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Abstract. In this paper, we study the oscillatory behavior of the
solutions of fractional-order nonlinear impulsive hybrid partial dif-
ferential equations with the mixed boundary condition. By using
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1. Introduction In the last few decades, there has been a lot of
interest in deriving sufficient conditions for the oscillation and nonoscilla-
tion of solutions of classes of differential equations. The first investigation
and publication of the oscillation theory of impulsive differential equations
was in 1989 [9], and the first paper on impulsive partial differential equa-
tions was published in 1996 [2]. Its consequences were included in the
book [15]. Chatzarakis et al. [3], Kalaimani et al. [13], Prakash et al. [20],
Sadhasivam et al. [23,25] and Yang et al. [30] studied the impulsive partial
differential equations. The study of impulsive partial differential equa-
tions is motivated by various applications in population models [2], single
species growth [6], feedback control prey-predator model [12], and various
scientific models [29,31].

Even though there is a countable number of papers on oscillatory solu-
tions of fractional partial differential equations, refer [7,16,21,22,24], they
have not dealt with the impulse effect. Many authors have investigated
some of the areas of applications of fractional differential equations, like
viscoelasticity, electrochemistry, signal processing and so on; in the last
few decades, there have been several monographs of fractional derivatives
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and integrals, see [1,4,14,18,26,33] and the references cited therein. In the
recent years, there has been much research on hybrid differential equations
that refer to various aspects of quadratic perturbations of nonlinear differ-
ential equations. The reason is that hybrid differential equations include
several dynamic systems as special cases. There has been a significant
amount of work on the theory of hybrid differential equations that can be
referred in articles [10, 27, 28, 32]. Applications with numerical solutions
have been studied by several authors, see, for example, [11, 19].

In a systematic review of the literature on hybrid differential equations,
it is noted that Dhage and Lakshmikantham [5] scrutinized the existence
of extremal solutions and a comparison result for first order hybrid differ-
ential equation with linear perturbations of the following type:

d

dt

(
x(t)

f(t, x(t))

)
= g(t, x(t)), a.e. t ∈ J, x(t0) = x0 ∈ R,

where f ∈ C(J ×R,R−{0}) and g ∈ C(J ×R,R). Ge et al. [8] analysed
the existence of a mild solution for impulsive hybrid fractional differential
equations:

cDq
0, t

(
u(t)

f(t, u(t))

)
= g(t, u(t)), t ∈ J ′ := J \ {t1, t2, . . . ,tm}

u(t+k ) = u(t−k ) + Ik(u(t−k )), k = 1, 2, . . . ,m

u(0) = u0,


where cDq

0, t is the generalized Caputo fractional derivative of order
q ∈ (0, 1) with the zero lower limit, f ∈ C(J × R,R \ {0}) and
g ∈ C(J × R,R).
However, to the best of our knowledge, we understand that there has been
no previous research made on the oscillation of nonlinear fractional im-
pulsive hybrid partial differential equations. Hence, we believe that we
are the first who initiate the oscillation criteria for fractional impulsive
partial hybrid differential equations which had not been formerly studied.
Motivated by the above observations, we propose the following model of
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the form

∂

∂t

(
r(t)Dα

+, t

(
u(x, t)

h(t, u(x, t))

))
+ q(x, t)g

(
Dα

+, tu(x,t)

)
=

= a(t)∆u(x, t)− f
(
t,

t∫
0

(t− s)−αu(x, s)ds

)
+ F (x, t),

u(x, t+k ) = γk(x, tk, u(x, tk)),

ut(x, t
+
k ) = δk(x, tk, ut(x, tk)), k = 1, 2, . . . , (x, t) ∈ Ω× R+ ≡ G.


(1)

where Ω is a bounded domain in Rn with a piecewise smooth boundary ∂Ω,
α ∈ (0, 1) is a constant, Dα

+, t is the Riemann-Liouville fractional derivative
of order α of u with respect to t, and ∆ is the Laplacian operator in the

Euclidean n-space Rn, i. e., ∆u(x, t) =
∑n

r=1

∂2u(x, t)

∂x2
r

with the boundary

conditions

∂u(x, t)

∂η
+ γ(x, t)u(x, t) = 0, (x, t) ∈ ∂Ω×R+ (2)

and

∂u(x, t)

∂η
= 0, (x, t) ∈ ∂Ω×R+, (3)

where η is the unit exterior normal vector to ∂Ω and γ(x, t) is a positive
continuous function on ∂Ω×R+.

Based on the following assumption:

(A1) r(t) ∈ C1(R+;R+), r
′
(t) > 0, a(t) ∈ PC(R+;R+);

(A2) q(x,t) ∈ C(Ḡ;R+) and q(t) = min
x∈Ω̄

q(x, t);

(A3) g ∈ C(R;R) is convex in R+, ug(u) > 0 and
g(u)

u
> µ > 0

for u 6= 0, f(t, x(t)) ∈ C([t0,∞) × R,R), there exists a function

p(t) ∈ C([t0,∞), R+) such that
f(t,K)

K
> p(t) for K 6= 0, t > t0;

(A4) h ∈ C(R× [t0,∞);R−{0}) is convex in R+, there exists a function
ζ(t) ∈ C([t0,∞),R+) such that h(t, u) > ξ(x)ζ(t) > Mζ(t), ξ(x) is
not identically zero on [t0,∞) and such that |ξ(x)| > M > 0 and
Dα

+h(t, y) > 0;
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(A5) F ∈ C(Ḡ;R) such that
∫
Ω

F (x, t)dx 6 0;

(A6) u(x, t), ut(x, t) are piecewise continuous in t with discontinuities of
the first kind at t = tk, k = 1, 2, . . . , and left continuous at t = tk,
u(x, tk) = u(x, t−k ), ut(x, tk) = ut(x, t

−
k ), k = 1, 2, . . .;

(A7) γk(x, tk, u(x,tk)), δk(x, tk, ut(x, tk))∈PC(Ω̄×R+×R,R), k = 1, 2, . . .
and there exist positive constants bk, b∗k, ck, c∗k with ck 6 b∗k such that

b∗k 6
γk(x, tk, u(x, tk))

u(x, tk)
6 bk, c

∗
k 6

δk(x, tk, ut(x, tk))

ut(x, tk)
6ck, k = 1, 2, . . .

By a solution of equation (1) and (2)–(3), we mean a nontrivial function
u(x, t) ∈ C1+α(Ḡ, R+) with

t∫
0

(t− s)−αu(x, s)ds ∈ C1(Ḡ, R+), r(t)Dα
+, t

(
u(x, t)

h(t, u(x, t))

)
∈ C1(Ḡ, R+),

that satisfies Ḡ and the boundary conditions (2)–(3). A solution of equa-
tions (1) and (2)–(3) is called oscillatory if it has arbitrarily large zeros in
G, and is called nonoscillatory otherwise. Equations (1) and (2)–(3) are
said to be oscillatory if all their solutions are oscillatory.

This paper is organized as follows: In Section 2, we present the relevant
definitions and lemmas, and in Section 3 we discuss the oscillation problem
of (1) subject to the boundary conditions (2)–(3). In Section 4 we present
an example to illustrate our main results.

The results in this paper extend and improve numerous findings in the
earlier publications that do not include the impulsive effect. We believe
that this research work would enable further researchers on the fractional
impulsive partial hybrid differential equations.

2. Preliminaries. In this section, we give the fundamental defini-
tions of fractional derivatives and integrals. There are several kinds of
definitions of fractional derivatives and integrals. In this paper, we use
the Riemann–Liouville left-sided definition on the half-axis R+.

Definition 1. [14] The Riemann–Liouville fractional partial derivative
of order 0 < α < 1 with respect to t of a function u(x, t) is given by

(Dα
+,t y)(x, t) :=

∂

∂t

1

Γ(1− α)

t∫
0

(t− v)−αy(x, v)dv (4)
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provided that the right-hand side is pointwise defined on R+, where Γ is
the gamma function.

Definition 2. [14] The Riemann–Liouville fractional integral of order
α > 0 of a function y : R+ → R on the half-axis R+ is given by

(Iα+ y)(t) :=
1

Γ(α)

t∫
0

(t− v)α−1y(v)dv for t > 0 (5)

provided that the right-hand side is pointwise defined on R+.

Definition 3. [14] The Riemann–Liouville fractional derivative of order
α > 0 of a function y : R+ → R on the half-axis R+ is given by

(Dα
+ y)(t) :=

ddαe

dtdαe

(
I
dαe−α
+ y

)
(t) for t > 0 (6)

provided that the right-hand side is pointwise defined on R+, where dαe
is the ceiling function of α.

Lemma 1. [14] Let y(t) be a solution of (1) and

E(t) =

t∫
0

(t− ν)−αy(ν)dν for α ∈ (0,1) and t > 0. (7)

Then

E ′(t) = Γ(1− α)Dα
+y(t). (8)

Theorem 1. [17] Let f(x), g(x), h(x) > 0 be continuous functions on
[a, b] such that

(g(x)− g(y))

(
f(y)

h(y)
− f(x)

h(x)

)
> 0. (9)

Then the inequality

b∫
a

f(x)dx

b∫
a

h(x)dx

>

b∫
a

f(x)g(x)dx

b∫
a

h(x)g(x)dx

(10)
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holds. If (9) reverses, then (10) reverses.

Corollary 1. Let g(x, t), u(x, t), f(t, u(x, t)) > 0 be continuous on Ω
and for any fixed t ∈ R+ such that

(u(x, t)− u(y, t))

(
g(y, t)

f(t, u(y, t))
− g(x, t)

f(t, u(x, t))

)
> 0. (11)

Then the inequality∫
Ω

g(x,t)dx∫
Ω

f(t, u(x,t))dx
>

∫
Ω

g(x, t)u(x, t)dx∫
Ω

f(t, u(x, t))u(x, t)dx
(12)

holds. If (11) reverses, then (12) reverses.

Proof. We have to prove that∫
Ω

g(x, t)dx

∫
Ω

f(t, u(x, t))u(x, t)dx >
∫
Ω

f(t, u(x, t))dx

∫
Ω

g(x, t)u(x, t)dx,

which is equivalent to∫
Ω

g(x, t)dx

∫
Ω

f(t, u(y, t))u(y, t)dy >
∫
Ω

f(t, u(x, t))dx

∫
Ω

g(y, t)u(y, t)dy,

which implies∫
Ω

∫
Ω

u(y, t)(g(x, t)f(t, u(y, t))− g(y, t)f(t, u(x, t)))dxdy > 0.

Denote

I =

∫
Ω

∫
Ω

u(y,t)(g(x, t)f(t,u(y,t))− g(y, t)f(t, u(x, t)))dxdy,

then

I =

∫
Ω

∫
Ω

u(x, t)(g(y, t)f(t, u(x, t))− g(x, t)f(t, u(y, t)))dxdy.

Hence
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2I =

∫
Ω

∫
Ω

(u(x, t)−u(y, t))(g(y, t)f(t, u(x, t))−g(x,t)f(t,u(y,t)))dxdy =

=

∫
Ω

∫
Ω

f(t, u(x, t))f(t, u(y, t))(u(x, t)− u(y, t))×

×
(

g(y, t)

f(t, u(y, t))
− g(x, t)

f(t, u(x, t))

)
dxdy.

By (11), 2I > 0. �

Remark 1. In particular, replacing g(x, t) = 1 and f(t, u(x, t)) =
= 1/f(t, u(x, t)) in the above Corollary 1 under the condition

(u(x, t)− u(y, t)) (f(t, u(y, t))− f(t, u(x, t))) > 0, (13)

then

|Ω|
∫
Ω

u(x, t)

f(t, u(x, t))
dx >

∫
Ω

u(x, t)dx

∫
Ω

1

f(t, u(x, t))
dx (14)

holds. If (13) reverses, then (14) reverses.

Remark 2. It is well known that if f(x) is convex and 2f−f 2 > 0 then
1/f(x) is convex.

3. Main Results. The following notation will be used for conve-
nience:

V (t) =
1

|Ω|

∫
Ω

u(x, t)dx, |Ω| =
∫
Ω

dx. (15)

Throughout the paper, let us assume that Dα
+V (t) > 0.

We begin with the following theorem.

Theorem 2. If the fractional differential inequality

d

dt

(
r(t)Dα

+

(
V (t)

h(t,V (t))

))
+ µq(t)Dα

+V (t) + f(t,E(t)) 6 0, t 6= tk,

b∗k 6
V (t+k )

V (tk)
6 bk, c∗k 6

V
′
(t+k )

V ′(tk)
6 ck, k = 1, 2, . . . (16)

has no eventually positive solution, then every solution of equation (1),
(2) is oscillatory in G.
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Proof. Assume, for the sake of contradiction, that there is a nonoscillatory
solution u(x,t) of (1) and (2), which has a constant sign in the domain
Ω × [t0,+∞). With no loss of generality, we assume that u(x, t) > 0,
(x, t) ∈ Ω× [t0,+∞), t0 > 0. Equation (1) is multiplied in both sides by
1/|Ω| and integrated with respect to x over the domain Ω; we get

1

|Ω|

∫
Ω

d

dt

(
r(t)Dα

+, t

(
u(x, t)

h(t, u(x, t))

))
dx+

1

|Ω|

∫
Ω

q(x, t)g(Dα
+, tu(x, t))dx =

=
1

|Ω|

∫
Ω

a(t)∆u(x, t)dx− 1

|Ω|

∫
Ω

f

(
t,

t∫
0

(t− s)−αu(x, s)ds

)
dx+

+
1

|Ω|

∫
Ω

F (x, t)dx. (17)

From Green’s formula and the Robin boundary condition (2), we get∫
Ω

∆u(x, t)dx =

∫
∂Ω

∂u(x, t)

∂η
dS = −

∫
∂Ω

γ(x, t)u(x, t)dS 6 0, (18)

where dS is the surface element on ∂Ω. From (A2), (A3) and Jensen’s
inequality, we have

1

|Ω|

∫
Ω

q(x, t)g(Dα
+, tu(x, t))dx > q(t)

1

|Ω|

∫
Ω

g
(
Dα

+, tu(x, t)
)
dx >

> q(t)g
(
Dα

+V (t)
)
> µq(t)Dα

+V (t). (19)

Again applying Jensen’s inequality and using Lemma 1,

1

|Ω|

∫
Ω

f
(
t,

t∫
0

(t−s)−αu(x, s)ds
)
dx > f

(
t,

1

|Ω|

∫
Ω

t∫
0

(t−s)−αu(x, s)dsdx
)

= f
(
t,

t∫
0

(t− s)−αV (s)ds
)

= f(t, E(t)). (20)

Now applying Remark 1 and 2,
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1

|Ω|

∫
Ω

d

dt

(
r(t)Dα

+, t

( u(x, t)

h(t, u(x, t))

))
dx >

>
d

dt

(
r(t)Dα

+

( 1

|Ω|

∫
Ω

u(x, t)

h(t, u(x, t))

))
dx >

d

dt

(
r(t)Dα

+

( V (t)

h(t, V (t))

))
.

(21)

In view of (17)–(21) and (A4) yield

d

dt

(
r(t)Dα

+

( V (t)

h(t, V (t))

))
+ µq(t)Dα

+V (t) + f(t, E(t)) 6 0, t 6= tk.

For t > t0, t = tk, k = 1, 2, . . . , multiplying both sides of (1) by 1
|Ω| and

integrating with respect to x over the domain Ω, we obtain

b∗k 6
u(x, t+k )

u(x, tk)
6 bk, c∗k 6

ut(x, t
+
k )

ut(x, tk)
6 ck.

According to (15), we get

b∗k 6
V (t+k )

V (tk)
6 bk, c∗k 6

V
′
(t+k )

V ′(tk)
6 ck, k = 1, 2, . . .

Hence, V (t) is a positive solution of impulsive differential inequality (16).�

Theorem 3. If there exists a positive function φ ∈ C1([0,∞);R+) and

+∞∫
t0

∏
t06tk<s

(
ck
b∗k

)−1(
p(s)φ(s)− 1

4MΓ(1− α)

(φ
′
(s))2

φ(s)

r(s)

ζ(s)

)
ds = +∞, (22)

holds, then every solution of boundary value problem (1)–(2) is oscillatory
in G.

Proof. Assume that there exists a nonoscillatory solution u(x, t) of
(1)–(2) if the conditions of Theorem 3 hold. Suppose that V (t) > 0 is
a solution of inequality (16) and Dα

+V (t) > 0. By (A3), inequality (16)
can be reduced to the following form

d

dt

(
r(t)Dα

+

( V (t)

h(t,V (t))

))
+ µq(t)Dα

+V (t) + p(t)E(t)) 6 0, t 6= tk. (23)
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Define

Z(t) = φ(t)
r(t)Dα

+

(
V (t)

h(t,V (t))

)
E(t)

, t > t1. (24)

Then Z(t) > 0, since E(t) > 0 for t > t1. Differentiating (24) and using
(16) and Lemma 1, we have

Z
′
(t) 6

φ
′
(t)

φ(t)
Z(t)− µq(t)φ(t)

Dα
+V (t)

E(t)
− p(t)φ(t)− Z(t)

E
′
(t)

E(t)
6

6
φ
′
(t)

φ(t)
Z(t)− p(t)φ(t)− Z2(t)

E
′
(t)

φ(t)r(t)Dα
+

(
V (t)

h(t,V (t))

) 6
6
φ
′
(t)

φ(t)
Z(t)− p(t)φ(t)− Γ(1− α)

h(t, V (t))

φ(t)r(t)
Z2(t).

By (A4), we get

Z
′
(t) 6

φ
′
(t)

φ(t)
Z(t)− p(t)φ(t)−MΓ(1− α)

ζ(t)

φ(t)r(t)
Z2(t),

Z(t+k ) 6
ck
b∗k
Z(tk). (25)

Define

Θ(t) =
∏

t06tk<t

(
ck
b∗k

)−1

Z(t).

In fact, Z(t) is continuous on each interval (tk,tk+1] and in consideration
of (25). It follows that for t > t0,

Θ(t+k ) =
∏

t06ti6tk

(
ck
b∗k

)−1

Z(t+k ) 6
∏

t06ti<tk

(
ck
b∗k

)−1

Z(tk) = Θ(tk),

and for all t > t0,

Θ(t−k ) =
∏

t06ti6tk−1

(
ck
b∗k

)−1

Z(t−k ) 6
∏

t06ti<tk

(
ck
b∗k

)−1

Z(tk) = Θ(tk),
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which implies that Θ(t) is continuous on [t0,+∞).

Θ
′
(t) +MΓ(1− α)

∏
t06tk<t

(
ck
b∗k

)
ζ(t)

φ(t)r(t)
Θ2(t) +

∏
t06tk<t

(
ck
b∗k

)−1

p(t)φ(t)−

−φ
′
(t)

φ(t)
Θ(t) =

∏
t06tk<t

(
ck
b∗k

)−1

Z
′
(t)−

∏
t06ti<tk

(
ck
b∗k

)−1
φ
′
(t)

φ(t)
Θ(t)+

+
∏

t06tk<t

(
ck
b∗k

) ∏
t06tk<t

(
ck
b∗k

)−2

Γ(1− α)
Mζ(t)Θ2(t)

φ(t)r(t)
+
∏

t06ti<tk

(
ck
b∗k

)−1

p(t)φ(t)=

=
∏

t06tk<t

(
ck
b∗k

)−1[
Z
′
(t)− φ

′
(t)

φ(t)
Z(t)+p(t)φ(t)+MΓ(1−α)

ζ(t)

φ(t)r(t)
Z2(t)

]
60.

That is,

Θ
′
(t) 6 −MΓ(1− α)

∏
t06tk<t

(
ck
b∗k

)
ζ(t)

φ(t)r(t)
Θ2(t)−

−
∏

t06tk<t

(
ck
b∗k

)−1

p(t)φ(t) +
φ
′
(t)

φ(t)
Θ(t).

Then, using the inequality, λABλ−1 − Aλ 6 (λ− 1)Bλ, λ > 1, we have

Θ
′
(t) 6 −

∏
t06tk<t

(
ck
b∗k

)−1[
p(t)φ(t)− 1

4MΓ(1− α)

(φ
′
(t))2

φ(t)

r(t)

ζ(t)

]
.

Integrating the last inequality from t0 to t, which yields

Θ(t)6Θ(t0)−
t∫

t0

∏
t06tk<s

(
ck
b∗k

)−1[
p(s)φ(s)− 1

4MΓ(1− α)

(φ
′
(s))2

φ(s)

r(s)

ζ(s)

]
ds.

Letting t→ +∞, we get a contradiction to the hypothesis (22). �

Theorem 4. Assume that there exist functions φ(t) and ψ(t)∈C1([0,∞);
(0,+∞)) in which φ(t) is nondecreasing with respect to t and the functions
H(t, s), h(t, s) ∈ C1(D,R) in which D = {(t,s)|t > s > t0 > 0}, such that

(T1) H(t, t) = 0 for t > t0 and H(t, s) > 0 for t > s > t0;
(T2) H

′
t(t, s) > 0, H ′s(t, s) 6 0;
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(T3) h(t, s) = −∂H(t, s)

∂s
ψ(s)−H(t, s)ψ

′
(s)−H(t, s)ψ(s)

φ
′
(s)

φ(s)
.

If

lim sup
t→+∞

t∫
t0

∏
t06tk<s

(
ck
b∗k

)−1(
p(s)φ(s)H(t,s)ψ(s)−

− 1

4MΓ(1− α)

h2(t, s)Ψ(s)

H(t, s)ψ(s)

)
ds =∞, (26)

where Ψ(s) =
φ(s)r(s)

ζ(s)
, then each solution of (1)–(2) is oscillatory in G.

Proof. We prove that the equation (26) has no eventually positive solu-
tions if the conditions of Theorem 4 hold. As in the proof of Theorem 3,
we obtain

Θ
′
(t) 6−MΓ(1− α)

∏
t06tk<t

(
ck
b∗k

)
ζ(t)

φ(t)r(t)
Θ2(t)−

−
∏

t06tk<t

(
ck
b∗k

)−1

p(t)φ(t) +
φ
′
(t)

φ(t)
Θ(t).

Multiplying the above inequality by H(t, s)ψ(s) for t > s > T and inte-
grating from T to t, we have

t∫
T

H(t, s)ψ(s)Θ
′
(s)ds 6 −

t∫
T

∏
t06tk<s

(
ck
b∗k

)−1

H(t, s)ψ(s)p(s)φ(s)ds−

−MΓ(1− α)

t∫
T

∏
t06tk<s

(
ck
b∗k

)
H(t, s)ψ(s)

ζ(s)

φ(s)r(s)
Θ2(s)ds+

+

t∫
T

H(t, s)ψ(s)
φ
′
(s)

φ(s)
Θ(s)ds.

Thus
t∫

T

∏
t06tk<s

(
ck
b∗k

)−1

H(t, s)ψ(s)p(s)φ(s)ds 6 H(t, T )ψ(T )Θ(T )−
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−
t∫

T

[
− ∂H(t, s)

∂s
ψ(s)−H(t, s)ψ

′
(s)−H(t, s)ψ(s)

φ
′
(s)

φ(s)

]
ds−

−MΓ(1− α)

t∫
T

∏
t06tk<s

(
ck
b∗k

)
H(t, s)ψ(s)

ζ(s)

φ(s)r(s)
Θ2(s)ds,

which implies that

t∫
T

∏
t06tk<s

(
ck
b∗k

)−1[
H(t, s)ψ(s)p(s)φ(s)ds−

− 1

4MΓ(1− α)

h2(t, s)φ(s)r(s)

ζ(s)H(t, s)ψ(s)

]
ds 6 H(t, T )ψ(T )Θ(T ), (27)

from (27), for t > T > t0, we have

1

H(t, t0)

t∫
T

∏
t06tk<s

(
ck
b∗k

)−1[
H(t, s)ψ(s)p(s)φ(s)−

− 1

4MΓ(1− α)

h2(t, s)φ(s)r(s)

ζ(s)H(t, s)ψ(s)

]
ds =

=
1

H(t, t0)

[ T∫
t0

+

t∫
T

]{ ∏
t06tk<s

(
ck
b∗k

)−1[
H(t,s)ψ(s)p(s)φ(s)−

− 1

4MΓ(1− α)

h2(t, s)φ(s)r(s)

ζ(s)H(t, s)ψ(s)

]}
ds 6

6

T∫
t0

∏
t06tk<s

(
ck
b∗k

)−1

ψ(s)p(s)φ(s)ds+ ψ(T )Θ(T ).

Letting t→ +∞, we have

lim sup
t→+∞

1

H(t, t0)

t∫
t0

∏
t06tk<s

(
ck
b∗k

)−1[
H(t,s)ψ(s)p(s)φ(s)−

− 1

4MΓ(1− α)

h2(t,s)Ψ(s)

H(t,s)ψ(s)

]
ds 6
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6

T∫
t0

∏
t06tk<s

(
ck
b∗k

)−1

ψ(s)p(s)φ(s)ds+ ψ(T )Θ(T ) <∞,

which leads to a contradiction with (26). �

Remark 3. In Theorem 4, by choosing φ(t) = ψ(t) = 1, we have the
following result.

Corollary 1. Assume that the conditions of Theorem 4 hold, and

lim sup
t→+∞

t∫
t0

∏
t06tk<s

(
ck
b∗k

)−1(
p(s)H(t, s)− 1

4MΓ(1− α)

h2(t, s)Ψ(s)

H(t, s)ζ(s)

)
ds=∞,

(28)

where h(t, s) = −∂H(t, s)

∂s
, then each solution of (1), (2) is oscillatory.

Remark 4. All the above theorems and corollaries are true for the
equation (1) with the boundary condition (3).

Remark 5. The results obtained in this paper can be extended for the
more general differential equations having a damped term with a delay of
the form

∂

∂t

(
r(t)Dα

+, t

(
u(x, t)

f(t, u(x, t))

))
+ q(x, t)g

(
Dα

+, t

(
u(x, t)

f(t, u(x, t))

))
+

+ r(t)u(x, σ(t)) + h

( t∫
0

(t− ξ)−αu(x, ξ)dξ

)
= a(t)∆u(x, t) + F (x, t),

u(x, t+k ) = γk(x, tk, u(x, tk)),

ut(x, t
+
k ) = δk(x, tk, ut(x, tk)), k = 1, 2, . . . , (x, t) ∈ Ω×R+

4. Examples. In this section, we give examples to illustrate our
main results.

Example 1. Consider the fractional nonlinear partial hybrid differen-



Oscillation Criteria for fractional impulsive hybrid PDEs 87

tial equations

∂

∂t

(√
2D

1
2
+, t

(
u(x, t)

e−t

))
+D

1
2
+, tu(x, t) = et∆u(x, t)−

− 1√
2π(cos tC(x) + sin tS(x))

t∫
0

(t− s)
−

1

2u(x,s)ds+ F (x,t), t 6= tk,

u(x, t+k ) =
k

k + 1
(x, tk, u(x, tk)),

ut(x, t
+
k ) = ut(x, tk, ut(x, tk)), k = 1, 2, . . . ,


(29)

for (x, t) ∈ (0, π)× [0,+∞) = G, with the boundary condition

∂

∂x
u(0, t) =

∂

∂x
u(π, t) = 0. (30)

Here α = 1
2
, r(t) =

√
2, a(t) = et, h(t,u) = e−t, ζ(t) = e−t, q(t) = 1,

bk = b∗k = 1, ck = c∗k = k+1
k
, p(t) = 1/

(√
2π(cos t C(x) + sin t S(x))

)
where

C(x) and S(x) are the Fresnel integrals, namely

C(x) =

x∫
0

cos

(
1

2
πt2
)
dt, S(x) =

x∫
0

sin

(
1

2
πt2
)
dt

with |C(x)| 6 π, |S(x)| 6 π, g(u) = u, µ = 1, M = 1 and

F (x, t) = cos x Ĉt

(
1

2
,−1, 1

)
+

√
t

π
− 1− cosx sin t,

where

Ĉt

(
1

2
,−1, 1

)
=

e−t

Γ(1
2
)

t∫
0

s−
1
2 e−s cos(t− s)ds.

It is easy to see that D
1
2 e−t = e−t(

√
π
t
− 1) > 0 if t < π.

If we take φ(t) = 1 then φ′(t) = 0, since t0 = 1, tk = 2k. Consider

+∞∫
t0

∏
t06tk<s

(
ck
b∗k

)−1(
p(s)φ(s)− 1

4MΓ(1− α)

(φ
′
(s))2

φ(s)

r(s)

ζ(s)

)
ds =
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= lim
t→+∞

t∫
t0

∏
t06tk<s

k

k + 1

1√
2π(cos sC(x) + sin sS(x))

ds >

> (2π)
3
2

+∞∫
1

∏
1<tk<s

k

k + 1
ds =

= (2π)
3
2

( t1∫
1

∏
1<tk<s

k

k + 1
ds+

t2∫
t+1

∏
1<tk<s

k

k + 1
ds+ ...

)
=

= (2π)
3
2

(
1 +

1

2
× 2 +

1

2
× 2

3
× 22 + ...

)
= (2π)

3
2

+∞∑
n=0

2n

n+ 1
= +∞.

Thus, all the conditions of Theorem 3 are satisfied. Hence, every solution
of (29) and (30) is oscillatory. In fact, u(x, t) = cosx e−t cos t is one such
solution of (29)–(30).

5. Conclusion. In this article, we have identified some new sufficient
conditions for all solutions of fractional impulsive partial differential equa-
tions to be oscillatory, which has a scope beyond the available results in
the existing literature. Required example has also been incorporated in
the paper for the confirmation of the results.
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