for all r ∈ (0, rn,m),
where rn,m is the positive root of the equation ψ(n,m, r, α) = 0, which
lies in the interval (0, 1). This observation proves that Fr, θ is univalent in
D for all θ ∈ [0, 2π]; this implies univalency of sn,m(f ; θ) (see [10]) in the
disk |z| < rn,m for all θ ∈ [0, 2π]. This completes the proof of the first
part of the theorem.

From the above discussion, it is clear that rn,m > rl, l, where
l = min{n,m} > 2. Next, we shall consider the special case m = n
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and determine the lower bound for rn, n with a certain restriction on n
and special choices of α.

Let us consider the case α = 1/2. In this case, the sufficient condition
(12) for the univalence of sn, n(f ; θ) reduces to

ψ(n, n, r, 1/2) = A(r, 1/2)−Rn(r, 1/2)− Tn(r, 1/2) =

= (1− r2)
(

2 log(1 + r)− r
r

)2

−2
∞∑

k=n+1

rk−1 >
1− r

(1 + r)2
− 2rn

(1− r)
. (15)

From the fact that lim
n→∞

ψ(n, n, r, 1/2) > 0 for all r such that 0 < r < 1,
it is clear that the radius of univalence rn, n → 1 as n → ∞. Setting
r = 1− x/n, where x = o(n), we see that

ψ(n, n, r, 1/2) =
(1− r)2 − 2(1 + r)2rn

(1− r)(1 + r)2
> 0,

whenever 0 < t(x, n) < 1, where

t(x, n) = 2e−x
(

2n

x
− 1

)2

.

Now, we shall prove that rn, n > 1−γn/n and we shall explicitly determine
the value γn for large values of n. In order to prove that, it is sufficient to
prove that t(x, n) is a decreasing function in x, whenever

γn 6 x 6 n, 0 < t(γn, n) < 1 and t(n, n) > 0.

Since ext(x, n) = O(n2), we may set γn = 2 log n. It is easy to see that
1 − γn/n > 0 and increases for all n > 3. For n > 3, we shall prove that
rn, n > 1− γn/n.

Fix an integer n > 3 and consider an x ∈ [γn, n]; we prove that t(x, n)
is a decreasing function with respect to x. From the definition of t(x, n),
it is clear that it is a product of two positive decreasing functions. Hence,
t(x, n) is a decreasing function with respect to x for every fixed integer
n > 3. Further, it is easy to see that t(n, n) < 1 for all n > 3. In
order to complete the proof, it is enough to show that t(γn, n) < 1 for all

n > 3. Note that t(γn, n) =
2

n2

(
n

log n
− 1

)2

= 2

(
1

log n
− 1

n

)2

< 1 for

all n > 3. The proof is complete. �

Remark 2. From Theorem B, we could see that whenever f ∈ F(−1/2),
sn,m(f ; θ) is univalent in the disk |z| < rn,m, where

rn,m > rl, l = 1− (4 log l − 2 log(log l))/l
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for l = min{m,n} > 7.

Generally, it is possible to estimate lower bounds for rn,m for functions
f ∈ F(α) for α ∈ [−1/2, 1); however, if we consider the computation
for finding the lower bound on rn,m in Theorem 3 and Theorem B, the
difficulty in handling the general case α ∈ [−1/2, 1) becomes clear. Never-
theless, we can compare the variations on the radius of univalence of the
partial sums, when we consider functions f ∈ F(α) for various values of
α ∈ [−1/2, 1). We demonstrate this in the following Corollary.

Corollary. Suppose that f ∈ F(α) for some α ∈ [−1/2, 1). Then the
value of n for which sn, n(f ; θ) is univalent in the disk |z| < ρ for all values
of θ ∈ [0, 2π] is given in Table 1:

|z| < ρ α = −1

2
α = −1

4
α = 0 α =

1

4
α =

1

2
α =

3

4

1/4 n > 2 n > 2 n > 2 n > 2 n > 2 n > 2
1/2 n > 12 n > 10 n > 8 n > 6 n > 4 n > 3
3/4 n > 43 n > 36 n > 29 n > 22 n > 16 n > 9
9/10 n > 160 n > 135 n > 111 n > 86 n > 61 n > 35

Table 1: Values of n for which sn, n(f ; θ) is univalent in the disk |z| < ρ

Proof. The lower bound on ρ, corresponding to the value n = 2, follows
from the result [10, Proposition 2.1] and the result of Szegö [23]. All the
other lower bounds have been estimated with the help of the Mathematica
software by estimating ψ(n, n, r, α) = 0 in the equation (12), correspon-
ding to the values of r = ρ, fixing α = −1/2,−1/4, 0, 1/4, 1/2, 3/4. �
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