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ON THE CONVERGENCE OF THE LEAST SQUARE
METHOD IN CASE OF NON-UNIFORM GRIDS

Abstract. Let f(t) be a continuous on [−1, 1] function, which va-
lues are given at the points of arbitrary non-uniform grid ΩN =
= {tj}N−1j=0 , where nodes tj satisfy the only condition ηj6 tj6ηj+1,
0 6 j 6 N − 1, and nodes ηj are such that −1 = η0 < η1 < η2 <
< · · · < ηN−1 < ηN = 1. We investigate approximative properties
of the finite Fourier series for f(t) by algebraic polynomials P̂n,N (t),
that are orthogonal on ΩN = {tj}N−1j=0 . Lebesgue-type inequalities
for the partial Fourier sums by P̂n,N (t) are obtained.
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1. Introduction. Let {ηj}Nj=0 be a system of points, such that

− 1 = η0 < η1 < η2 < · · · < ηN−1 < ηN = 1. (1)

We assume ∆ηj = ηj+1 − ηj, 0 6 j 6 N − 1, λN = max
06j6N−1

∆ηj. Now, we

construct a grid ΩN from the points

ηj 6 tj 6 ηj+1, j = 0, 1, . . . , N − 1, (2)

selected on each segment [ηj, ηj+1]. Without loss of generality, we can
consider all the nodes {tj}N−1j=0 distinct, because if tj = tj+1 for some j, we
can leave only one of them and denote the grid by ΩN−1.

Consider the space l2(ΩN) of discrete functions f : ΩN → R, where
the inner product is given by

〈f, g〉 =
N−1∑
j=0

f(tj)g(tj)∆ηj = λN

N−1∑
j=0

f(tj)g(tj)ρj. (3)
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By P̂n,N(t), 0 6 n 6 N − 1, we denote polynomials that form finite
orthonormal system with respect to this inner product:

〈
P̂n,N ,P̂m,N

〉
=

N−1∑
j=0

P̂n,N(tj)P̂m,N(tj)∆ηj =

{
0, n 6= m,

1, n = m.
(4)

We call polynomials P̂n,N(t), 0 6 n 6 N − 1, the discrete orthonormal
Legendre polynomials.

Since the system
{
P̂n,N(t)

}N−1
n=0

is complete in l2(ΩN), any function
f ∈ l2(ΩN) can be expanded in a finite Fourier series by this system. Let
Λn,N(f, t) be the partial Fourier sum of order n for the function f = f(t)

by the system
{
P̂k,N

}N−1
k=0

, in other words

Λn,N(f, t) =
n∑
k=0

f̂kP̂k,N(t), where f̂k =
N−1∑
j=0

f(tj)P̂k,N(tj)∆ηj.

The main goal of this article is to study the approximative properties
of Λn,N(f, t) in case when f(t) is continuous on [−1, 1] and t ∈ [−1, 1].
More precisely, we want to obtain an estimate for the value

|Rn,N(f, t)| = |f(t)− Λn,N(f, t)| , t ∈ [−1, 1]. (5)

Note that the value |Rn,N(f, t)| for the discrete Legendre polynomials
was studied in [2] for the case of tj = ηj and was studied in [3] for the
case of tj =

ηj+ηj+1

2
. But the results obtained there are valid only when

n = O(λ
−1/5
N ) and n = O(λ

−2/7
N ), respectively, while we managed to get

estimates for n = O(λ
−1/3
N ) and for a more general case when tj is arbitrary

on the segment [ηj, ηj+1].
To solve this problem, we need some information about discrete Le-

gendre polynomials P̂k,N(t), as well as discrete Jacobi polynomials P̂α, β
k,N (t),

which are a generalization of P̂k,N(t). This information is based on the
properties of classical continuous Legendre and Jacobi polynomials.

2. Some information about Jacobi and Legendre polynomials.
The Jacobi polynomials can be written using Rodrigues’ formula (see, for
example, [4]) as follows:

P α, β
n (t) =

(−1)n

2nn!

1

κα, β(t)

dn

dtn
{κα, β(t)σn(t)},
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where α, β are arbitrary real numbers, κα, β(t) = (1 − t)α(1 + t)β, σ(t) =
= 1 − t2. In the case when α, β > −1, the Jacobi polynomials form an
orthogonal system with the weight κα, β(t):

1∫
−1

P α, β
n (t)P α, β

m (t)κα, β(t)dt = hα, βn δnm,

where

hα, βn =
2α+β+1Γ(n+ α + 1)Γ(n+ β + 1)

n!(2n+ α + β + 1)Γ(n+ α + β + 1)
,

and, therefore, hα, βn � n−1, n = 1, 2, . . . . For the derivative of P α, β
n (t),

the following equality holds:

(
P α, β
n (t)

)′
=
α + β + n+ 1

2
P α+1, β+1
n−1 (t). (6)

We will also need the following weighted estimate

√
n
∣∣P α, β

n (t)
∣∣ 6 c(α, β)

(√
1− t+

1

n

)−α− 1
2
(√

1 + t+
1

n

)−β− 1
2

, (7)

where −1 6 t 6 1. An important particular case of Jacobi polynomials
with α = β = 0 is Legendre polynomials Pn(t), orthogonal on [−1, 1] with
the unit weight ρ(t) ≡ 1. Denote by P̂n(t) =

√
2n+1

2
Pn(t), n = 0, 1, 2, . . .

the corresponding orthonormal Legendre polynomials. The leading coef-
ficient of polynomial P̂n(t) can be written as

kn =
(2n)!

(n!)22n

√
2n+ 1

2
. (8)

3. Discrete Jacobi and Legendre polynomials. We will use the
integral analogue of the Markov inequality for estimating the derivative
of an algebraic polynomial (see [5, 6]), which for r = 1 has the following
form:

1∫
−1

|q′m(t)|dt 6 c(m)m2

1∫
−1

|qm(t)|dt, (9)



Convergence of least square method on random grids 169

where qm(t) is an arbitrary algebraic polynomial of degree m. For ev-
ery m, denote by χm the minimum of constants c(m) that satisfy inequal-
ity (9), i.e.,

χm = sup
qm

1∫
−1
|q′m(t)|dt

m2
1∫
−1
|qm(t)|dt

,

where the upper bound is taken by polynomials qm(t) of degree at most
m and not equal to zero identically. In work [5] by N. K. Bari, it is shown
that χ = sup

m>1
χm <∞. Given this fact, we derive from (9):

1∫
−1

|q′m(t)|dt 6 χm2

1∫
−1

|qm(t)|dt. (10)

Let
{
P̂ α, β
n,N (t)

}N−1
n=0

be polynomials that form a finite orthonormal sys-
tem with respect to the inner product

〈
P̂ α, β
n,N , P̂

α, β
m,N

〉
=

N−1∑
j=0

P̂ α, β
n,N (tj)P̂

α, β
m,N(tj)κ

α, β(tj)∆ηj =

{
0, n 6= m,

1, n = m.

We call these polynomials discrete orthonormal Jacobi polynomials.
In the case when the grid ΩN consists of equidistant nodes

tj = −1 + 2j
N−1 , the asymptotic properties and weighted estimates for

the polynomials orthogonal on ΩN were first studied in the papers by
I. I. Sharapudinov (see [7]). Later, I. I. Sharapudinov [8–10] and A. A. Nur-
magomedov [11], [12] studied the asymptotic properties of polynomials
that are orthogonal on nonuniform grids of the real axis. In particular,
in [12] the author investigated the asymptotic properties of the discrete
Jacobi polynomials P̂ α, β

n,N (t) (α and β are integers), orthogonal on non-

uniform grid ΩN with tj =
ηj + ηj+1

2
, 0 6 j 6 N − 1.

In our work [13], we investigated asymptotic properties of these polyno-
mials in the general case of random tj (α, β are still integers). When
n = O(λ

− 1
3

N ) and n,N →∞ we obtained asymptotic formula

P̂ α, β
n,N (t) = P̂ α, β

n (t) + υα, βn,N(t),
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here P̂ α, β
n (t) is a normed Jacobi polynomial, and υα, βn,N(t) is the remainder,

for which the following estimate is established:∣∣∣υα, βn,N(cos θ)
∣∣∣ 6

6 c(α, β, γ)

(
3− λNχ(2n+α+β)2

1− λ2Nχ2(2n+α+β)4

) 1
2

 θ−α−
1
2n

3
2

√
λN , γn−1 6 θ 6

π

2
,

nα+2
√
λN , 0 6 θ 6 γn−1,

where χ is the smallest of the constants in the Markov integral inequality
for estimating the derivative of an algebraic polynomial. Here and further
in the text, c, c(α), c(α, β), c(α, β, . . . , γ) are positive constants depend-
ing only on the specified parameters, which, generally speaking, may be
different in different places. For the sake of simplicity, these estimates are
given for the segment [0, 1]; they apply to [−1, 0] in the similar way.

In the article, the indicated asymptotic formula is directly used to
study the value |Rn,N(f, t)|.

4. Auxiliary statements. In this section, we collect some of the
statements that will be needed in the future.

Lemma 1. Let f(t) be a function, absolutely continuous on [−1, 1];
{ηj}Nj=0 and {tj}N−1j=0 be systems of nodes that satisfy (1) and (2), res-
pectively. Then

b∫
a

f(t)dt =
∑
a6tj6b

f(tj)∆ηj + rN(f)

for every segment [a, b] ⊂ [−1, 1], where

|rN(f)| 6 λN

b∫
a

|f ′(t)|dt.

Proof of this lemma can be found in [13].
From Lemma 1 the next statement also follows:

Lemma 2. Let {ηj}Nj=0 and {tj}N−1j=0 be systems of nodes that satisfy (1)
and (2), respectively. Then the following inequality holds for an absolutely
continuous on [−1, 1] monotonous non-negative function f(x):

∑
a6tj6b

f(tj)∆ηj 6

b∫
a

f(t)dt+ λN |f(b)− f(a)|.
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Lemma 3. For the leading coefficients of the discrete Legendre polyno-
mials, the inequality

kn,N
kn+1, N

6 1 (11)

holds; here kn,N and kn+1, N are the leading coefficients of the polynomials
P̂n,N and P̂n+1, N , respectively.

Proof. Following [14], let us consider the expression

N−1∑
j=0

P̂n+1, N(tj)tjP̂n,N(tj)∆ηj =

=
kn,N
kn+1, N

N−1∑
j=0

P̂ 2
n+1, N(tj) +

N−1∑
j=0

Q̂n,N(tj) =
kn,N
kn+1, N

.

On the other hand,

kn,N
kn+1, N

6
N−1∑
j=0

∣∣∣P̂n+1, N(tj)
∣∣∣ ∣∣∣tjP̂n,N(tj)

∣∣∣∆ηj 6
6 max

06j6N−1
{|tj|}

N−1∑
j=0

∣∣∣P̂n+1, N(tj)
∣∣∣ ∣∣∣P̂n,N(tj)

∣∣∣∆ηj.
Applying the Cauchy–Bunyakovsky inequality, we finally get

kn,N
kn+1, N

6 max
06j6N−1

{|tj|}

(
N−1∑
j=0

∣∣∣P̂n+1, N(tj)
∣∣∣∆ηj)

1
2

×

×

(
N−1∑
j=0

∣∣∣P̂n,N(tj)
∣∣∣∆ηj)

1
2

= max
06j6N−1

{|tj|} 6 1.

This completes the proof. �

The following lemma establishes the relation between polynomials of
degrees n and n+ 1.

Lemma 4. For An =

√
kn,N
kn+1, N

the following equalities hold:
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(1− t)P̂ 1, 0
n,N(t) =

= An

(
P̂n,N(t)

√
P̂n+1, N(1)

P̂n,N(1)
− P̂n+1, N(t)

√
P̂n,N(1)

P̂n+1, N(1)

)
, (12)

(1 + t)P̂ 0, 1
n,N(t) =

= An

(
P̂n,N(t)

√
−P̂n+1, N(−1)

P̂n,N(−1)
− P̂n+1, N(t)

√
−P̂n,N(−1)

P̂n+1, N(−1)

)
. (13)

Proof. Consider the polynomial Qn(t), given by the equality

(1− t)Qn(t) = P̂n+1, N(1)P̂n,N(t)− P̂n,N(1)P̂n+1, N(t). (14)

From its definition, we have

N−1∑
j=0

Qn(tj)P̂k,N(tj)(1− tj)∆ηj = 0, 0 6 k 6 n− 1. (15)

LetMl(t) be an arbitrary polynomial of degree l 6 n−1. Since each poly-
nomial P̂k,N(t) has degree k, it is obvious that Ml(t) can be represented
as their linear combination:

Ml(t) =
l∑

k=0

dkP̂k,N(t).

Then, from (15) we get

N−1∑
j=0

Qn(tj)Ml(tj)(1− tj)∆ηj = 0,

i. e., polynomials Q0(t), . . . , QN−1(t) form an orthogonal system with the
weight κ1, 0(t) = 1− t on the grid ΩN . Hence,

Qn(t) = γnP̂
1, 0
n,N(t), γn > 0. (16)
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To find γn, taking into account (14), consider the expression

Hn =
N−1∑
j=0

Q2
n(tj)(1− tj)∆ηj = (17)

= P̂n+1, N(1)
N−1∑
j=0

P̂n,N(tj)Qn(tj)∆ηj = P̂n+1, N(1)
k̃n

k̂n,N
, (18)

where k̃n, k̂n,N are the leading coefficients of polynomialsQn(t) and P̂n,N(t),
respectively.

In addition, notice that k̃n = P̂n,N(1)k̂n+1, N from (14), and, therefore

Hn = P̂n+1, N(1)P̂n,N(1)
k̂n+1, N

k̂n,N
. (19)

On the other hand, we get, from (16) and (17),

Hn = γ2n

N−1∑
j=0

(
P̂ 1, 0
n,N(tj)

)2
(1− tj)∆ηj = γ2n. (20)

Comparing (19) with (20), we derive

γn =

√
P̂n+1, N(1)P̂n,N(1)

k̂n+1, N

k̂n,N
. (21)

Returning to equality (14) and using (16), we have

(1− t)γnP̂ 1, 0
n,N(t) = P̂n+1, N(1)P̂n,N(t)− P̂n,N(1)P̂n+1, N(t).

This equality, together with (21), gives us (12).
Similarly, we derive equality (13). �

Next, let us agree on the following notation:

Kn,N(x, y) =
n∑
k=0

P̂k,N(x)P̂k,N(y). (22)

Then, using the Christoffel–Darboux formula and Lemma 4, we can also
prove the following assertion.
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Lemma 5. The following equality holds:

Kn,N(x, y) =

= Cn,N

[
1− x
y − x

P̂ 1, 0
n,N(x)P̂n,N(y)− 1− y

y − x
P̂ 1, 0
n,N(y)P̂n,N(x)

]
, (23)

where

Cn,N =

√
k̂n,N P̂n+1, N(1)

k̂n+1, N P̂n,N(1)
.

The weighted estimate for the discrete Legendre polynomials, obtained
by the author in [13], takes the following form:

Theorem A. Let us put 4λNχn
2 < 1; then there is a constant a > 0,

such that ∣∣∣P̂n,N(t)
∣∣∣ 6 c(a)

(
1 +B

√
n3λN

) (√
1− t2 +

1

n

)− 1
2 6

6 c(a)
(

1 +B
√
n3λN

)


n
1
2 , − 1 6 t 6 −1 + an−2,

(1 + t)−
1
4 , − 1 + an−2 6 t 6 0,

(1− t)−
1
4 , 0 6 t 6 1− an−2,

n
1
2 , 1− an−2 6 t 6 1,

(24)

where

B =

(
3− 4λNχn

2

1− 16λ2Nχ
2n4

) 1
2

.

5. Approximative properties of the Fourier sums by P̂ α, β
n,N (t).

Suppose we are given the values of some continuous on [−1, 1] function
f(t) at the points of the grid ΩN . Our main goal is to estimate the value

|Rn,N(f, t)| = |f(t)− Λn,N(f, t)| , t ∈ [−1, 1].

Denote by Pn the Hilbert space of all polynomials of degree n and by

En(f) = min
pn∈Pn

max
t∈[−1,1]

|f(t)− pn(t)|

the best approximation for the function f(t) by polynomials of degree at
most n.
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It is easy to show that Λn,N(pn, t) = pn(t) for any polynomial pn ∈ Pn.
Hence, using the Lebesgue-type inequality, we get

|Rn,N(f, t)| = |f(t)− Λn,N(f, t)| 6 En(f) [1 + Ln,N(t)] , (25)

where

Ln,N(t) =
N−1∑
j=0

|Kn,N(tj, t)|∆ηj (26)

is the Lebesgue function for
{
P̂n,N

}N−1
n=0

and Kn,N(tj, t) is the kernel
from (22).

Thus, it is necessary to study the Lebesgue function Ln,N(t).

Theorem 1. There exists a real number γ > 0, such that for 2 6 n 6
6 γλ

−1/3
N and 0 < ε < 1 the following estimates hold:

max
−16t61

Ln,N(t) 6 c(γ)n
1
2 ,

Ln,N(t) 6 c(γ) lnn, −1 + ε 6 t 6 1− ε.

Proof. We consider only the case t ∈ [0, 1], because for t ∈ [−1, 0] the
proof is quite similar.

Let us start with t ∈ [0, 1−4n−2]. We divide the sum on the right-hand
side of (26) according to the following scheme:

Ln,N(t) =
[ ∑
−16tj6− 1

2

+
∑

− 1
2
6tj6q1

+
∑

q16tj6q2

+
∑

q26tj61

]
|Kn,N(tj, t)|∆ηj

= A1 + A2 + A3 + A4,

where q1 = t−
√
1−t2
n

, q2 = t+
√
1−t2
n

.
1. To estimate A1, we use the Christoffel–Darboux formula and

Lemma 3, as well as the fact that |t − tj| > 1
2
for t ∈ [0, 1 − 4n−2] and

tj ∈ [−1,−1
2
]. We have

A1 6 2
∑

−16tj6− 1
2

(∣∣∣P̂n+1, N(t)P̂n,N(tj)
∣∣∣+
∣∣∣P̂n,N(t)P̂n+1, N(tj)

∣∣∣)∆ηj.

Again, we divide the sum into two parts: denote by A11 the sum over
−1 6 tj 6 −1 + 4n−2, and by A12 that over −1 + 4n−2 6 tj 6 −1

2
.
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Using the weighted estimate (24) and Lemma 2, we obtain

A11 6 cn−1, A12 6 c (1− t)−
1
4 , (27)

which means that
A1 6 c (1− t)−

1
4 . (28)

2. We proceed to the estimation of A2, for which we again use the
Christoffel–Darboux formula and the transformation (23) from Lemma 5.
We have

A2 6 Cn,N

[ ∑
− 1

2
6tj6q1

1− tj
t− tj

∣∣∣P̂ 1, 0
n,N(tj)P̂n,N(t)

∣∣∣∆ηj+
+

∑
− 1

2
6tj6q1

1− t
t− tj

∣∣∣P̂ 1, 0
n,N(t)P̂n,N(tj)

∣∣∣∆ηj] = Cn,N [A21 + A22] .

Consider, firstly, A21:

A21 6 c(1− t)−
1
4

∑
− 1

2
6tj6q1

1− tj
t− tj

∣∣∣P̂ 1, 0
n,N(tj)

∣∣∣∆ηj = c(1− t)−
1
4A211,

where
A211 =

[ ∑
− 1

2
6tj60

+
∑

06tj6q1

]1− tj
t− tj

∣∣∣P̂ 1, 0
n,N(tj)

∣∣∣∆ηj 6
6 c
[ ∑
− 1

2
6tj60

1− tj
t− tj

∆ηj +
∑

06tj6q1

(1− tj)
1
4

t− tj
∆ηj

]
6

6 c
∑

− 1
2
6tj6q1

(1− tj)
1
4

t− tj
∆ηj.

Due to the obvious inequality (1 − tj)
1
4 6 (1 − t)

1
4 + (t − tj)

1
4 , we can

rewrite

A21 6 c (1− t)−
1
4

∑
− 1

2
6tj6q1

[(1− t) 1
4

t− tj
+

(t− tj)
1
4

t− tj

]
∆ηj =

= c
[ ∑
− 1

2
6tj6q1

∆ηj
t− tj

+ (1− t)−
1
4

∑
− 1

2
6tj6q1

∆ηj

(t− tj)
3
4

]
=
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= c
[
A

(1)
21 + (1− t)−

1
4A

(2)
21

]
. (29)

Using Lemma 2, the theorem condition of λNn3 6 γ3 and the fact that
(1− t2)−

1
2 6 n at t ∈ [0, 1− 4n−2], we get the estimates

A
(1)
21 6 c lnn, A

(2)
21 6 c,

wherefrom
A21 6 c

(
lnn+ (1− t)−

1
4

)
. (30)

We proceed to studying A22. Applying the weighted estimate for
P̂ 1, 0
n,N(t), we derive

A22 6 c(1− t)
1
4

∑
− 1

2
6tj6q1

∣∣∣P̂n,N(tj)
∣∣∣

t− tj
∆ηj.

Before applying the weighted estimate for P̂n,N(tj), note that (1+ tj)
− 1

4 6
6 3

1
4 (1− tj)−

1
4 and (1− tj)−

1
4 6 (1− t)− 1

4 for −1
2
6 tj 6 0. Then

A22 6 c(1− t)
1
4

∑
− 1

2
6tj6q1

(1− tj)−
1
4

t− tj
∆ηj 6

6 c
∑

− 1
2
6tj6q1

∆ηj
t− tj

6 c(a) lnn. (31)

Substituting (30)–(31) in (29), we finally get

A2 6 Cn,N [A21 + A22] 6 c
(

(1− t)−
1
4 + lnn

)
. (32)

3. To estimate A3, we do not apply any transformations, but substi-
tute the weighted estimates directly in (26):

A3 6 c
(n+ 1)

(1− t) 1
4

∑
q16tj6q2

∆ηj

(1− tj)
1
4

6

6 c
(n+ 1)

(1− t) 1
4

q2 − q1
(1− q2)

1
4

6 c(a). (33)
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4. The study of the last part of the sum is similar to the study of A2:

A4 6 Cn,N

[ ∑
q26tj61

1− tj
tj − t

∣∣∣P̂ 1, 0
n,N(tj)P̂n,N(t)

∣∣∣∆ηj+
+
∑

q26tj61

1− t
tj − t

∣∣∣P̂ 1, 0
n,N(t)P̂n,N(tj)

∣∣∣∆ηj] = Cn,N [A41 + A42] . (34)

In turn, A41 can also be represented in the form of several sums

A41 6 c(1− t)−
1
4×

×
[ ∑
q26tj6

1+t
2

+
∑

1+t
2
6tj61−n−2

+
∑

1−n−26tj61

]1− tj
tj − t

∣∣∣P̂ 1, 0
n,N(tj)

∣∣∣∆ηj =

= c(1− t)−
1
4

[
A

(1)
41 + A

(2)
41 + A

(3)
41

]
. (35)

Using Lemma 2 and the weighted estimates, we can obtain the following
estimates for these terms:

A
(1)
41 6 c

[
(1− t)

1
4A

(1)
411 + A

(1)
412

]
= c

[
(1− t)

1
4 lnn+ 1

]
, (36)

A
(2)
41 6 cn−

1
2 , A

(3)
41 6 cn−

1
2 . (37)

Returning to inequality (35) and using (36)–(37), we derive

A41 6 c
[
lnn+ (1− t)−

1
4

(
n−

1
2 + 1

)]
6 c

[
(1− t)−

1
4 + lnn

]
. (38)

Similarly, the second term from (34) is estimated as

A42 = c(1−t)
1
4×

×
[ ∑
q26tj6

1+t
2

+
∑

1+t
2
6tj61−n−2

+
∑

1−n−26tj61

]∣∣∣P̂n,N(tj)
∣∣∣

tj − t
∆ηj =

= c(1− t)
1
4

[
A

(1)
42 + A

(2)
42 + A

(3)
42

]
. (39)

Applying Lemma 2 and a series of transformations, we obtain estimates
for these parts:

A
(1)
42 6 cn

1
2 , A

(2)
42 6 cn

1
2 , A

(3)
42 6 cn

1
2 .
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Then
A4 6 c [A41 + A42] 6 c

[
(1− t)

1
4 + lnn

]
. (40)

Finally, all the estimates (28), (32), (33) and (40) in total allow us to
display for t ∈ [0, 1− 4n−2]

Ln,N(t) = A1 + A2 + A3 + A4 6 c
[
(1− t)

1
4 + lnn

]
. (41)

Now we consider the behavior of the Lebesgue function Ln,N(t) for
t ∈ [1− 4n−2, 1]. Let us represent the Lebesgue function in the following
form:

Ln,N(t) =
[ ∑
−16tj6− 1

2

+
∑

− 1
2
6tj6q1

+
∑

q16tj61

]
|Kn,N(tj, t)|∆ηj =

= I1 + I2 + I3. (42)

1. The estimation of I1 is similar to the estimation of A1:

I1 6 2
[ ∑
−16tj6−1+4n−2

+
∑

−1+4n−26tj6− 1
2

] (∣∣∣P̂n+1, N(t)P̂n,N(tj)
∣∣∣+

+
∣∣∣P̂n,N(t)P̂n+1, N(tj)

∣∣∣)∆ηj = 2(I11 + I12).

Using the weighted estimates for the discrete Legendre polynomials, we
get for I11 and I12 the following inequalities:

I11 6 cn−1, I12 6 cn
1
2 .

Therefore,
I1 6 cn

1
2 . (43)

2. To estimate I2, we use Lemma 5 and the Christoffel – Darboux
formula again:

I2 6 Cn,N

[ ∑
− 1

2
6tj61− 8

n2

1− tj
t− tj

∣∣∣P̂ 1,0
n,N(tj)P̂n,N(t)

∣∣∣∆ηj+
+

∑
− 1

2
6tj61− 8

n2

1− t
t− tj

∣∣∣P̂ 1, 0
n,N(t)P̂n,N(tj)

∣∣∣∆ηj] = Cn,N [I21 + I22] .
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Consider, firstly, I21:

I21 6 c n
1
2

[ ∑
− 1

2
6tj60

+
∑

06tj61− 8
n2

]1− tj
t− tj

∣∣∣P̂ 1,0
n,N(tj)

∣∣∣∆ηj 6
6 c

∑
− 1

2
6tj61− 8

n2

(1− tj)
1
4

t− tj
∆ηj.

Due to the obvious inequality (1 − tj)
1
4 6 (1 − t)

1
4 + (t − tj)

1
4 , we can

rewrite

I21 6 cn
1
2

[
(1− t)

1
4

∑
− 1

2
6tj61− 8

n2

∆ηj
t− tj

+
∑

− 1
2
6tj61− 8

n2

∆ηj

(t− tj)
3
4

]
=

= c n
1
2

[
(1− t)

1
4 I

(1)
21 + I

(2)
21

]
. (44)

Using Lemma 1, we obtain for these new parts the estimates

I
(1)
21 6 c lnn, I

(2)
21 6 c,

and finally
I21 6 cn

1
2

(
n−

1
2 lnn+ 1

)
6 cn

1
2 . (45)

Let us start with I22. Using the weighted estimates and the fact that
(1 + tj)

− 1
4 6 3

1
4 (1− tj)−

1
4 6 cn

1
2 for −1

2
6 tj 6 0, we derive

I22 6 c n−
1
2

∑
− 1

2
6tj61− 8

n2

(1− tj)−
1
4

t− tj
∆ηj 6

6 c n−
1
2n

1
2

∑
− 1

2
6tj61− 8

n2

∆ηj
t− tj

6 c lnn. (46)

Combining (45) and (46), we finally get

I2 6 Cn,N [I21 + I22] 6 c
(
n

1
2 + lnn

)
6 c n

1
2 . (47)

3. For the last part, we just use (24):

I3 6
∑

1−n−26tj61

n∑
k=0

∣∣∣P̂k,N(t)P̂k,N(tj)
∣∣∣∆ηj 6
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6 c
∑

1−n−26tj61

n∑
k=0

k
1
2k

1
2 ∆ηj 6 cn2

∑
1−n−26tj61

∆ηj 6 c(a). (48)

Combining estimates (43), (47) and (48), we finally get

Ln,N(t) = I1 + I2 + I3 6 c
(
n

1
2 + lnn

)
, t ∈ [1− 4n−2, 1]. (49)

Note that for t ∈ [1 − 4n−2, 1] the expressions (1 − t2)
1
4 and n

1
2 are of

the same order. Hence, from (41) and (49) we deduce the assertion of the
theorem. �

Returning to (25), we also get the following statement from Theorem 1:

Theorem 2. The estimate

|Rn,N(t)| 6 c(γ)En(f)
[

lnn+

(√
1− t2 +

1

n

)− 1
2 ]

holds for the remainder Rn,N(t), where 2 6 n 6 γλ
−1/3
N , γ > 0, and En(f)

is the best approximation for the function f(t) by polynomials of degree
at most n.

6. Some applications. Once again, let f(t) be a continuous on
[−1, 1] function, which is measured at the nodes of some arbitrary grid
ΩN = {tj}N−1j=0 , satisfying (1)–(2). We denote these measurements by
yj = f(tj) + ξj, 0 6 j 6 N − 1. Here ξj are observation errors, which are
independent random variables satisfying the following conditions:

E[ξj] = 0, E[ξiξj] = σ2
j δij, 0 6 j 6 N − 1, (50)

where E[X] is the expected value of a random variable X. It is required to
approximately restore f(t) at the point t ∈ [−1, 1] using discrete informa-
tion {yj}N−1j=0 . To solve this problem, we introduce an algebraic polynomial
Sn,N(t) that minimizes the sum

J(a0, . . . , an) =
N−1∑
j=0

(yj − pn(tj))
2 ρj

on the set of all polynomials pn(t) = a0+a1t+. . .+ant
n of degree n 6 N−1,

where ρj are positive weight factors.
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The question is, how precise Sn,N(t) approximates the original function
f(t) at t ∈ [−1, 1], i. e., it is required to estimate the value (f(t)− Sn,N(t))2.
Since this value depends on random errors ξ0, . . . , ξN−1, a more accurate
formulation of the problem is to estimate its average value

Jn,N(f, t) = E
[
(f(t)− Sn,N(t))2

]
. (51)

In [1] this problem was studied for the uniform grid tj = −1 + 2j
N−1 ,

ρj = 1, 0 6 j 6 N − 1. In this article, we consider a more general case
when the nodes tj form a non-uniform grid ΩN = {tj}N−1j=0 ⊂ [−1, 1], and
weights ρj satisfy certain natural conditions.

More precisely, the values of σj, appearing in (50), and corresponding
weights ρj are defined for a given real σ using equalities

σ2
j = σ2 λN

∆ηj
, ρj = (σ/σj)

2 =
∆ηj
λN

. (52)

It is well-known (see [15]) that polynomials Sn,N(t) minimizing the
value (51), can be represented as

Sn,N(t) =
n∑
k=0

ŷkP̂k,N(t), where ŷk =
N−1∑
j=0

yjP̂k,N(tj)∆ηj.

Let Λn,N(f, t) be the partial Fourier sum of order n for the original (noise-

less) function f = f(t) by the system
{
P̂k,N

}N−1
k=0

, i. e.,

Λn,N(f, t) =
n∑
k=0

f̂kP̂k,N(t), where f̂k =
N−1∑
j=0

f(tj)P̂k,N(tj)∆ηj.

From (50) it follows that Λn,N(f, t) = E [Sn,N(t)]. In fact,

E [Sn,N(t)] = E
[ n∑
k=0

ŷkP̂k,N(t)
]

=
n∑
k=0

E [ŷk] P̂k,N(t),

where

E [ŷk] = E
[N−1∑
j=0

(f(tj) + ξj)P̂k,N(tj)∆ηj

]
=
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=
N−1∑
j=0

E [f(tj) + ξj] P̂k,N(tj)∆ηj = f̂k.

In addition, it can be shown that

Jn,N(f, t) = (f(t)− Λn,N(f, t))2 + σ2λN

n∑
k=0

(
P̂k,N(t)

)2
=

= R2
n,N(f, t) +Dn,N(t). (53)

To do this, consider the expression

∆n,N(f, t) = Sn,N(f, t)− Λn,N(f, t) =
n∑
k=0

(
ŷk − f̂k

)
P̂k,N(t) =

=
n∑
k=0

ξ̂kP̂k,N(t) =
n∑
k=0

N−1∑
j=0

ξjP̂k,N(t)P̂k,N(tj)∆ηj.

We will need the expected value of this value:

E [∆n,N(f, t)] =
n∑
k=0

E
[
ξ̂k

]
P̂k,N(t) =

=
n∑
k=0

N−1∑
j=0

E [ξj] P̂k,N(t)P̂k,N(tj)∆ηj = 0, (54)

and its square:

E
[
∆2
n,N(f, t)

]
= E

[(
n∑
k=0

ξ̂kP̂k,N(t)

)(
n∑
l=0

ξ̂lP̂l, N(t)

)]
=

=
n∑
k=0

n∑
l=0

E
[
ξ̂kξ̂l

]
P̂k,N(t)P̂l, N(t).

Due to (50) and (4), we know that

E
[
ξ̂kξ̂l

]
=

N−1∑
i=0

N−1∑
j=0

E [ξiξj] P̂k,N(ti)P̂l, N(tj)∆ηi∆ηj =
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=
N−1∑
j=0

(
σ2
j∆ηj

)
P̂k,N(tj)P̂l, N(tj)∆ηj = σ2λNδkl, (55)

wherefrom

E
[
∆2
n,N(f, t)

]
= σ2λN

n∑
k=0

(
P̂k,N(t)

)2
.

Then, taking into account (54) and (55), we have

Jn,N(f, t) = E
[
(f(t)− Sn,N(f, t))2

]
=

= E
[
(f(t)− Λn,N(f, t) + ∆n,N(f, t))2

]
= (f(t)− Λn,N(f, t))2 +

+2 (f(t)− Λn,N(f, t))E [∆n,N(f, t)] + E
[
∆2
n,N(f, t)

]
=

= (f(t)− Λn,N(f, t))2 + σ2λN

n∑
k=0

(
P̂k,N(t)

)2
= R2

n,N(f, t) +Dn,N(t).

Thus, the original objective of estimating the deviation of partial sums
by discrete Legendre polynomials P̂n,N(t) from the desired function f(t)
comes to estimating these two values: R2

n,N(f, t) and Dn,N(t).
The estimate for Rn,N(f, t) is given in Theorem 2. Let us consider

the value Dn,N(t) = σ2λN
n∑
k=0

(
P̂k,N(t)

)2
. Using weighted estimates (24)

obtained in Theorem A, we have

Dn,N(t) 6 σ2λN

n∑
k=0

(
c(a)

(
1 +B

√
k3λN

)
k

1
2

)2
6

6 c(a)σ2(n2λN)
(

1 +B
√
n3λN

)2
6 c(a)σ2(n

5
2λN)2.

So, the value Dn,N(t) tends to zero when n = O(λ
−1/3
N ).

Finally, we conclude with the following statement.

Theorem 3. Let f(t) be a continuous on [−1, 1] function given by its
measurements yj = f(tj) + ξj, j = 0, 1, . . . , N − 1, in the nodes of the grid
ΩN , which satisfy (1)–(2), where ξj are independent random mistakes of
observation that satisfy (50)–(52). Then, for 2 6 n 6 γλ

−1/3
N , γ > 0, the

following estimate holds:

Jn,N(f, t) 6 c(a,γ,σ)

(
En(f)

[
lnn+

(√
1− t2 +

1

n

)− 1
2

]
+ λ

1
3
N

)
,



Convergence of least square method on random grids 185

where En(f) is the best approximation for the function f(t) by polyno-
mials of degree at most n.
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