M. A. Komarov

A LOWER BOUND FOR THE $L_{2}[-1,1]$-NORM OF THE LOGARITHMIC DERIVATIVE OF POLYNOMIALS WITH ZEROS ON THE UNIT CIRCLE

Abstract. Let C be the unit circle $\{z:|z|=1\}$ and $Q_{n}(z)$ be an arbitrary C-polynomial (i. e., all its zeros $z_{1}, \ldots, z_{n} \in C$). We prove that the norm of the logarithmic derivative Q_{n}^{\prime} / Q_{n} in the complex space $L_{2}[-1,1]$ is greater than $1 / 8$.
Key words: logarithmic derivative, C-polynomial, simplest fraction, norm, unit circle
2010 Mathematical Subject Classification: 41A20, 41A29

1. The main result. The problem of whether the logarithmic derivatives of C-polynomials (see the Abstract), i.e., the rational functions of the form

$$
\sum_{k=1}^{n} \frac{1}{z-z_{k}} \quad\left(\left|z_{1}\right|=\cdots=\left|z_{n}\right|=1\right)
$$

are dense in the complex space $L_{2}[-1,1]$, was raised by Nasyrov in 2014 during the talk of Borodin at the conference "Complex Analysis and its Applications" in Petrozavodsk (see [1, §4]). (Sums $\sum_{1}^{n} 1 /\left(z-z_{k}\right)$ are also known as the simplest fractions or simple partial fractions.)

We find that the Nasyrov's question has the negative answer, namely,

$$
\begin{equation*}
\left(\int_{-1}^{1}\left|\sum_{k=1}^{n} \frac{1}{x-z_{k}}\right|^{2} d x\right)^{1 / 2}>\frac{1}{8} \tag{1}
\end{equation*}
$$

for any z_{1}, \ldots, z_{n} on the unit circle.
The related result for the area integral was obtained by Newman [2]:

$$
\begin{equation*}
\iint_{|z|<1}\left|\sum_{k=1}^{n} \frac{1}{z-z_{k}}\right| d x d y \geqslant \frac{\pi}{18} \quad\left(\left|z_{1}\right|=\cdots=\left|z_{n}\right|=1\right) \tag{2}
\end{equation*}
$$

[^0]where $x+i y=z$. Using the techniques in [2], Chui and Shen $[3, \S 5]$ derived the order of approximation by sums of the form $\sum_{1}^{n} 1 /\left(z-z_{k}\right)$, $z_{k} \in C$, in the Bers spaces $A_{q}(D), q>2(D$ is the interior of $C)$.

To prove (1), we use some ideas in [2], too.
2. Proof of (1). Let $\left|z_{1}\right|=\cdots=\left|z_{n}\right|=1$. Obviously,

$$
\begin{gather*}
\sum_{k=1}^{n} \frac{1}{z-z_{k}}=-\frac{1}{2 z}\left(\sum_{k=1}^{n} \frac{z_{k}+z}{z_{k}-z}-n\right), \tag{3}\\
P\left(z_{k} ; z\right):=\operatorname{Re} \frac{z_{k}+z}{z_{k}-z}=\frac{1-|z|^{2}}{1-2 \operatorname{Re}\left(\bar{z} z_{k}\right)+|z|^{2}} \geqslant 0, \quad|z| \leqslant 1,
\end{gather*}
$$

and for any $h>0$ and every $k=1, \ldots, n$ the set of points z for which $P\left(z_{k} ; z\right) \geqslant h$, i. e.,

$$
(h+1)|z|^{2}-2 h \operatorname{Re}\left(\bar{z} z_{k}\right)+h-1 \leqslant 0,
$$

is the disk $\left|z-z_{k} h /(h+1)\right| \leqslant 1 /(h+1)$ in the closed unit disk. Put

$$
c_{n}=1-6(5 n)^{-2} .
$$

CASE 1: There is a pole $z^{*} \in\left\{z_{1}, \ldots, z_{n}\right\}$ such that $\left|\operatorname{Re} z^{*}\right| \geqslant c_{n}$. We can assume that $c_{n} \leqslant \operatorname{Re} z^{*} \leqslant 1$. Then there is the segment $\left[\alpha_{n}, \beta_{n}\right]$,

$$
0<\alpha_{n}<\beta_{n} \leqslant 1, \quad \beta_{n}-\alpha_{n}>\frac{4}{5 n+4}, \quad \alpha_{n} \beta_{n}=\frac{5 n-4}{5 n+4}
$$

such that

$$
P\left(z^{*} ; x\right) \geqslant 5 n / 4 \quad \text { for } \quad \alpha_{n} \leqslant x \leqslant \beta_{n} .
$$

Indeed, the intersection of the disk $\left\{z: P\left(z^{*} ; z\right) \geqslant 5 n / 4\right\}$ with the real axis is the segment $\left[x_{1}, x_{2}\right] \subset(0,1]$, where x_{1} and $x_{2}>x_{1}$ are the (real) roots of the equation

$$
(5 n+4) x^{2}-2(5 n) x \operatorname{Re} z^{*}+5 n-4=0
$$

with the discriminant

$$
d \geqslant 4(5 n)^{2}\left\{1-12(5 n)^{-2}+36(5 n)^{-4}\right\}-4\left\{(5 n)^{2}-16\right\}>16 .
$$

It is clear that $x_{1} x_{2}=(5 n-4) /(5 n+4)$ and $x_{2}-x_{1}=\sqrt{d} /(5 n+4)$.

Now, using the identity (3) and putting $Z_{n}=\left\{z_{1}, \ldots, z_{n}\right\}$, we get

$$
\begin{aligned}
& I\left(Z_{n}\right):=\int_{-1}^{1}\left|\sum_{k=1}^{n} \frac{1}{x-z_{k}}\right|^{2} d x>\int_{-1}^{1}\left(\sum_{k=1}^{n} P\left(z_{k} ; x\right)-n\right)^{2} \frac{d x}{4 x^{2}}> \\
& >\int_{\alpha_{n}}^{\beta_{n}}\left(P\left(z^{*} ; x\right)-n\right)^{2} \frac{d x}{4 x^{2}}>\frac{n^{2}}{4^{3}} \frac{\beta_{n}-\alpha_{n}}{\alpha_{n} \beta_{n}}>\frac{n^{2}}{4^{3}} \frac{4}{5 n-4} \geqslant \frac{1}{24}>\frac{1}{64} .
\end{aligned}
$$

CASE 2: $\left|\operatorname{Re} z_{k}\right|<c_{n}$ for any $k=1, \ldots, n$. We have

$$
P\left(z_{k} ; x\right)<1 / 3 \quad \text { for } \quad x \in \Delta_{n}:=\left[-1,-\gamma_{n}\right] \cup\left[\gamma_{n}, 1\right], \quad k=1, \ldots, n
$$

$\gamma_{n}:=1-(9 / 5)(5 n)^{-2}$, since the product of the roots of every polynomial

$$
q(x)=q\left(z_{k} ; x\right)=4 x^{2}-2 x \operatorname{Re} z_{k}-2
$$

is negative $(=-1 / 2)$, while the values of q at the points ± 1 and $\pm \gamma_{n}$ are positive, so that $q(x)>0$ for $x \in \Delta_{n}$. Thus

$$
I\left(Z_{n}\right)>\int_{\Delta_{n}}\left(n-\sum_{k=1}^{n} P\left(z_{k} ; x\right)\right)^{2} \frac{d x}{4 x^{2}}>2 \int_{\gamma_{n}}^{1} \frac{n^{2}}{9} d x=\frac{2}{125}>\frac{1}{64}
$$

and the proof is complete. Note that $I\left(Z_{n}\right)>n / 80$ in Case 1.
3. Refinements of (1). It is of interest to find an order of $\inf \left\{I\left(Z_{n}\right)\right.$: $\left.Z_{n} \subset C\right\}$. We find this order in two cases. Let $C^{+}\left(C_{+}\right)$be the intersection of the unit circle with the upper (right) closed half-plane.
Proposition. There is an absolute constant $0<c \leqslant \pi / 2$ such that

$$
\begin{equation*}
I\left(Z_{n}\right) \geqslant c n^{2} \tag{4}
\end{equation*}
$$

for all n in \mathbb{N} and any Z_{n} in C^{+}or C_{+}. This bound is sharp in order n.
Proof. First let $Z_{n} \subset C^{+}$. By the theorem of Govorov and Lapenko [4, Theorem 2] with $r=1$ and $\delta=(2 / 3)(35 e)^{-1}$, we have

$$
\left|\sum_{k=1}^{n} \frac{1}{x-z_{k}}\right|>n \cdot \frac{2}{3} \cdot \frac{1}{35 e} \quad \text { for } \quad x \in \Delta \subset[-1,1], \quad \operatorname{mes} \Delta>\frac{2}{3}
$$

therefore $I\left(Z_{n}\right)>c^{\prime} n^{2}, \quad c^{\prime}:=(2 / 3)^{3}(35 e)^{-2}$.

If $Z_{n} \subset C_{+}$, i. e., all $\operatorname{Re} z_{k} \geqslant 0$, then we have $q\left(z_{k} ; x\right) \geqslant 0$ for any $x \in[-1,-1 / \sqrt{2}]$ and every k (see Case $2, \S 2$), so that

$$
I\left(Z_{n}\right)>\int_{-1}^{-1 / \sqrt{2}}(n-n / 3)^{2} \frac{d x}{4 x^{2}}=c^{\prime \prime} n^{2}, \quad c^{\prime \prime}:=\frac{\sqrt{2}-1}{9}
$$

$c^{\prime \prime}>c^{\prime}$. Thus, (4) holds with $c=c^{\prime}$.
Finally, the sharpness of (4) in order n as well as the estimate $c \leqslant \pi / 2$ follow from the example of the C-polynomial $(z-i)^{n}$:

$$
\int_{-1}^{1}|n /(x-i)|^{2} d x=2 n^{2} \int_{0}^{1} d x /\left(x^{2}+1\right)=\pi n^{2} / 2 .
$$

It seems that in the general case, $Z_{n} \subset C$, the following result is true. Conjecture. There is an absolute constant $0<c \leqslant \ln 2$ such that

$$
\begin{equation*}
I\left(Z_{n}\right) \geqslant c n \tag{5}
\end{equation*}
$$

for all n in \mathbb{N} and any Z_{n} in C. This bound is sharp in order n.
To prove the sharpness of (5) we use the C-polynomial $z^{n}-i$:

$$
\int_{-1}^{1}\left|\frac{n x^{n-1}}{x^{n}-i}\right|^{2} d x=2 n \int_{0}^{1} \frac{t^{1-(1 / n)}}{t^{2}+1} d t=n \ln 2+\int_{0}^{1} t^{-1-(1 / n)} \ln \left(t^{2}+1\right) d t
$$

(the last integral is less than 1 , because $\ln \left(t^{2}+1\right)<t^{2}$ for $0<t \leqslant 1$).
4. A lower bound for the L_{2}-norm in the case of the unit disk. It follows from (2) and the Schwarz inequality that

$$
\left(\iint_{|z|<1}\left|\sum_{k=1}^{n} \frac{1}{z-z_{k}}\right|^{2} d x d y\right)^{1 / 2} \geqslant \frac{\sqrt{\pi}}{18} \quad\left(\left|z_{1}\right|=\cdots=\left|z_{n}\right|=1\right)
$$

Using the techniques in the proof of (1), we can derive a more sharp bound. Indeed, the consideration of two cases (cf. §2):

1) there is a pole $z^{*} \in\left\{z_{1}, \ldots, z_{n}\right\}$ such that $c_{n} \leqslant \operatorname{Re} z^{*} \leqslant 1$,
2) $-1 \leqslant \operatorname{Re} z_{k}<c_{n}$ for all $k=1, \ldots, n$
shows that for any $Z_{n}=\left\{z_{1}, \ldots, z_{n}\right\} \subset C$

$$
\int_{0}^{1}\left|\sum_{k=1}^{n} \frac{1}{x-z_{k}}\right|^{2} x d x>\frac{1}{2 \cdot 8^{2}}
$$

But all points $z_{k} e^{-i \varphi}, \varphi \in \mathbb{R}$, also belong to C, so that

$$
I\left(Z_{n} ; \varphi\right):=\int_{0}^{1}\left|\sum_{k=1}^{n} \frac{1}{r e^{i \varphi}-z_{k}}\right|^{2} r d r>\frac{1}{2 \cdot 8^{2}} \quad \text { for any } \varphi \in \mathbb{R} .
$$

Finally, for any z_{1}, \ldots, z_{n} on the unit circle, we have

$$
\left(\iint_{|z|<1}\left|\sum_{k=1}^{n} \frac{1}{z-z_{k}}\right|^{2} d x d y\right)^{1 / 2}=\left(\int_{0}^{2 \pi} I\left(Z_{n} ; \varphi\right) d \varphi\right)^{1 / 2}>\frac{\sqrt{\pi}}{8}
$$

Acknowledgment. The author is grateful to the referees for their useful comments and suggestions.

This work was supported by RFBR project 18-31-00312 mol_a.

References

[1] Borodin P. A., Approximation by simple partial fractions with constraints on the poles. II. Sb. Math., 2016, vol. 207, no. 3, pp. 331-341.
DOI: https://doi.org/10.1070/SM8500.
[2] Newman D. J., A lower bound for an area integral. Amer. Math. Monthly, 1972, vol. 79, no. 9, pp. 1015-1016. DOI: https://doi.org/10.2307/ 2318074.
[3] Chui C. K., Shen X.-C., Order of approximation by electrostatic fields due to electrons. Constr. Approx., 1985, vol. 1, no. 1, pp. 121-135.
DOI: https://doi.org/10.1007/BF01890026.
[4] Govorov N. V., Lapenko Yu. P., Lower bounds for the modulus of the logarithmic derivative of a polynomial. Math. Notes, 1978, vol. 23, no. 4, pp. 288-292. DOI: https://doi.org/10.1007/BF01786958.

Received February 28, 2019.
In revised form, May 20, 2019.
Accepted May 20, 2019.
Published online May 22, 2019.

Vladimir State University
Gor'kogo street 87, Vladimir 600000, Russia
E-mail: kami9@yandex.ru

[^0]: © Petrozavodsk State University, 2019

