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A LOWER BOUND FOR THE [,[-1,1]-NORM OF THE
LOGARITHMIC DERIVATIVE OF POLYNOMIALS WITH
ZEROS ON THE UNIT CIRCLE

Abstract. Let C be the unit circle {z : |z| = 1} and Qn(z) be
an arbitrary C-polynomial (i.e., all its zeros z1,...,2, € C). We
prove that the norm of the logarithmic derivative Q! /@, in the
complex space Lo|[—1, 1] is greater than 1/8.
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1. The main result. The problem of whether the logarithmic deriva-
tives of C-polynomials (see the Abstract), i.e., the rational functions of

the form .
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are dense in the complex space Ls[—1,1], was raised by Nasyrov in 2014
during the talk of Borodin at the conference “Complex Analysis and its
Applications” in Petrozavodsk (see 1, §4]). (Sums Y 7 1/(z — z;) are also
known as the simplest fractions or simple partial fractions.)

We find that the Nasyrov’s question has the negative answer, namely,
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for any z1,..., 2, on the unit circle.
The related result for the area integral was obtained by Newman [2]:
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where © 4+ iy = 2. Using the techniques in [2|, Chui and Shen [3, §5]
derived the order of approximation by sums of the form » 7' 1/(z — z),
2, € C, in the Bers spaces A,(D), ¢ > 2 (D is the interior of C).

To prove (1), we use some ideas in [2], too.

2. Proof of (1). Let |z| = --- = |z,| = 1. Obviously,
- 1 1 = A
=— - 3
Zz—zk QZ(sz—Z n), 3)
k=1 k=1
2K+ 2 1— |z
P(z;2) :=Re = > 0, |z] <1,

2 —z 1 —2Re(Zz) + |22 ~
and for any A > 0 and every £k = 1,...,n the set of points z for which
P(zx;2) 2 h, i.e.,

(h+1)|z|* — 2hRe(zz) + h — 1 <0,
is the disk |z — zxh/(h +1)| < 1/(h + 1) in the closed unit disk. Put
cn=1—6(5n)"2

CASE 1: There is a pole z* € {z1,...,2,} such that |Re z*| > ¢,. We
can assume that ¢, < Rez* < 1. Then there is the segment [c,, 3],
Sn — 4

0< n < n<17 n — Qp > = = 1
O <P b —a n+ 4

5n—+4’ an By,

such that
P(z*;x) > 5n/4 for an, <2 < B

Indeed, the intersection of the disk {z : P(z*;2) > bn/4} with the real
axis is the segment [z1, 23] C (0, 1], where x; and x5 > z; are the (real)
roots of the equation

(5n +4)2* — 2(5n)r Re z* +5n — 4 =0
with the discriminant
d > 4(5n)*{1 —12(5n) % 4+ 36(5n)*} — 4{(5n)* — 16} > 16.

It is clear that 2,29 = (5n — 4)/(5n + 4) and 25 — 21 = V/d/(5n + 4).
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Now, using the identity (3) and putting Z,, = {z1,..., 2.}, we get
>
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> [(P(z*2) —n)lP—r > "m0 Z >
/( (Z ,il?) TL) 412 > 43 anﬁn 43 5n — 4 24 ~ 64

CASE 2: |Rez| < ¢, forany k =1,...,n. We have
P(zp;x) <1/3 for xe A, :=[-1,—v]|Ulvm, 1], k=1,...,n,
Yo = 1—(9/5)(5n) 2, since the product of the roots of every polynomial
q(z) = q(zp; ) = 42® — 22 Re 2, — 2

is negative (= —1/2), while the values of ¢ at the points +1 and +-,, are
positive, so that g(x) > 0 for x € A,,. Thus

1
n 2
dx n? 2 1
k=1
n Tn

and the proof is complete. Note that 1(Z,) > n/80 in Case 1.

3. Refinements of (1). It is of interest to find an order of inf{/(Z,) :
Z, C C}. We find this order in two cases. Let C* (C) be the intersection
of the unit circle with the upper (right) closed half-plane.

Proposition. There is an absolute constant 0 < ¢ < 7/2 such that
I1(Z,) > cn? (4)

for all n in N and any Z,, in C* or C'y. This bound is sharp in order n.

Proof. First let Z, C CT. By the theorem of Govorov and Lapenko [4,
Theorem 2| with 7 = 1 and § = (2/3)(35¢)™!, we have

n

1
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k=1

2 1 2
n.g.% fOI' .TEAC[_171], meSA>§,

therefore I(Z,) > dn?,  :=(2/3)3(35¢)~2
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If Z, C C4, i.e., all Rezy > 0, then we have ¢(zx;2) > 0 for any
r € [~1,—1/v/2] and every k (see Case 2, § 2), so that

,1/\@
I(Z,) > / (n— n/3)2d—x = 'n? A=
" 422 ’ ' 9
1

" > (. Thus, (4) holds with ¢ = ¢.
Finally, the sharpness of (4) in order n as well as the estimate ¢ < /2
follow from the example of the C-polynomial (z — i)™

1

/1 In/(x — i) [2dz 2n2/d3:/(x2 +1) = /2.

0

OJ
It seems that in the general case, Z, C C', the following result is true.

CONJECTURE. There is an absolute constant 0 < ¢ < In2 such that
I(Z,) = cn (5)

for all n in N and any Z, in C. This bound is sharp in order n.

To prove the sharpness of (5) we use the C-polynomial 2" — i:

J

-1

1
n—1

nT 2 tl (1/7’L)
| dx = 2n/ ———dt=nln2+ /t‘l‘(l/”) In(#* + 1)dt
2+1

" —1

(the last integral is less than 1, because In(? + 1) < ¢? for 0 < t < 1).

4. A lower bound for the Ls-norm in the case of the unit disk.
It follows from (2) and the Schwarz inequality that

1/2
T
( dxdy) L VT (2] = - = |2a] = 1).

18
Using the techniques in the proof of (1), we can derive a more sharp
bound. Indeed, the consideration of two cases (cf. §2):
1) there is a pole z* € {z,...,2,} such that ¢, < Rez* <1,
2) -1<Rezp<c¢,forallk=1,...,n
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shows that for any Z,, = {z1,...,2,} C C
1
o/

But all points z,e~%, ¢ € R, also belong to C, so that

1
2.8

:cd:c >

JI—Zk

n 2
I(Zy; ) = / p— rdr > 5 2 for any ¢ € R.
0 k=1
Finally, for any zi,...,z, on the unit circle, we have
2w
1/2 1/2
( dxdy) = (/[(Zn;go) dgo) > \/—E
z — ZL 8
0
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