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Abstract. We give the definition of hyperholomorphic pseudo-
complex functions, i. e., functions with values in a special form
of quaternions, and propose the necessary variables, functions, and
Dirac operators to describe the Cauchy integral theorem and the
generalized Cauchy-Riemman system. We investigate the proper-
ties and corollaries corresponding to the Cauchy integral theorem
for the pseudo-complex number system discussed in this paper.
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1. Introduction. The non-commutative four-dimensional space R4

of hypercomplex numbers, which are called quaternions with four real
numbers, was studied by Hamilton [5]. Since quaternions involve non-
commutative multiplication, quaternions have different algebraic proper-
ties compared to the complex number system. In 1935, Fueter [2] defined
regular quaternionic functions in R4. Later Deavours [1] and Subdery [12]
developed quaternionic analysis, based on complex analysis.

Many formulas in R4 are simpler and more convenient to apply in
physics when written in terms of C2 . In [11], Nôno represented quater-
nions in the complex-number form. In [6], Kajiwara et al. gave an integra-
bility condition for any hyperholomorphic function 𝑓1 + 𝑓2𝑗 composed of
harmonic complex-valued functions 𝑓1 and 𝑓2 in a pseudoconvex domain
of C4. In [7], [8], Kim et al. presented a ternary representation of real
quaternions and also introduced the pseudo-complex number form with
the modified basis �̂�. The regularity of a function defined in R3 relative to
the commonly known properties of regular functions was defined.
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Hamilton tried to generalize complex numbers to the form 𝑎+ 𝑖𝑏+ 𝑗𝑐,
where 𝑎, 𝑏, 𝑐 ∈ R and 𝑖2 = 𝑗2 = −1. However, since the set {𝑎 + 𝑖𝑏 +
+ 𝑗𝑐 | 𝑎, 𝑏, 𝑐 ∈ R} is not closed under multiplication (which was proved
by Kenneth in 1966), this set cannot be generalized as an algebra. Later,
Hamilton found a closed multiplication for complex numbers, denoted by
𝑞 = 𝑖𝑥+𝑗𝑦+𝑘𝑧, where 𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1. Some interesting investi-
gations were carried out on the set {𝑎+ 𝑖𝑏+ 𝑗𝑐 | 𝑎, 𝑏, 𝑐 ∈ R}. Leutwiler [9]
studied the interplay between the solutions 𝑓 = 𝑢+ 𝑖𝑣 + 𝑗𝑤 of the gener-
alized Cauchy-Riemann system and functions of the reduced quaternionic
variable 𝑧 = 𝑥 + 𝑖𝑦 + 𝑗𝑡. Leutwiler showed that every solution 𝑓 of that
system defined in some neighborhood of the origin admits a series expan-
sion in terms of the elementary polynomial solutions. In [3], [4], Gürlebeck
and Sprößig studied quaternion-valued functions that are defined in open
subsets of R𝑛 (𝑛 = 3, 4) and are solutions of generalized Cauchy-Riemann
or Dirac systems. Their research is related to boundary-value problems
and partial differential equations.

This paper recalls the properties resulting from the applications of
the defined differential operators and the regularity of modified ternary
functions. Using the properties of a modified ternary function, we present
integration over the boundary of a domain in the modified ternary num-
bers. In addition, the present paper presents and verifies the Cauchy
integral theorem for modified ternary functions. We also expose corollar-
ies to the Cauchy integral theorem. The paper introduces the definitions
of hyperholomorphic functions on the real ternary numbers and represents
pseudo-complex numbers as a special form of quaternions, defined as 𝑎+𝑏𝑖.
In section 2, we provide the necessary variables, functions, and operators
used in the paper. In section 3, we refer to Naser [10] and Nôno [11] in
order to propose Dirac operators and Cauchy integral theorems. And then
we introduce the properties and corollaries corresponding to the Cauchy
integral theorem for the pseudo-complex number system.

2. Preliminaries. Let T be the set of all ternary numbers:

T = {𝑧|𝑧 = 𝑥0 + 𝑥1𝑒1 + 𝑥2𝑒2, 𝑥0, 𝑥1, 𝑥2 ∈ R},

where 𝑒21 = 𝑒22 = −1 and 𝑒1𝑒2 =
√
−1. An element 𝑧 of T can be written as

𝑧 = 𝑥0 + 𝑥1𝑒1 + 𝑥2𝑒2 =

= 𝑥0 +
𝑎𝑒1 + 𝑏𝑒2√
𝑎2 + 𝑏2

(︃√
𝑎2 + 𝑏2

𝑎𝑒1 + 𝑏𝑒2
𝑥1𝑒1 +

√
𝑎2 + 𝑏2

𝑎𝑒1 + 𝑏𝑒2
𝑥2𝑒2

)︃
=
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= 𝑥0 +
𝑎𝑒1 + 𝑏𝑒2√
𝑎2 + 𝑏2

(︂
𝑎𝑥1 + 𝑏𝑥2√
𝑎2 + 𝑏2

+
𝑏𝑥1 − 𝑎𝑥2√
𝑎2 + 𝑏2

𝑒1𝑒2

)︂
,

where 𝑎 and 𝑏 are real non-zero numbers. Let �̂� be the modified basis in T,
denoted by

�̂� =
𝑎𝑒1 + 𝑏𝑒2√
𝑎2 + 𝑏2

and �̂�2 = −1.

Then, an element 𝑧 of T can also be written as

𝑧 = 𝑥0 + �̂�𝑧0;

such a number is called a pseudo-complex number; here

𝑧0 =
𝑎𝑥1 + 𝑏𝑥2√
𝑎2 + 𝑏2

+
𝑏𝑥1 − 𝑎𝑥2√
𝑎2 + 𝑏2

𝑒1𝑒2.

The set of pseudo-complex numbers, denoted by P, is isomorphic to R×C;
that is, P ∼= R × C. The addition and multiplication for pseudo-complex
numbers are given by

𝑧 ± 𝑤 = (𝑥0 + �̂�𝑧0) ± (𝑦0 + �̂�𝑤0) =

= (𝑥0 ± 𝑦0) + �̂�(𝑧0 ± 𝑤0)

and
𝑧𝑤 = (𝑥0 + �̂�𝑧0)(𝑦0 + �̂�𝑤0) =

= (𝑥0𝑦0 − 𝑧0𝑤0) + �̂�(𝑥0𝑤0 + 𝑧0𝑦0),

respectively. From the multiplication over P, we can obtain 𝑧0�̂� = �̂�𝑧0.
Hence, the multiplication over P is closed and associative but not commu-
tative.

Let 𝑧 be the conjugate of 𝑧, denoted by 𝑧 = 𝑥0 − �̂�𝑧0 with 𝑧𝑧 = 𝑧𝑧.
Also, the norm | · | is written by

|𝑧| :=
√
𝑧𝑧 =

√︁
𝑥20 + 𝑧0𝑧0 =

√︁
𝑥20 + 𝑥21 + 𝑥22.

The inverse element 𝑧−1 of P is denoted by

𝑧−1 =
𝑧

|𝑧|2
.



86 Ji Eun Kim

Now, consider the definition of hyperholomorphy for pseudo-complex func-
tions. First, the differential operators are given by

𝐷 =
𝜕

𝜕𝑥0
− �̂�

𝜕

𝜕 𝑧0
=

𝜕

𝜕𝑥0
− 𝑒1

𝜕

𝜕𝑥1
− 𝑒2

𝜕

𝜕𝑥2

and

𝐷 =
𝜕

𝜕𝑥0
+ �̂�

𝜕

𝜕 𝑧0
=

𝜕

𝜕𝑥0
+ 𝑒1

𝜕

𝜕𝑥1
+ 𝑒2

𝜕

𝜕𝑥2
,

where

𝜕

𝜕𝑧0
=

1

2

𝜕

𝜕𝑥1

(︂
𝑎√

𝑎2 + 𝑏2
− 𝑏√

𝑎2 + 𝑏2
𝑒1𝑒2

)︂
+

+
𝜕

𝜕𝑥2

(︂
𝑏√

𝑎2 + 𝑏2
+

𝑎√
𝑎2 + 𝑏2

𝑒1𝑒2

)︂
=

=
1

2

(︂
𝑎√

𝑎2 + 𝑏2
𝜕

𝜕𝑥1
+

𝑏√
𝑎2 + 𝑏2

𝜕

𝜕𝑥2

)︂
−

−
(︂

𝑏√
𝑎2 + 𝑏2

𝜕

𝜕𝑥1
− 𝑎√

𝑎2 + 𝑏2
𝜕

𝜕𝑥2

)︂
𝑒1𝑒2

and

𝜕

𝜕 𝑧0
=

1

2

𝜕

𝜕𝑥1

(︂
𝑎√

𝑎2 + 𝑏2
+

𝑏√
𝑎2 + 𝑏2

𝑒1𝑒2

)︂
+

+
𝜕

𝜕𝑥2

(︂
𝑏√

𝑎2 + 𝑏2
− 𝑎√

𝑎2 + 𝑏2
𝑒1𝑒2

)︂
=

=
1

2

(︂
𝑎√

𝑎2 + 𝑏2
𝜕

𝜕𝑥1
+

𝑏√
𝑎2 + 𝑏2

𝜕

𝜕𝑥2

)︂
+

+

(︂
𝑏√

𝑎2 + 𝑏2
𝜕

𝜕𝑥1
− 𝑎√

𝑎2 + 𝑏2
𝜕

𝜕𝑥2

)︂
𝑒1𝑒2.

Then, the Laplacian operator is given by

∆ := 𝐷𝐷 = 𝐷𝐷 =

(︂
𝜕

𝜕𝑥0
− �̂�

𝜕

𝜕 𝑧0

)︂(︂
𝜕

𝜕𝑥0
+ �̂�

𝜕

𝜕 𝑧0

)︂
=

=
𝜕2

𝜕𝑥20
+

𝜕2

𝜕𝑧0𝜕 𝑧0
=

𝜕2

𝜕𝑥20
+

𝜕2

𝜕𝑥21
+

𝜕2

𝜕𝑥22
.
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3. Properties of hyperholomorphic functions. Let Ω be a do-
main in R3. Consider a function 𝑓 defined on Ω and with values in Pi such
that 𝑓 : Ω → P is defined by

𝑓 = 𝑢0 + 𝑢1𝑒1 + 𝑢2𝑒2 = 𝑢0 + �̂�𝑓0.

That is, 𝑓 satisfies

𝑧 = (𝑥0, 𝑥1, 𝑥2) ∈ Ω ↦→ 𝑓(𝑧) = 𝑢0(𝑥0, 𝑥1, 𝑥2) + �̂�𝑓0(𝑥0, 𝑥1, 𝑥2) ∈ P,

where 𝑢𝑟 (𝑟 = 0, 1, 2) are real-valued functions and

𝑓0 =
𝑎𝑢1 + 𝑏𝑢2√
𝑎2 + 𝑏2

+
𝑏𝑢1 − 𝑎𝑢2√
𝑎2 + 𝑏2

𝑒1𝑒2

is a complex-valued function. The function 𝑓 is called a pseudo-complex
function. Let the differential operators defined in Section 2 be applied to
a function 𝑓 : Ω → P. Then we have the following equalities:

𝐷𝑓 =

(︂
𝜕

𝜕𝑥0
− �̂�

𝜕

𝜕 𝑧0

)︂
(𝑢0 + �̂�𝑓0) =

(︂
𝜕𝑢0
𝜕𝑥0

+
𝜕𝑓0
𝜕𝑧0

)︂
+ �̂�

(︂
𝜕𝑓0
𝜕𝑥0

− 𝜕𝑢0
𝜕 𝑧0

)︂
and

𝐷𝑓 =

(︂
𝜕

𝜕𝑥0
+ �̂�

𝜕

𝜕 𝑧0

)︂
(𝑢0 + �̂�𝑓0) =

(︂
𝜕𝑢0
𝜕𝑥0

− 𝜕𝑓0
𝜕𝑧0

)︂
+ �̂�

(︂
𝜕𝑓0
𝜕𝑥0

+
𝜕𝑢0
𝜕 𝑧0

)︂
.

Since the set P has non-commutative multiplication, we also apply oper-
ators to the function 𝑓 from the right. We have

𝑓𝐷 = (𝑢0 + �̂�𝑓0)

(︂
𝜕

𝜕𝑥0
− �̂�

𝜕

𝜕 𝑧0

)︂
=

(︂
𝜕𝑢0
𝜕𝑥0

+
𝜕𝑓0
𝜕 𝑧0

)︂
+ �̂�

(︂
𝜕𝑓0
𝜕𝑥0

− 𝜕𝑢0
𝜕𝑧0

)︂
and

𝑓𝐷 = (𝑢0 + �̂�𝑓0)

(︂
𝜕

𝜕𝑥0
+ �̂�

𝜕

𝜕 𝑧0

)︂
=

(︂
𝜕𝑢0
𝜕𝑥0

− 𝜕𝑓0
𝜕 𝑧0

)︂
+ �̂�

(︂
𝜕𝑓0
𝜕𝑥0

+
𝜕𝑢0
𝜕 𝑧0

)︂
.

Hence, the equality𝐷𝑓 = 0 implies that 𝑓 satisfies the following equations:

𝜕𝑢0
𝜕𝑥0

=
𝜕𝑓0
𝜕𝑧0

and
𝜕𝑓0
𝜕𝑥0

= −𝜕𝑢0
𝜕 𝑧0

, (1)
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called the (left-)pseudo-complex Cauchy-Riemann equations. Similarly, if
𝑓 satisfies 𝑓𝐷 = 0 then we obain the equations:

𝜕𝑢0
𝜕𝑥0

=
𝜕𝑓0
𝜕 𝑧0

and
𝜕𝑓0
𝜕𝑥0

= −𝜕𝑢0
𝜕 𝑧0

, (2)

called the (right-)pseudo-complex Cauchy-Riemann equations. Basing on
the definition of the Laplacian, we also obtain

∆𝑓 = (𝐷𝐷)𝑓 =
(︁ 𝜕2
𝜕𝑥20

+
𝜕2

𝜕𝑧0𝜕 𝑧0

)︁
(𝑢0 + �̂�𝑓0) =

=
(︁𝜕2𝑢0
𝜕𝑥20

+
𝜕2𝑢0
𝜕𝑧0𝜕 𝑧0

)︁
+ �̂�
(︁𝜕2𝑓0
𝜕𝑥20

+
𝜕2𝑓0
𝜕 𝑧0𝜕𝑧0

)︁
.

Since multiplication over P is associative,

(𝐷𝐷)𝑓 = 𝐷(𝐷𝑓)

Therefore,

𝐷(𝐷𝑓) =

(︂
𝜕

𝜕𝑥0
− �̂�

𝜕

𝜕 𝑧0

)︂{︂(︂
𝜕𝑢0
𝜕𝑥0

− 𝜕𝑓0
𝜕𝑧0

)︂
+ �̂�

(︂
𝜕𝑓0
𝜕𝑥0

+
𝜕𝑢0
𝜕 𝑧0

)︂}︂
=

=
𝜕2𝑢0
𝜕𝑥20

− 𝜕2𝑓0
𝜕𝑥0𝜕𝑧0

+ �̂�
(︁𝜕2𝑓0
𝜕𝑥20

+
𝜕2𝑢0
𝜕𝑥0𝜕 𝑧0

)︁
−

−�̂�
(︁ 𝜕2𝑢0
𝜕 𝑧0𝜕𝑥0

− 𝜕2𝑓0
𝜕 𝑧0𝜕𝑧0

)︁
+
(︁ 𝜕2𝑓0
𝜕𝑧0𝜕𝑥0

+
𝜕2𝑢0
𝜕𝑧0𝜕 𝑧0

)︁
=

=
(︁𝜕2𝑢0
𝜕𝑥20

+
𝜕2𝑢0
𝜕𝑧0𝜕 𝑧0

)︁
+ �̂�
(︁𝜕2𝑓0
𝜕𝑥20

+
𝜕2𝑓0
𝜕 𝑧0𝜕𝑧0

)︁
.

Definition 1. Let Ω be an open set in R3. A function 𝑓 : Ω → P,

𝑓(𝑧) = 𝑢0(𝑥0, 𝑥1, 𝑥2) + �̂�𝑓0(𝑥0, 𝑥1, 𝑥2),

is said to be left-hyperholomorphic on Ω if 𝑓 satisfies the following two
conditions:

1) 𝑢0 is a real-analytic function and 𝑓0 is a holomorphic function,
2) 𝑓 satisfies the equation 𝐷𝑓 = 0 on Ω.

Involving the non-commutativity of multiplication, comparing (1) and (2),
we also give the following
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Definition 2. Let Ω be an open set in R3. A function 𝑓 : Ω → P,

𝑓(𝑧) = 𝑢0(𝑥0, 𝑥1, 𝑥2) + �̂�𝑓0(𝑥0, 𝑥1, 𝑥2)

is said to be right hyperholomorphic on Ω if 𝑓 satisfies the following two
conditions:

1) 𝑢0 is a real-analytic function and 𝑓0 is a holomorphic function.
2) 𝑓 satisfies the equation 𝑓𝐷 = 0 on Ω,

Since a right hyperholomorphic function is dealt with in a similar manner
as a left hyperholomorphic function, we only consider left hyperholomor-
phic functions and simply call them hyperholomorphic.

Proposition 1. Let Ω be an open set in R3 and 𝑓 be a hyperholomorphic
function on Ω. Then

𝐷𝑓 = 𝑓 ′ =
𝜕𝑓

𝜕𝑥0
= −�̂� 𝜕𝑓

𝜕𝑧0
.

Proof. Since 𝑓 is a hyperholomorphic function on Ω, (1) yields

𝐷𝑓 =

(︂
𝜕𝑢0
𝜕𝑥0

+
𝜕𝑓0
𝜕𝑧0

)︂
+ �̂�

(︂
𝜕𝑓0
𝜕𝑥0

− 𝜕𝑢0
𝜕 𝑧0

)︂
=
𝜕𝑢0
𝜕𝑥0

+ �̂�
𝜕𝑓0
𝜕𝑥0

=
𝜕

𝜕𝑥0
𝑓.

Moreover, by (1), for 𝐷𝑓 we also have

𝐷𝑓 =
𝜕𝑓0
𝜕𝑧0

− �̂� 𝜕𝑢0
𝜕 𝑧0

= −�̂�2𝜕𝑓0
𝜕𝑧0

− �̂� 𝜕𝑢0
𝜕 𝑧0

= −�̂�
(︂

𝜕

𝜕 𝑧0
�̂�𝑓0 +

𝜕

𝜕 𝑧0
𝑢0

)︂
= −�̂� 𝜕

𝜕 𝑧0
𝑓.

�

Let us now consider the properties of hyperholomorphic functions in
pseudo-complex numbers.

Proposition 2. Let Ω be an open set in R3 and 𝑓 and 𝑔 be hyperholo-
morphic functions on Ω. Then

1) 𝛼𝑓 is hyperholomorphic on Ω if 𝛼 is any real constant,
2) 𝑓𝛼 is hyperholomorphic on Ω if 𝛼 is any ternary constant,
3) 𝑓 ± 𝑔 is hyperholomorphic on Ω.

Proof. The condition that 𝑓 and 𝑔 are both hyperholomorphic functions
means that they satisfy (1). For proving items 1) – 3), it suffices to satisfy
the second condition of Definition 1.
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1) When 𝛼 is any real constant, it is obvious that 𝐷(𝛼𝑓) = 0.
2) Let 𝛼 be a pseudo-complex constant, 𝛼 = 𝑎0 + �̂�𝛼0, where 𝑎0 is real

and
𝛼0 =

𝑐1𝑎1 + 𝑐2𝑎2√︀
𝑐21 + 𝑐22

+
𝑐2𝑎1 − 𝑐1𝑎2√︀

𝑐21 + 𝑐22
𝑒1𝑒2

with 𝑐𝑟 and 𝑎𝑟 (𝑟 = 1, 2) being real numbers. By (1), we infer

𝐷(𝑓𝛼) =

(︂
𝜕

𝜕𝑥0
+ �̂�

𝜕

𝜕 𝑧0

)︂
{(𝑢0𝑎0 − 𝑓0𝛼0) + �̂�(𝑢0𝛼0 + 𝑓0𝑎0)} =

=

(︂
𝜕𝑢0
𝜕𝑥0

𝑎0 −
𝜕𝑓0
𝜕𝑥0

𝛼0 −
𝜕𝑢0
𝜕𝑧0

𝛼0 −
𝜕𝑓0
𝜕𝑧0

𝑎0

)︂
+

+ �̂�

(︂
𝜕𝑢0
𝜕𝑥0

𝛼0 +
𝜕𝑓0
𝜕𝑥0

𝑎0 +
𝜕𝑢0
𝜕 𝑧0

𝑎0 −
𝜕𝑓0
𝜕 𝑧0

𝛼0

)︂
= 0.

3) Since 𝑓 and 𝑔 are hyperholomorphic functions on Ω, we have

𝐷(𝑓 ± 𝑔) =

(︂
𝜕

𝜕𝑥0
+ �̂�

𝜕

𝜕 𝑧0

)︂
{(𝑢0 ± 𝑣0) + �̂�(𝑓0 ± 𝑔0)} =

=

(︂
𝜕𝑢0
𝜕𝑥0

± 𝜕𝑣0
𝜕𝑥0

− 𝜕𝑓0
𝜕𝑧0

∓ 𝜕𝑔0
𝜕𝑧0

)︂
+

+ �̂�

(︂
𝜕𝑢0
𝜕 𝑧0

± 𝜕𝑣0
𝜕 𝑧0

+
𝜕𝑓0
𝜕𝑥0

𝑎0 ±
𝜕𝑔0
𝜕𝑥0

)︂
= 0.

�

Example. Let Ω be an open set in R3 and 𝑓 and 𝑔 be hyperholomorphic
functions on Ω. Then 𝑓𝑔 is not always hyperholomorphic on Ω. Since 𝑓
and 𝑔 are hyperholomorphic functions on Ω, we obtain

𝐷(𝑓𝑔) =

(︂
𝜕

𝜕𝑥0
+ �̂�

𝜕

𝜕 𝑧0

)︂
{(𝑢0𝑣0 − 𝑓0𝑔0) + �̂�(𝑢0𝑔0 + 𝑓0𝑣0)} =

=

(︂
𝜕𝑢0
𝜕𝑥0

− 𝜕𝑓0
𝜕𝑧0

)︂
𝑣0 + 𝑢0

(︂
𝜕𝑣0
𝜕𝑥0

− 𝜕𝑔0
𝜕𝑧0

)︂
−

−
(︂
𝜕𝑓0
𝜕𝑥0

+
𝜕𝑢0
𝜕𝑧0

)︂
𝑔0 −

(︂
𝑓0
𝜕𝑔0
𝜕𝑥0

+ 𝑓0
𝜕𝑣0
𝜕𝑧0

)︂
+

+ �̂�

{︂(︂
𝜕𝑢0
𝜕𝑥0

− 𝜕𝑓0
𝜕 𝑧0

)︂
𝑔0 + 𝑢0

(︂
𝜕𝑔0
𝜕𝑥0

+
𝜕𝑣0
𝜕 𝑧0

)︂}︂
+
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+ �̂�

{︂(︂
𝜕𝑓0
𝜕𝑥0

+
𝜕𝑢0
𝜕 𝑧0

)︂
𝑣0 +

(︂
𝑓0
𝜕𝑣0
𝜕𝑥0

− 𝑓0
𝜕𝑔0
𝜕 𝑧0

)︂}︂
=

= −𝑓0
𝜕𝑔0
𝜕𝑥0

− 𝑓0
𝜕𝑣0
𝜕𝑧0

+ �̂�𝑓0
𝜕𝑣0
𝜕𝑥0

− �̂�𝑓0
𝜕𝑔0
𝜕 𝑧0

=

= 𝑓0
𝜕𝑣0
𝜕 𝑧0

− 𝑓0
𝜕𝑣0
𝜕𝑧0

+ �̂�𝑓0
𝜕𝑔0
𝜕𝑧0

− �̂�𝑓0
𝜕𝑔0
𝜕 𝑧0

= 𝑓0
𝜕𝑔

𝜕 𝑧0
− 𝑓0

𝜕𝑔

𝜕𝑧0
.

If 𝑓0
𝜕𝑔

𝜕 𝑧0
− 𝑓0

𝜕𝑔

𝜕𝑧0
= 0 then the function 𝑓𝑔 is hyperholomorphic on Ω. For

example, if 𝑓 is a real-valued function then 𝑓𝑔 is hyperholomorphic on Ω.

However, when 𝑓0
𝜕𝑔

𝜕 𝑧0
̸= 𝑓0

𝜕𝑔

𝜕𝑧0
, 𝑓𝑔 is not hyperholomorphic on Ω.

Put
𝜔 = 𝑑𝑧0 ∧ 𝑑 𝑧0 − �̂�𝑑𝑥0 ∧ 𝑑𝑧0.

Theorem 1. Let Ω be a domain in R3 and 𝑈 be any domain in Ω with
smooth boundary 𝑏𝑈 such that 𝑈 ⊂ Ω. If 𝑓 is a hyperholomorphic on Ω
then ∫︁

𝑏𝑈

𝜔𝑓 = 0.

Proof. We have

𝜔𝑓 =(𝑑𝑧0 ∧ 𝑑 𝑧0 − �̂�𝑑𝑥0 ∧ 𝑑𝑧0)(𝑢0 + �̂�𝑓0) =

=(𝑢0𝑑𝑧0 ∧ 𝑑 𝑧0 + 𝑓0𝑑𝑥0 ∧ 𝑑 𝑧0) + �̂�(𝑓0𝑑 𝑧0 ∧ 𝑑𝑧0 − 𝑢0𝑑𝑥0 ∧ 𝑑𝑧0).

Let 𝜕 and 𝜕 be the following operators:

𝜕 =
1

2

𝜕

𝜕𝑥0
𝑑𝑥0 +

𝜕

𝜕𝑧0
𝑑𝑧0 and 𝜕 =

1

2

𝜕

𝜕𝑥0
𝑑𝑥0 +

𝜕

𝜕 𝑧0
𝑑𝑧0.

Then

𝑑(𝜔𝑓) = (𝜕 + 𝜕)(𝜔𝑓) =

(︂
𝜕

𝜕𝑥0
𝑑𝑥0 +

𝜕

𝜕𝑧0
𝑑𝑧0 +

𝜕

𝜕 𝑧0
𝑑 𝑧0

)︂
(𝜔𝑓) =

=

(︂
𝜕𝑢0
𝜕𝑥0

− 𝜕𝑓0
𝜕𝑧0

)︂
𝑑𝑥0 ∧ 𝑑𝑧0 ∧ 𝑑 𝑧0 + �̂�

(︂
𝜕𝑓0
𝜕𝑥0

+
𝜕𝑢0
𝜕 𝑧0

)︂
𝑑𝑥0 ∧ 𝑑𝑧0 ∧ 𝑑 𝑧0 = 0

in 𝑈 . It now suffices to apply the Stokes theorem. �

Theorem 2. Let Ω be an open set in R3. If 𝑓 is hyperholomorphic on
Ω then 𝑢0 and 𝑓0 are harmonic functions on Ω. Moreover, 𝑓 is harmonic
on Ω.
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Proof. It suffices to show that ∆𝑢0 = 0 and ∆𝑓0 = 0. Indeed, we have

∆𝑢0 = (𝐷𝐷)𝑢0 =
𝜕2𝑢0
𝜕𝑥20

+
𝜕2𝑢0
𝜕𝑧0𝜕 𝑧0

=
𝜕

𝜕𝑥0

𝜕𝑓0
𝜕𝑧0

− 𝜕

𝜕𝑧0

𝜕𝑓0
𝜕𝑥0

= 0,

∆𝑓0 = (𝐷𝐷)𝑓0 =
𝜕2𝑓0
𝜕𝑥20

+
𝜕2𝑓0
𝜕𝑧0𝜕 𝑧0

= − 𝜕

𝜕𝑥0

𝜕𝑢0
𝜕 𝑧0

+
𝜕

𝜕 𝑧0

𝜕𝑢0
𝜕𝑥0

= 0.

By these equalities and (1), we can obtain the equality ∆𝑓 = 0 as
follows:

∆𝑓 = (𝐷𝐷)𝑓 =

(︂
𝜕2𝑢0
𝜕𝑥20

− 𝜕2𝑓0
𝜕𝑥0𝜕𝑧0

+
𝜕2𝑓0
𝜕𝑧0𝜕𝑥0

+
𝜕2𝑢0
𝜕𝑧0𝜕 𝑧0

)︂
+

+ �̂�

(︂
𝜕2𝑓0
𝜕𝑥20

+
𝜕2𝑢0
𝜕𝑥0𝜕 𝑧0

− 𝜕2𝑢0
𝜕 𝑧0𝜕𝑥0

+
𝜕2𝑓0
𝜕 𝑧0𝜕𝑧0

)︂
=

=
𝜕

𝜕𝑥0

(︂
𝜕𝑢0
𝜕𝑥0

− 𝜕𝑓0
𝜕𝑧0

)︂
+

𝜕

𝜕𝑧0

(︂
𝜕𝑓0
𝜕𝑥0

+
𝜕𝑢0
𝜕 𝑧0

)︂
+

+ �̂�
𝜕

𝜕𝑥0

(︂
𝜕𝑓0
𝜕𝑥0

+
𝜕𝑢0
𝜕 𝑧0

)︂
+ �̂�

𝜕

𝜕 𝑧0

(︂
−𝜕𝑢0
𝜕𝑥0

+
𝜕𝑓0
𝜕𝑧0

)︂
= 0.

Thus, 𝑓 is a harmonic function on Ω. �

Consider the following example related to the statement presented in
Theorem 2.
Example. Let 𝑢0 be a real-valued harmonic function such that

𝑢0(𝑧) =
𝑥0
|𝑧|4

in a domain 𝐷 ⊂ P. Then the hyper-conjugate harmonic function 𝑓0 of
𝑢0 can be found in 𝐷 as

𝑓0 = − 𝑧0
|𝑧|4

.

Moreover, 𝑢0 + �̂�𝑓0 is hyperholomorphic in 𝐷.

The following theorem is the Cauchy integral formula for a hyperholomor-
phic function in P.

Theorem 3. Let Ω be a bounded domain in P and 𝑓 = 𝑢0 + �̂�𝑓0 be
hyperholomorphic on Ω. Then, for every 𝑧 = 𝑥0 + �̂�𝑧0 ∈ Ω, 𝑓 can be
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expressed as

𝑓(𝑧) =
1

2𝜋2

∫︁
Ω

− (𝜁 − 𝑧)

|𝜁 − 𝑧|4
𝑑𝜔𝜁𝑓(𝜁) − 1

2𝜋2

∫︁
𝑏Ω

− (𝜁 − 𝑧)

|𝜁 − 𝑧|4
𝑑𝜔𝜁𝑓(𝜁),

where 𝜁 = 𝑦0 + �̂�𝜁0 and 𝜔𝜁 = 𝑑𝜁0 ∧ 𝑑𝜁0 − �̂�𝑑𝑦0 ∧ 𝑑𝜁0.
Proof. In order to conveniently find the formula of Theorem 3, we put
𝜑(𝜁, 𝑧) = (𝜁 − 𝑧) and 𝜓(𝜁, 𝑧) = |𝜁 − 𝑧|4. Let 𝑅 be the distance between
𝑏Ω and 𝑧. Let 𝐵 = 𝐵(𝑧, 𝜌) be the open ball of radius 𝜌 with center
𝑧 ∈ Ω, where 0 < 𝜌 < 𝑅. Suppose Ω(𝑧, 𝜌) = Ω − 𝐵. Since 𝜑(𝜁,𝑧)

𝜓(𝜁,𝑧)
is

hyperholomorphic, by the Stokes theorem, we infer∫︁
Ω(𝑧,𝜌)

−𝜑(𝜁, 𝑧)

𝜓(𝜁, 𝑧)
𝑑𝜔𝜁𝑓(𝜁) =

∫︁
Ω(𝑧,𝜌)

𝑑

{︂
−𝜑(𝜁, 𝑧)

𝜓(𝜁, 𝑧)
𝜔𝜁𝑓(𝜁)

}︂
=

=

∫︁
𝑏Ω(𝑧,𝜌)

−𝜑(𝜁, 𝑧)

𝜓(𝜁, 𝑧)
𝜔𝜁𝑓(𝜁) =

=

∫︁
𝑏Ω

−𝜑(𝜁, 𝑧)

𝜓(𝜁, 𝑧)
𝜔𝜁𝑓(𝜁) −

∫︁
𝑏𝐵

−𝜑(𝜁, 𝑧)

𝜓(𝜁, 𝑧)
𝜔𝜁𝑓(𝜁).

Moreover, we obtain∫︁
𝑏𝐵

− 𝜑(𝜁𝑧)

𝜓(𝜁, 𝑧)
𝜔𝜁𝑓(𝜁) =

∫︁
𝐵

𝑑

(︂
−𝜑(𝜁, 𝑧)

𝜓(𝜁, 𝑧)
𝜔𝜁𝑓(𝜁)

)︂
=

=

∫︁
𝐵

𝑑

{︂
−𝜑(𝜁, 𝑧)

𝜓(𝜁, 𝑧)

}︂
𝜔𝜁𝑓(𝜁) +

∫︁
𝐵

{︂
−𝜑(𝜁, 𝑧)

𝜓(𝜁, 𝑧)

}︂
𝑑𝜔𝜁𝑓(𝜁) =

=
1

𝜌4

⎧⎨⎩
∫︁
𝐵

𝑓(𝜁)𝑑𝑥0 ∧ 𝑑𝑧0 ∧ 𝑑 𝑧0 −
∫︁
𝐵

𝜑(𝜁, 𝑧)𝑑𝜔𝜁𝑓(𝜁)

⎫⎬⎭ .

Since 𝑓 is hyperholomorphic in Ω, we have

lim
𝜌→0

1

𝜌4

∫︁
𝐵

𝑓(𝜁)𝑑𝑥0 ∧ 𝑑𝑧0 ∧ 𝑑 𝑧0 = −2𝜋2𝑓(𝑧),

lim
𝜌→0

1

𝜌4

∫︁
𝐵

𝜑(𝜁, 𝑧)𝑑𝜔𝜁𝑓(𝜁) = 0.
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Hence, ∫︁
Ω

−𝜑(𝜁, 𝑧)

𝜓(𝜁, 𝑧)
𝑑𝜔𝜁𝑓(𝜁) =

∫︁
𝑏Ω

−𝜑(𝜁, 𝑧)

𝜓(𝜁, 𝑧)
𝜔𝜁𝑓(𝜁) + 2𝜋2𝑓(𝑧).

Thus, the function 𝑓(𝑧) can be expressed as

𝑓(𝑧) =
1

2𝜋2

∫︁
Ω

−𝜑(𝜁, 𝑧)

𝜓(𝜁, 𝑧)
𝑑𝜔𝜁𝑓(𝜁) − 1

2𝜋2

∫︁
𝑏Ω

−𝜑(𝜁, 𝑧)

𝜓(𝜁, 𝑧)
𝜔𝜁𝑓(𝜁).

�

Corollary 1. Let Ω be a bounded domain in T and 𝑓 = 𝑢0 + �̂�𝑓0 be
hyperholomorphic in a bounded domain Ω ⊂ T. Then, for every 𝑧 ∈ Ω,
the function 𝑓 can be expressed as

𝑓(𝑧) =
1

2𝜋2

∫︁
𝑏Ω

(𝜁 − 𝑧)

|𝜁 − 𝑧|4
𝜔𝜁𝑓(𝜁) =

=
1

2𝜋2

∫︁
𝑏Ω

(𝑦0 − 𝑥0) − �̂�(𝜁0 − 𝑧0)

(|𝑦0 − 𝑥0|2 + |𝜁0 − 𝑧0|2)2
𝜔𝜁𝑓(𝜁).

Proof. Since 𝑓 is a hyperholomorphic function on Ω, we have

𝑑𝜔𝜁𝑓(𝜁) = 0

and the corollary follows by Theorem 3. �
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