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HARMONIC MAPPINGS ONTO R-CONVEX DOMAINS

Abstract. The plane domain D is called R-convex if D contains
each compact set bounded by two shortest sub-arcs of the radius R
with endpoints w1, w2 ∈ D, |w1−w2| 6 2R. In this paper, we prove
the conditions of R-convexity for images of disks under harmonic
sense preserving functions. The coefficient bounds for harmonic
mappings of the unit disk onto R-convex domains are obtained.
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1. Preliminaries. For a given pair of points w1, w2 ∈ C such that
|w1 − w2| 6 2R with 0 < R < ∞ we define the R-convex hull ER(w1,w2)
of w1, w2 as a compact set bounded by the two shortest arcs of the circles
of radius R with endpoints w1, w2. The set ER(w1, w2) is strictly convex
for each R > 0 and tends to the segment [w1, w2] when R→∞.

Definition 1. The set A ⊂ C is called R-convex if A contains each set
ER(w1, w2) provided that w1, w2 ∈ A and |w1 − w2| 6 2R.

It is clear that the Jordan domain D ⊂ C is R-convex if and only if its
closure D is R-convex. Of course, R-convex domains are strictly convex.

R-convex sets ∈ Rn were introduced and studied in [13,14]. R-convex
sets and domains play an important role in convex analysis and so have
applications in many branches of mathematics, physics and economic sci-
ences.

A.W. Goodman [8] defined the convex functions of bounded type in-
dependently in the geometrical function theory as an univalent analytic
function h in the unit disk D = {z ∈ C : |z| < 1}, such that lim inf

|z|→1
kh(z) >

1/R > 0. Here kh(z) = Re{zh′′(z)/h′(z) + 1}/|zh′(z)| is the curvature of
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the image Γr = h(γr) of the circle γr = {z ∈ D : |z| = r} under the
mapping h at the point h(z). The curvature kh is defined by a standard
way as kh = dθ/ds, where s is the natural parameter on Γr and θ is the
argument of the tangent vector to Γr.

Let R ∈ (0,+∞) be given and CR denote a family of convex analytic
functions h in D of bounded type, such that h(0) = h′(0)− 1 = 0. These
classes were studied by A.W. Goodman [8, 10] and K.-J. Wirths [19]. In
particular, growth, covering and distortion theorems in CR were proved,
as well as coefficient bounds.

Interrelation between R-convex domains and analytic univalent func-
tions onto such domains was revealed and investigated in the paper [18]
by V. Starkov and N. Shmelev. They proved that for locally univalent
analytic function h in D the domain D = h(D) is R-convex if and only if

Re
{
z
h′′(z)

h′(z)
+ 1
}
>
|zh′(z)|
R

for all z ∈ D. (1)

More than that, (1) is equivalent to the statement that domains
Dr = h(Dr) are R-convex for all r ∈ (0,1], where Dr = {z ∈ D : |z| < r}.
So, the heredity property is valid for R-convexity of h(Dr) in the case of
analytic functions. Functions h that satisfy condition (1) are univalent.

The theorem of Peschl (cf., [12,19]) claims that if h ∈ CR, R > 0, then
kh(z) has not local minimums in D \ {0} and kh(z) > 1/R in D \ {0}.
Therefore, h is an analytic convex function of bounded type if and only if
(1) is true in D for some R > 0. This result, together with criterion (1) of
R-convexity due by V. Starkov and N. Shmelev, immediately leads to

Proposition 1. CR consists of univalent analytic functions h in D such
that h(0) = h′(0)− 1 = 0 and h(D) is R-convex domain.

In this paper, we obtain the conditions ofR-convexity of f(D) for sense-
preserving harmonic functions and prove some estimations and coefficient
bounds for the class of normalised univalent harmonic mappings of the
disk D onto R-convex domains.

Consider a harmonic and sense-preserving function f in D. It is well-
known (cf., [5]) that every such function f has a form f = h + g, where
h, g are analytic in D and

h(z) =
∞∑
k=0

akz
k, g(z) =

∞∑
k=1

bkz
k. (2)
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The dilatation ω(z) = g′(z)/h′(z) of sense-preserving harmonic function
f is analytic in D and |ω(z)| < 1 for all z ∈ D. The tangent vector τ(t)
to curve Γr = f(γr), r ∈ (0, 1), at the point f(z), z = reit, has a form

τ(t) = i
(
zh′(z)− zg′(z)

)
and arg τ(t) =

π

2
+ Im ln

(
zh′(z)− zg′(z)

)
.

So, direct calculations show that the curvature kf (z) = (arg τ(t))′/|τ(t)|
of Γr can be computed as

kf (z) =
1

|zh′(z)− zg′(z)|
Re

{
z2h′′(z) + z2g′′(z) + 2zg′(z)

zh′(z)− zg′(z)
+ 1

}
. (3)

It is clear that harmonic sense-preserving function f should be univa-
lent in Dr if kf (z) > 0 for all z ∈ γr and domains Dr = f(Dr) will be
convex in this case. This is a corollary of the argument principle [5]. It is
natural to ask what conditions for the function f guarantee R-convexity
of Dr for r ∈ (0,1].

2. Conditions of R-convexity. It is well-known (cf., [3, 5]) that
harmonic functions f = h + g do not possess the heredity property in
the case of convexity of f(D). If domain f(D) is convex for a harmonic
univalent function f then f(Dr) can be not convex for all r ∈ (r0(f),1).
So we can’t expect the R-convexity of f(Dr) when f(D) is R-convex and
function f is harmonic. The next result describes the R-convexity of f(Dr)
in terms of curvature of its boundary.

Theorem 1. Let f = h+ g be a sense-preserving harmonic mapping of
the unit disk D and r ∈ (0, 1). The domain Dr = f(Dr) is R-convex if
and only if

Re
z2h′′(z) + z2g′′(z) + zh′(z) + zg′(z)

zh′(z)− zg′(z)
>
|zh′(z)− zg′(z)|

R

for all z such that |z| = r.

Proof. To prove this criterion it is sufficient to note that the arbitrary
infinitely-smooth Jordan domain is R-convex if and only if the curvature
of its boundary is not less than 1/R at every point. This fact was proved
in [18] by V. Starkov and N. Shmelev in the course of deriving of the main
results.
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In our case, if function f is sense-preserving harmonic in D, then the
curve ∂f(Dr) is infinitely smooth for any r ∈ (0, 1) and kf is defined on
|z| = r. The condition of the Theorem 1 allows us to state that, if domain
Dr = f(Dr) is R-convex, then kf (z) > 1/R for all z, |z| = r. And vice
versa, if kf (z) > 1/R for |z| = r, then kf is positive, so f is univalent
convex in Dr and Dr is Jordan and R-convex. Then formula (3) provides
us desired criterion of R-convexity of Dr. �

The natural question is to describe R-convexity of an open domain
D = f(D) in terms of harmonic mappings onto this domain. The sufficient
condition of R-convexity is given by

Theorem 2. Let f = h+ g be a sense-preserving harmonic mapping of
the unit disk D. The domain D = f(D) is R-convex if

lim inf
|z|→1

kf (z) >
1

R
, (4)

where kf is given by (3).

Proof. It was proved in [18] that if domain D is R̃-convex for any R̃ > R,
then D is R-convex. Let a harmonic function f be sense-preserving in
the unit disk D and satisfy condition (4) for some R > 0, but domain
D = f(D) be not R-convex. Then there exists ε > 0 such that D is
not Rε-convex, where Rε = R + ε. Hence, there exists a pair of points
w1, w2 ∈ D such that |w1 − w2| 6 2Rε and convex hull ERε(w1, w2) 6⊂ D.

From the other side, condition (4) means that for any ε > 0 we can find
rε ∈ (0, 1) such that kf (z) > 1/Rε on the whole circle
γr = {z ∈ D : |z| = r} for any r ∈ (rε, 1). So, the curvature of the
image f(γr) of the circle γr is not less than 1/Rε. Theorem 1 implies
that Dr = f(Dr) are Rε-convex for all r ∈ (rε, 1). Hence, the harmonic
function f is sense-preserving and convex in all such Dr and, therefore, f
is univalent in D. It is clear that D = ∪r∈(rε,1)Dr. So, both points w1, w2

belong to Dr for all sufficiently large r ∈ (rε, 1). The Rε-convexity of do-
mains Dr for such r implies that ERε(w1, w2) ⊂ Dr ⊂ D in contradiction
with assumption ERε(w1, w2) 6⊂ D. Therefore, domain D is R-convex. �

Remark. The converse statement to Theorem 2 is not true. Even for the
harmonic sense-preserving automorphisms of the unit disk D the values
lim inf |z|→1 kf (z) can be negative.
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To illustrate this remark we consider function

θ(t) =

{
2t, for t ∈ (0,π),

0, for t ∈ [−π,0].

This function induces the continuous mapping w(eit) = eiθ(t) of the
unit circle onto itself such that w(eit) runs once monotonically (but not
strictly monotonically) unit circle while t runs from −π to π. It is known
from Radó-Knezer-Choquet theorem [5] that the Poisson integral

fθ(z) =
1

2π

π∫
−π

1− |z|2

|eit − z|2
eiθ(t) dt

defines univalent harmonic mapping of D onto itself with boundary func-
tion eiθ(t). The boundary behaviour of fθ is such that closed lower half of
the unit circle corresponds to the single point 1, while open upper half of
the unit circle is mapped onto whole circle without point 1. The image of
polar grid in D under mapping fθ is presented on the left part of the Fig. 1.
Note that the images fθ(γr) of circles γr are not convex for sufficiently large
r < 1. The geometrical picture of fθ(γr) in the neighbourhood of the point
1 is presented on the right part of Fig 1.

Figure 1: Image of polar grid in D under mapping fθ (left). The local non-
convex structure of the images of polar circles γr in the neighbourhood of
the point 1 (right).

Using Wolfram Mathematica, it is possible to calculate the curvature
kfθ(z) of fθ(γr) at points z = reit. Let z = r tend from the origin to 1.
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The image of this radius under fθ is marked in the left-hand part of Fig. 1
by the bold line. Fig. 2. illustrates the values kfθ(r) when r tends to 1. It
can be seen from this dependence that curvatures kfθ(z) become negative
if z goes to 1 along some trajectories. So, lim inf |z|→1 kfθ(z) < 0. But,
from the other side, it is clear that the unit disk is an R-convex domain
with R = 1.

Figure 2: The curvature kfθ(r) for r → 1−.

This counter-example leads us to the important fact that in contrast
to the analytic case, the set of harmonic univalent functions of the disk
D onto R-convex domains is wider than the family of harmonic sense-
preserving functions satisfying condition (4).

The next question is to find a maximal radius r0(R) such that sense-
preserving harmonic function maps every disk Dr onto R-convex domain
for all r 6 r0(R). It is known [5] that near the origin every f = h + g
with h, g of form (2) and |b1| < |a1| maps infinitesimal disks |z| < ε onto
interiors of convex curves close to the infinitesimal ellipses {a0 +a1z+b1z :
|z| = ε}. So, f(Dε) should be R-convex for sufficiently small ε > 0.

The linear hull L(f) of a sense-preserving harmonic function f = h+g
in D with a0 = a1 − 1 = 0 is defined as the linear-invariant family of all
harmonic sense-preserving functions

fΦ(z) =
f ◦ Φ(z)− f ◦ Φ(0)

Φ′(0) · h′ ◦ Φ(0)
,

where Φ(z) = eiα(z − ζ)/(1 − ζz) runs over the family of the conformal
automorphisms of D.

The affine hull A(f) of a harmonic function f is defined as the family
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of all harmonic sense-preserving functions

fε(z) =
f(z) + εf(z)

1 + εb1

,

where ε runs over the disk D.
Let AL(f) := A(L(f)) denote the affine and linear hull of f . The sub-

family AL0(f) ⊂ AL(f) consists of functions f̃ such that f̃z(0) = 0. Define
α0 = α0(f) = sup |f̃zz(0)|/2 and β0 = β0(f) = sup |f̃zz(0)|/2, where the
suprema are taken over all f̃ ∈ AL0(f). It is known [3] that α0 is finite
for all univalent f and β0 6 1/2. The sharp upper bound of α0 for an
arbitrary univalent harmonic function f is still unknown (though, conjec-
tured) [3]. However, the sharp upper bounds of α0 have been obtained for
harmonic functions with some special geometric properties (cf., [3,5]). For
more results on linear- and affine-invariant families of harmonic functions,
see [6, 11,16,17].

Theorem 3. Let a sense-preserving harmonic mapping f = h+g of the
unit disk D have form (2) and a0 = a1− 1 = 0, α0 <∞. Then the domain
Dr = f(Dr) is R-convex for every r 6 r0(R), where
r0(R) ∈ (0, α0 + β0 −

√
(α0 + β0)2 − 1) is the smallest positive root of

the equation

1− |b1|
(1 + |b1|)2

(
1− r
1 + r

)α0+3/2
r2 − 2r(α0 + β0) + 1

r
=

1

R
. (5)

Proof. Let f satisfy the conditions of Theorem 3. The upper and lower
bounds of curvature kf (z) of images f(γr) of the circle γr, r ∈ (0,1), in
the linear- and affine-invariant families of harmonic sense-preserving in D
functions f were published in [11]. In particular, it was proved that f is
convex in the disk |z| < α0 + β0 −

√
(α0 + β0)2 − 1 and

kf (z) >
1− |b1|

(1 + |b1|)2

(
1− r
1 + r

)α0+3/2
r2 − 2r(α0 + β0) + 1

r

for all z such that |z| 6 r 6 α0 + β0 −
√

(α0 + β0)2 − 1 and |b1| = |fz(0)|.
The validity of Theorem 3 and condition (5) follows from this result im-
mediately. �

The values α0 and β0 are known to be 3/2 and 1/2 if a harmonic
function f is convex, i. e., if f(D) is a convex domain. Then Theorem 3
leads to
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Corollary 1. Let f = h + g be a sense-preserving harmonic mapping
of the unit disk D onto a convex domain, such that a0 = a1 − 1 = b1 = 0.
Then the domains Dr = f(Dr) are R-convex for every r 6 r∗(R) 6 2−

√
3,

where r∗(R) is the smallest positive root of the equation(
1− r
1 + r

)3
r2 − 4r + 1

r
=

1

R
.

Note that the radius r∗(R) is not the best possible, because every
convex harmonic function f such that a0 = a1 − 1 = b1 = 0 is convex in
any disk Dr for r 6

√
2− 1 (cf., [5]) and 2−

√
3 <
√

2− 1.

3. Coefficient bounds. In this section we introduce the families
of normalized univalent harmonic functions onto R-convex domains and
investigate their properties.

Let f = h+g, where h, g have form (2), and f be sense-preserving. It is
clear that the value a0 = h(0) does not influence the radius of R-convexity
of f(D). Also, if f is harmonic and the domain f(D) is R-convex for some
R ∈ (0,+∞), then f(D)/a1 is R̃-convex for R̃ = R/|a1|. Therefore let us
assume that a0 = a1 − 1 = 0.

Definition 2. Let R ∈ (0, + ∞) be fixed and CH,R denote the set of
all harmonic sense-preserving functions in the disk D such that f(D) is
R-convex and a0 = a1 − 1 = 0. In addition, C0

H,R denotes the subset of
CH,R that consists of all f with b1 = 0.

As has been mentioned above, the family of harmonic functions onto
R-convex domains is wider than the family of harmonic convex functions
of bounded type (satisfying inequality (4)). Proposition 1 claims that in
the analytic case the family CR of normalized analytic convex function of
bounded type consists of analytic mappings onto R-convex domains. So,
CR ⊂ C0

H,R ⊂ CH,R.
It is known [8] that CR is empty for R < 1 and C1 consists of one

element f ≡ z only. In the harmonic case, the same property also holds.

Proposition 2. The family CH,R is empty for any R < 1. The only
member of the family CH,1 is f ≡ z.

Proof. As we have mentioned above, every R-convex domain D is an
image of D under some analytic convex function of bounded type. It
was proved [9] that D is contained in some disk of radius R in this case.
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Therefore, if f ∈ CH,R then f(D) is strictly convex subdomain of some
disk of radius R. Then (cf., [5]) f has a continuous boundary function
f(eit) = ρ(t)eiθ(t) on ∂D with continuous real ρ(t), θ(t), t ∈ [0,2π); so, the
generalisation of the Radó-Knezer-Choquet theorem claims that f is the
Poisson integral:

f(z) = c+
1

2π

2π∫
0

1− |z|2

|eit − z|2
ρ(t)eiθ(t)dt,

where ρ(t) 6 R for all t ∈ [0,2π). It is easy to see that

|a1| = |fz(0)| =
∣∣∣∣ 1

2π

2π∫
0

ρ(t)ei(θ(t)−t)dt

∣∣∣∣ 6 1

2π

2π∫
0

ρ(t)dt.

Therefore, |a1| < 1 if ρ(t) 6 R < 1 and CH,R is empty in this case. If
R = 1, then the equality |a1| = 1 implies ρ(t) ≡ 1 on [0,2π). Therefore,
F (z) = f(z) − c maps the disk D exactly onto itself, if a1 = 1. It is
known [4] that the only harmonic automorphism of D with a1 = 1 is
F ≡ z. Thus f ≡ z + c ≡ z because of f(0) = 0. �

The next theorem is an analogue of an area principle for harmonic
mappings onto R-convex domains.

Theorem 4. Let f = h+ g ∈ CH,R where h, g have form (2). Then

2
∞∑
k=1

k2|ak|2
1∫

0

r2k−1(1− r2)

(1 + |b1|r)2
dr 6

R2

1− |b1|2
. (6)

Particularly, if f ∈ C0
H,R then

1

2
+
∞∑
k=2

k

k + 1
|ak|2 6 R2. (7)

Proof. As we have indicated above [9], every R-convex domain D is con-
tained in some disk of radius R. Therefore, area ofD = f(D) is not greater
than πR2 for any harmonic function f ∈ CH,R. Jacobian of a harmonic
function f is equal to |h′|2−|g′|2. Also, the dilatation ω = g′/h′ is analytic
in D and meets the condition of the Schwarz lemma (cf., [7]). Therefore,∣∣∣∣∣ ω(z)− ω(0)

1− ω(0)ω(z)

∣∣∣∣∣ 6 |z| and |ω(z)| 6 |z|+ |ω(0)|
1 + |ω(0)z|
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as a consequence. For f ∈ CH,R, the coefficient b1 = ω(0) and the following
estimations of area of D are true:

πR2 >
∫∫
D

du dv =

∫∫
D

(|h′(z)|2 − |g′(z)|2)dx dy =

=

∫∫
D

|h′(z)|2(1− |ω(z)|2)dx dy>
∫∫
D

|h′(z)|2
(

1−
(
|z|+ |b1|
1 + |b1z|

)2)
dxdy =

=

2π∫
0

1∫
0

|h′(reit)|2 (1− |b1|2)(1− r2)

(1 + |b1|r)2
r drdt =

= (1− |b1|2)

1∫
0

r(1− r2)

(1 + |b1|r)2

∫ 2π

0

|h′(reit)|2dt dr.

For h(z) = z +
∞∑
k=2

akz
k the series

|h′(reit)|2 =

∣∣∣∣ ∞∑
k=1

k akr
k−1ei(k−1)t

∣∣∣∣2 =
∞∑

k,l=1

k l ak al r
k+l−2ei(k−l)t

converges uniformly by t for a fixed r as a product of two uniformly con-
verging series

∑∞
k=1 kakr

k−1ei(k−1)t and
∑∞

l=1 l alr
l−1e−i(l−1)t. The system

of exponential functions {eikt} is orthogonal on [0, 2π]. Then integration
gives

2π∫
0

|h′(reit)|2dt =

2π∫
0

∣∣∣∣ ∞∑
k=1

k akr
k−1ei(k−1)t

∣∣∣∣2dt = 2π
∞∑
k=1

k2|ak|2r2k−2.

Continuing the lower estimation of the area, we obtain:

πR2 > 2π(1− |b1|2)
∞∑
k=1

k2|ak|2
1∫

0

r2k−1(1− r2)

(1 + |b1|r)2
dr

and inequality (6) is proved. If a function f ∈ C0
H,R, then b1 = 0 and the

second inequality (7) in Theorem 4 follows from (6). �

The area theorem allows us to obtain coefficient estimations for har-
monic mappings onto R-convex domains.
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Corollary 1. If f ∈ C0
H,R, then

|ak| 6
(
k + 1

k

(
R2 − 1

2

))1/2

for k > 2.

Indeed, the coefficient bounds for ak follow immediately from (7), be-
cause 1/2 + k/(k + 1)|ak|2 6 R2.

The coefficient problem is one of the most attractive and complicated
in the theory of univalent harmonic mappings (cf., [5]). The sharp bound
is still not proved even in the case of |a2| in the family S0

H of harmonic
univalent mapping from D into C such that a0 = a1−1 = b1 = 0. However,
for some special subclasses of S0

H the sharp coefficient estimations are
known. One of such subclasses was defined as the family S0

H(S) of all
f = h + g ∈ S0

H such that F = h + eiθg ∈ S for some constant θ ∈ R.
Here S denotes the famous class of univalent analytic functions F in D
such that F (0) = F ′(0) − 1 = 0. Several years ago S. Ponnusamy and
A. Sairam Kaliraj [15] obtained the sharp coefficient estimations in S0

H(S)
and conjectured that S0

H(S) = S0
H . However, recently this conjecture was

proved to be wrong [2]. Here we follow the same manner to obtain the
coefficient bounds in the analogous subclass of C0

H,R.

Definition 3. Let C0
H,R(CR) denote the subclass of C0

H,R consisting of
functions f = h+ g such that F = h+ eiθg ∈ CR for some constant θ ∈ R.

K.-J. Wirths [19] obtained the sharp upper bounds for coefficients
A2, A3 for functions F (z) = z + A2z

2 + A3z
3 + ... in the families CR

of analytic convex functions of bounded type:

|A2| 6
√

1− 1

R
, |A3| 6 1− 1

R
. (8)

Here we prove similar estimations in C0
H,R(CR).

Theorem 5. Let f = h+ g ∈ C0
H,R(CR). Then

|a2| 6
1

2
+

√
1− 1

R
, |a3| 6

4

3
− 1

R
+

2

3

√
1− 1

R
. (9)

Both estimations are sharp when R→∞.
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Proof. Analytic and co-analytic parts of harmonic function f ∈ C0
H,R sat-

isfy the equality g′ = ω · h′, where ω is the dilatation of f and
|ω| < 1, ω(0) = 0. Let ω(z) =

∑∞
k=1 ckz

k in D. Then

∞∑
k=2

k bkz
k−1 =

( ∞∑
k=1

ckz
k

)
·
( ∞∑

k=1

k akz
k−1

)
where a1 = 1 and, hence, b2 = c1/2, b3 = (c2 + 2c1a2)/3. Analytic function
ω meets the conditions of the Schwarz lemma (cf., [7]). Therefore, |c1| 6 1
and |c2| 6 1− |c1|2 (see [1], for instance).

If f = h + g ∈ C0
H,R(CR), then, by definition, there exists some θ ∈ R

such that F (z) = h(z) + eiθg(z) ∈ CR. The second coefficient A2 of an
analytic convex function F of bounded type has the form A2 = a2 + eiθb2.
Then, using (8), we have

|a2| 6 |A2|+ |b2| 6 |A2|+
|c1|
2
6

1

2
+

√
1− 1

R
.

To estimate the third coefficient, we note that A3 = a3 + eiθb3, where
b3 = (c2 + 2c1a2)/3, |a2| 6 |A2| + |c1|/2 and |c2| 6 1 − |c1|2. Therefore,
applying the second inequality (8), we conclude that

|a3| 6 |A3|+
1

3
|c2 + 2c1a2| 6 |A3|+

1

3

(
1− |c1|2 + |c1|(2|A2|+ |c1|)

)
=

= |A3|+
1

3
(1 + 2|c1||A2|) 6

4

3
− 1

R
+

2

3

√
1− 1

R
.

If R→∞, then (9) becomes |a2| 6 3/2 and |a3| 6 2. This estimations
coincide with the known sharp coefficient bounds for the convex harmonic
mappings f such that a0 = a1 − 1 = b1 = 0. So, the sharpness of (9) for
R→∞ is proved. �

Note that inequalities (9) take the form |a2| 6 1/2, |a3| 6 1/3 when
R → 1. There are the best possible estimations [4] in the family of non-
normalised harmonic automorphisms of the unit disk D.
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