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Abstract. A system consisting of an infinite string coupled to a
nonlinear oscillator is considered. For the system, the Cauchy prob-
lem with the periodic initial data is studied. The main goal is to
prove the convergence of the solutions as t → ∞ to time periodic
solutions.
Key words: the nonlinear Lamb system, the Cauchy problem, pe-
riodic initial data, the limiting amplitude principle
2010 Mathematical Subject Classification: 35L10, 34D05,
35B40

1. Introduction. Consider the following problem for a real-valued
function u(x, t) ∈ C(R2):

(µ+mδ(x))ü(x, t) = κu′′(x, t) + δ(x)F (u(x, t)), t ∈ R, x ∈ R. (1)

Here m > 0, µ, κ > 0; u̇ ≡ ∂u/∂t, u′ ≡ ∂u/∂x, δ(x) is the Dirac
δ–function. The initial data (as t = 0) for equation (1) are assumed
to be periodic, see Definition 4 below. By definition, (1) is equivalent to
the following system:

µü(x, t) = κu′′(x, t), t ∈ R, x ∈ R \ {0}, (2)
mÿ(t) = F (y(t)) + κ [u′(0+, t)− u′(0−, t)], t ∈ R, (3)

y(t) = u(0−, t) = u(0+, t), t ∈ R. (4)

Physically, the system describes small crosswise oscillations of an infinite
string stretched parallel to the Ox-axis. Here µ is the line density of the
string, κ is its tension, F (y) is an external (nonlinear, in general) force
field perpendicular to Ox. In the case m = 0, the string is coupled to a
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spring of rigidity F (y). In the case m > 0, a ball of mass m is attached
to the string at the point x = 0, and the field F (y) subjects the ball.

The system (2) – (4) was introduced first by Lamb [7] for the linear
case, i. e., when F (y) = −ry with a positive constant r. This system can
be considered as a simple model of radiation damping experienced by a
vibrating body in an energy conducting medium, for example, vibrations
of an elastic sphere in a gaseous medium, relativistic radiation of energy
from a concentrated mass by gravity waves and so on. For details, see,
e. g., [4,13]. For general nonlinear functions F (y), this model was studied
by Komech [5,6] for finite-energy solutions. In this paper, we consider the
solutions of infinite energy with space-periodic initial data. The main goal
is to prove that each solution u(x, t) to the system for large times is close
to a time-periodic solution (see Theorem 1 below).

Let us describe our assumptions on the external force F (y).
Denote by V (y) = −

∫
F (y) dy the potential energy of the external

field, F (y) = −V ′(y), y ∈ R. We assume that

F (y) ∈ C1(R), F (y)→ ∓∞ as y → ±∞. (5)

Obviously, condition (5) implies that

V ∈ C2(R), V (y)→ +∞ as |y| → ∞. (6)

Let us introduce a class E of solutions u(x, t) to equation (1) with
locally finite energy.

Definition 1. A function u(x, t) belongs to E if u ∈ C(R2) and u̇, u′ ∈
L2
loc(R2), where the derivatives are understood in the sense of distributions.

For u(x, t) ∈ E , the system (2) – (3) is understood as follows (see [5]).
For u ∈ C(R2), equation (2) is understood in the sense of distributions

in the domain (x, t) ∈ R2, x 6= 0. Moreover, equation (2) is equivalent to
the d’Alembert decomposition into two traveling waves:

u(x, t) = f±(x− at) + g±(x+ at), ± x > 0, t ∈ R, (7)

where a =
√
κ/µ, f±, g± ∈ C(R), since u(x, t) ∈ C(R2).

We now explain equation (3). Equality (7) implies

u′(x, t) = f ′±(x− at) + g′±(x+ at) for ± x > 0, t ∈ R,
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where all derivatives are understood in the sense of distributions. For
u(x, t) ∈ C(R2) satisfying (2), write

u′(0±, t) := f ′±(−at) + g′±(at). (8)

Note that the condition u(x, t) ∈ E implies f ′±, g′± ∈ L2
loc(R). The second

derivative ÿ(t) of y(t) ∈ C(R) is understood in the sense of distributions.
Moreover, for m 6= 0, (3) and (5) imply ÿ(t) = ü(0±, t) ∈ L2

loc(R). Hence,
if m 6= 0, then y(t) ∈ C1(R) for any solution u ∈ E .

We study the Cauchy problem for system (2), (3) with the initial con-
ditions

u|t=0 = u0(x), u̇|t=0 = u1(x), x ∈ R, (9)
ẏ|t=0 = y1 (if m 6= 0). (10)

We assume that y1 ∈ R and the functions u0(x), u1(x) belong to the
space H.

Definition 2. The pair of functions (u0, u1) belongs to the space H if
u0 ∈ C(R), u′0, u1 ∈ L2

loc(R).

Lemma 1. Let conditions (6) hold and (u0, u1) ∈ H, y1 ∈ R. Then the
Cauchy problem (2) – (4), (9), (10) has a unique solution u(x, t) ∈ E .

This lemma is proved in Section 2.

To prove the main result, we impose additional conditions on the initial
data (u0, u1). First, for an ω > 0, we introduce a class P ω of the space
periodic functions.

Definition 3. For ω > 0, we say that u ∈ P ω if u(x ± ω) = u(x) for
±x > 0.

Definition 4. For ω > 0, (u0, u1) ∈ Hω if u0 ∈ C1(R), u1 ∈ C(R) and
u0, u

′
0, u1 ∈ P ω.

In the case m = 0, the following result holds.

Theorem 1. Let m = 0, conditions (5) hold and (u0, u1) ∈ Hω for some
ω > 0. Then, for every solution u(x, t) ∈ E of the Cauchy problem (2)–(4),
(9), there exists a solution up(x, t) ∈ E to equation (1), such that

up(x, t+ ω/a) = up(x,t) for (x, t) ∈ R2 : |t| > |x|/a, (11)
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and for every R > 0,∫
|x|<R

(
|u̇(x, t)− u̇p(x, t)|2 + |u′(x, t)− u′p(x, t)|2

)
dx+

+ max
|x|<R

|u(x, t)− up(x, t)| → 0 as t→∞. (12)

This theorem is proved in [3]. We prove the similar result in the case
m 6= 0 under additional restrictions on the function F (y) (see Section 3).

In Section 4, we consider equation (1) for t > 0 under the condition

u(x, t)|t60 = p(x+ at), x ∈ R, (13)

where the function p(z) ∈ P ω, p ∈ C1(R), p(x) = p0 for x 6 0, and
F (p0) = 0. If m > 0, then we impose additional conditions on the func-
tion F (y). Then, the convergence (12) holds, i. e., the solution u(x, t) to
problem (2) – (4), (13) is either time-periodic for |x| 6 at with the period
ω/a, or converges to a function up(x, t) ∈ E satisfying (11). Moreover, the
function up(x, t) is a solution to equation (1) for t > 0 under the condition
up(x, t)|t60 = q(x+at). Here q(x) = q0 for x 6 0 and q(x) = q0 +p(x)−p0
for x > 0, with some point q0 ∈ R depending on p0.

In Section 5, we discuss the extension of the obtained results to a more
general nonlinear gyroscopic Lamb system.

We outline the proof of convergence (12). First, using the d’Alembert
method, we reduce the problem (2) – (4), (9), (10) to studying the following
Cauchy problem for the function y(t):

mÿ + (2κ/a)ẏ − F (y(t)) = 2κp′(at), t ∈ R, (14)

with some ω–periodic function p (see formula (20) below) and with the
initial conditions

y|t=0 = y0 = u0(0),
ẏ|t=0 = y1 (if m 6= 0).

(15)

The term (2κ/a)ẏ in (14) is called the Rayleigh dissipation term.
In the case m = 0, any solution of equation (14) is either ω/a–periodic

or tends to an ω/a–periodic solution yp(t), i. e., |y(t) − yp(t)| → 0 as
t → ∞ (see Lemma 4 below). Therefore, using the explicit formula (19)
for u(x, t), we obtain the results of Theorem 1.
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If m 6= 0, then the behavior of solutions to equation (14) is more
complicated. In the case F (y) = −ay − by3, the equation of a form (14)
is called the Duffing equation with damping, see, for example, [11, 19].
equation (14) is a particular case of the generalized Liénard equations
with a forcing term e(t) = 2κp′(at),

ÿ + f(y)ẏ + g(y) = e(t). (16)

Equation (16) with g(y) = y and e(t) ≡ 0 was studied first by Liénard [10].
A class of equations of the form (16) has been widely investigated in the
literature, see, for example, the works of Cartwright and Littlewood [1,2],
Levinson [9], Loud [11,12], Reuter [17]. We refer the reader to the survey
works [8, 14–16, 18] for a detailed discussion of the results and methods
concerning these equations. Some results concerning equation (14) are
given in Section 3. In particular, condition (6) implies that for large times
the pairs Y (t) = (y(t), ẏ(t)) (where y(t) is a solution of (14)) belong to a
fixed bounded region of R2. Denote by U(t, 0) the solving operator to the
Cauchy problem (14), (15).

Definition 5. Assume that m > 0.
(i) Introduce a mapping T : R2 → R2 as T := U(ω/a,0). The map T

is called the Poincaré transformation.
(ii) Let I ⊂ R2 be a set invariant w.r.t. T , i. e., TI = I. This set is

called the characteristical set of equation (14) or the global attractor of
the diffeomorphism T .

(iii) Introduce an integral set S ⊂ {(Y (t), t) ∈ R3} consisting of the
solutions to problem (14), (15) with the initial values (y0, y1) ∈ I. Let Sτ
denote the intersection of S and the hyperplane t = τ , and ρ(Y,Sτ ) stand
for the distance between a point Y ∈ R2 and the set Sτ .

In Section 3, we check that the set I is not empty and has zero Lebesgue
measure. Furthermore, every solution to equation (14) tends to the set
S as t → ∞, i. e., ρ(Y (τ),Sτ ) → 0 as τ → ∞. Hence, the explicit
formula (19) for the solutions u(x, t) implies that, for any R > 0,

inf
{ ∫
|x|<R

(
|u̇(x, t)− u̇p(x, t)|2 + |u′(x, t)− u′p(x, t)|2

)
dx+

+ max
|x|<R

|u(x, t)− up(x, t)|
}
→ 0 as t→∞, (17)
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where the infinitum is taken over all solutions up(x, t) ∈ E of problem (2),
(3), such that up(0±, t) = yp(t) and (yp(t), ẏp(t)) ∈ St.

We give additional restrictions on the function F (y) (see Examples 1–3
and conditions (F1)–(F3) below), under which the set I has a unique
point. Then, equation (14) has a unique stable periodic solution. In this
case, every solution of (14) tends to an ω/a–periodic solution yp(t) as
t→∞, and the convergence (12) holds, see Theorem 2 below.

2. Existence of solutions. Now we prove Lemma 1. The method of
construction of finite-energy solutions to the Cauchy problem (2)–(4), (9),
(10) was given by Komech [5]. We apply this method to the infinite-energy
solutions. For simplicity, we consider only the case t > 0. Substituting
(7) into initial conditions (9), we have

f±(z) =
u0(z)

2
− 1

2a

z∫
0

u1(y) dy + C± for ± z > 0,

g±(z) =
u0(z)

2
+

1

2a

z∫
0

u1(y) dy − C± for ± z > 0,

(18)

where we can put constants C± = 0. On the other hand, substituting (7)
into condition (4), we have

y(t) = f−(−at) + g−(at) = f+(−at) + g+(at) for t ∈ R.

Hence, we can determinate g−(z) with z > 0 and f+(z) with z < 0 as
follows:

g−(z) = y(z/a)− f−(−z), f+(−z) = y(z/a)− g+(z) for z > 0.

Therefore, for t > 0 we obtain

u(x, t) =


f+(x− at) + g+(x+ at) for x > at

y(t−x/a) + g+(x+at)− g+(at−x) for 0 6 x < at

y(t+x/a)+f−(x−at)−f−(−at−x) for − at 6 x < 0

f−(x− at) + g−(x+ at) for x < −at

(19)

where f±, g± ∈ C(R±), f ′±, g′± ∈ L2
loc(R±) with R± = {x ∈ R : ±x > 0}.

Moreover, by definition (8), we have

u′(0+, t) := f ′+(−at) + g′+(at) = 2g′+(at)− ẏ(t)/a,

u′(0−, t) := f ′−(−at) + g′−(at) = 2f ′−(−at) + ẏ(t)/a.
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Hence, equation (3) becomes

mÿ(t) = F (y(t)) + 2κ [g′+(at)− f ′−(−at)− ẏ(t)/a], t > 0.

Denote

p(z) :=
u0(z) + u0(−z)

2
+

1

2a

z∫
−z

u1(y) dy, z ∈ R. (20)

Therefore,

p(0) = u0(0), p′(at) = g′+(at)− f ′−(−at) ∈ L2
loc(R+),

and we obtain the following evolution equation for y(t), t > 0:

ẏ(t) = (a/2κ)F (y(t)) + ap′(at), t > 0, if m = 0, (21)

mÿ(t) = F (y(t))− (2κ/a)ẏ(t) + 2κp′(at), t > 0, if m > 0. (22)

Equation (18) implies the following initial condition for the function y(t):

y(0) = f±(0) + g±(0) = u0(0). (23)

Equations (21) and (22) are rewritten in the equivalent integral form,

y(t) =
a

2κ

t∫
0

F (y(s)) ds+ p(at)− p(0) + y(0), t > 0, if m = 0,

my(t) =

t∫
0

ds

s∫
0

F (y(τ)) dτ +
2κ

a

t∫
0

(p(as)− y(s)) ds =

= my(0) +mẏ(0)t+
2κ

a
(y(0)− p(0)) t, t > 0, if m > 0. (24)

Lemma 2 below implies Lemma 1 immediately.

Lemma 2. (i) Let m = 0 and all assumptions of Lemma 1 hold. Then,
for any y0 ∈ R, (21) has a unique solution y(t) = U(t, 0)y0 ∈ C(R+).
(ii) Let m > 0. Then, for any (y0, y1) ∈ R2, equation (22) has a unique
solution (y(t), ẏ(t)) = U(t, 0)(y0, y1), and y(t) ∈ C1(R+).
(iii) For m > 0, the following bound holds:

sup
[0,τ ]

[m|ẏ(t)|+ |y(t)|] 6 C1τ + C2 for any τ > 0. (25)
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Proof. We prove Lemma 2 only in the case m > 0. For m = 0, the proof
is similar. It follows from (24), conditions (5) and from the contraction
mapping principle, that for any fixed initial data y(0+) and ẏ(0+), the
solution y(t) of equation (24) has a unique solution on a certain interval
t ∈ [0, ε) with an ε, ε > 0. Let us derive an a priori estimate for y(t). This
estimate will imply the existence and uniqueness of the global solution of
(22) for any y(0+) and ẏ(0+). We multiply equation (22) by ẏ(t). Using
d
dt
V (y(t)) = −F (y(t))ẏ(t), we obtain

d

dt

(
mẏ2(t)

2
+ V (y(t))

)
= 2κp′(at)ẏ(t)− 2κ

a
ẏ2(t) 6

aκ

2
(p′(at))2.

Let us integrate this inequality and obtain

mẏ2(t)

2
+ V (y(t)) 6

mẏ2(0)

2
+ V (y(0)) +

aκ

2

t∫
0

|p′(as)|2 ds, t > 0.

Hence, for any τ > 0, there exist constants C1, C2 > 0, such that

sup
t∈[0,τ ]

[
mẏ2(t)

2
+ V (y(t))

]
6 C1τ + C2. (26)

Conditions (6) imply the estimate (25). Lemma 2 is proved. �

The following result follows from the Gronwall inequality and from a
priori estimate (25) (see [5]).

Lemma 3. Let m = 0 and y1(t) and y2(t) be two solutions of equa-
tion (21) with the initial values y1(0) and y2(0), respectively. Then, for
every τ > 0,

‖ẏ1(t)− ẏ2(t)‖L2(0,τ) + max
[0,τ ]
|y1(t)− y2(t)| 6 C(τ)|y1(0)− y2(0)|, (27)

where a constant C(τ) is bounded for bounded values y1(0), y2(0). The
similar result holds for equation (22) in the case m 6= 0.

3. The proof of the main result. Since (u0, u1) ∈ Hω, the function
p defined in (20) has the following properties:

p ∈ C1(R), p(z ± ω) = p(z), ± z > 0.
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Then the function p′(at) in equations (21) and (22) is periodic with ω/a–
period, and p′(at) ∈ C(R+).

3.1. The string–spring system (m = 0). First, we study the
behavior of solutions to equation (21).

Lemma 4. Let conditions (5) hold. Then the following assertions are true.
(i) All solutions of equation (21) are bounded.
(ii) Equation (21) has at least one ω/a-periodic solution.
(iii) Any solution y(t) of equation (21) is either ω/a-periodic, or tends to
an ω/a-periodic solution yp(t) as t→∞, such that, for every R > 0,

t+R∫
t

|ẏ(s)− ẏp(s)|2 ds+ sup
s∈[t, t+R]

|y(s)− yp(s)| → 0 as t→∞. (28)

Proof. Assertions (i) and (ii) follow from the results of [14, § 9]. These
assertions imply item (iii) by Theorem 9.1 from [14]. �

3.2. The string–oscillator system (m > 0). Put

c = 1/m, k = 2κ/(am) = 2
√
κµ/m.

Then equation (22) is equivalent to the following system{
ẏ = v,

v̇ = cF (y)− k v + ka p′(at).
(29)

Denote by Y (t, Y0, t0) = (y(t, Y0, t0), v(t, Y0, t0)) = U(t, t0)Y0 the solution
to the Cauchy problem for system (29) with the initial data

(y, v)|t=t0 = Y0.

Definition 6. The system is called dissipative (or D-system) if for any
(Y0, t0) ∈ R3 there exists a R, R > 0, such that lim

t→∞
‖Y (t, Y0, t0)‖ < R.

Lemma 5. Let conditions (5) hold. Then the following assertions hold.
(i) The system (29) is dissipative, and there exist constants M,N > 0,
such that for large time the solutions of (29) belong to a bounded set

{(y, v) ∈ R2 : |y| 6M, |v| 6 N}, (30)
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where M and N are independent on the parameter k of the system (29).
(ii) The system (29) has at least one ω/a–periodic solution.

Proof. Assertion (i) follows from conditions (5) and the results of Car-
twright and Littlewood, Reuter, and others (see [1, 2, 17] and the review
works [18, Ch. VII], [8, Ch. XI, § 4], and [16, Theorem 5.5.4]). According to
the Opial theorem (see, e.g., [16, Theorem 5.3.6]) instead of conditions (5),
it suffices to assume that

lim
y→+∞

F (y) < −r, lim
y→−∞

F (y) > r, where r = max
t∈R
|p′(at)|.

Assertion (i) implies assertion (ii) by the Brouwer Fixed Point Theorem
(see [14, § 2 and § 12]). �

Corollary 1. Let I ⊂ R2 be a set invariant w.r.t. the diffeomorphism
T = U(ω/a, 0) associated with the periodic system (29), see Definition 5.
Then the set I has the following properties (i)–(v).

(i) There exists a fixed point of the mapping T belonging to I, i. e.,
there exists an ω/a-periodic solution (or harmonics) of system (29).

(ii) I is closed and bounded.
(iii) I has zero Lebesgue measure.
(iv) I is stable w.r.t. T , i. e., for any ε > 0 there exists δ > 0 such that

if ρ(Y0, I) < δ then ρ(TmY0, I) < ε for every m ∈ N.
(v) For all Y0 ∈ R2, ρ(T nY0, I)→ 0, n→∞.

Proof. Lemma 5 and the Pliss results (see [15, Ch. 2, § 2]) imply proper-
ties (i), (ii), (iv), and (v). For the r.h.s. of system (29), we have

∂

∂y
v +

∂

∂v
(cF (y)− kv + kap′(at)) = −k < 0.

Hence, property (iii) follows from [14, Theorem 1.8]. �

Define a set S as an integral set of system (29) of the form

S := {(Y, t) ∈ R3 : Y = Y (t, Y0, t0), Y0 ∈ I, t ∈ R}.

By Corollary 1, the set S has the following properties.

Corollary 2. (i) S is bounded and closed.
(ii) S is ω/a–periodic, i.e., for (Y, t) ∈ S, (Y, t+ nω/a) ∈ S, ∀n ∈ N.
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(iii) S is invariant, i. e., if (Y0, t0) ∈ S, then (Y (t, Y0, t0), t) ∈ S for
all t > t0.

(iv) S is stable, i. e., ∀ε > 0 ∃δ > 0 such that if ρ(Y0,St0) < δ, then

ρ(Y (t, Y0, t0),St) < ε, ∀t > t0,

where St0 = S ∩ {t = t0}.
(v) S is stable in whole, i. e., S is stable and for all Y (t, Y0, t0) ∈ R2

we have
lim
t→∞

ρ(Y (t, Y0, t0),St) = 0.

Finally, Corollary 2 and the explicit formula (19) for u(x, t) imply the
convergence (17). However, the properties of S do not imply, in general,
the results (28) and (12).

Now we consider the particular case of system (29) when I has a unique
point. Then (29) is called the system with convergence (see [14, § 7, Defini-
tion 7.1]). In this case, the system (29) has a unique stable ω/a–periodic
solution Yp(t), any other solution Y (t, Y0, t0) tends to this periodic solu-
tion, i. e., lim

t→∞
‖Y (t, Y0, t0) − Yp(t)‖ = 0, and the result (28) holds, see

Theorem 2 below.

First, we give examples of the restrictions on the function F (y) when
the system (29) has the convergence property.

Example 1. Assume that

(F1) F (y) = −ry with a constant r > 0.

Then, by the Levinson theorem (see [9], [16, Theorem 5.2.1]), equation (22)
has a unique ω/a–periodic solution and all other solutions tend to this
periodic solution as t→ +∞.

Example 2. Assume that for y1 6= y2, we have

(F2) k2/2− 1 6 −c F (y2)− F (y1)

y2 − y1
6 1, 1 < k2/2 6 2,

where k =
√
κµ/m is the constant in (29).

Then according to the Zlamál theorem (see, e.g., [16, Theorem 5.3.2], [20])
all solutions tend exponentially to a unique periodic solution as t→ +∞.

Example 3. (see [14, Theorem 8.4], [8, Ch.XI, § 5] or [19]) Assume that
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(F3) F ∈ C2(R), F ′(y) < 0 for |y| 6M ;
∃β > 0 such that F (y) sgn y 6 −β for |y| >M with the constant M
from the bound (30). Moreover, the constant k from (29) is large
enough,

k > (1/2)N max
|y|6M

(|F ′′(y)|/|F ′(y)|) ,

where the constant N is defined in the bound (30).
Then the system (29) has the convergence property. For instance, the
function F (y) = −Ay3−By with the numbers A,B > 0 and the constant
k > (1/2)N max{

√
3A/B; 6AM/(3AM2 +B)} satisfies these conditions.

Note that condition (F1) is a particular case of (F3).

Theorem 2. Let m > 0 and condition (F2) or (F3) be true. Then the
following assertions hold.
(i) There exists a unique ω/a–periodic solution yp(t) of Eq. (22), and for
any other solution y(t) the convergence (28) holds.
(ii) The convergence (12) holds with the function up(x,t) satisfying (11).

Proof. Assertion (i) follows from condition (F2) or (F3), see Exam-
ples 1–3. Now we check assertion (ii). Indeed, let u(x, t) be a solution to
problem (2)–(4), (9), (10). Then, y(t) = u(0, t) is the solution to equa-
tion (22) with the initial conditions y(0) = u0(0) and (10). Hence, there
exists the limit

lim
n→∞

T n(u0(0), y1) =: (ȳ0, ȳ1),

and (ȳ0, ȳ1) is a unique point of the set I. Therefore,

(yp(t), ẏp(t)) = U(t, 0)(ȳ0, ȳ1)

is the unique ω/a-periodic solution of system (29) and the convergence (28)
holds. Put ū0(x) = u0(x)− u0(0) + ȳ0 and define the functions f̄±(x) and
ḡ±(x) by formulas (18), but with ū0(x) instead of u0(x). Introduce a
function up(x, t) as follows:

up(x, t) =


f̄+(x− at) + ḡ+(x+ at) for x > at,

yp(t−x/a) + ḡ+(x+at)− ḡ+(at−x) for 0 6 x < at,

yp(t+x/a)+f̄−(x−at)−f̄−(−at−x) for − at6x<0,

f̄−(x− at) + ḡ−(x+ at) for x < −at.

(31)

Then up(x, t) is the solution of problem (2) – (4) with the initial data
(ū0, u1, ȳ1). Since (ū0, u1) ∈ Hω, the functions f̄−(±x−at) and ḡ+(±x+at)
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in (31) are ω/a–periodic in t. Hence, the equality (11) holds, and the
convergence (12) follows from (19) and (28), since

ḡ+(x+ at)− ḡ+(at− x) = g+(x+ at)− g+(at− x),

f̄−(x− at)− f̄−(−at− x) = f−(x− at)− f−(−at− x). �

Remark. Let us consider the problem (1) for t > 0 with the initial data
(9), (10), satisfying the following conditions: (u0, u1) ∈ H and u1 has the
form

u1(x) =

{
a(2p′+(x)− u′0(x)), x > 0,

a(u′0(x)− 2p′−(x)), x < 0,

where p± ∈ C1(R±) and p±(x) is ω-periodic for ±x > 0, but u0(x), u1(x)
are not ω-periodic, in general. Then f−(z) = p−(z) for z < 0 and
g+(z) = p+(z) for z > 0. Hence, by formula (19), the solution u(x, t)
for t > 0 has the form

u(x, t) =


u0(x− at)− p+(x− at) + p+(x+ at) for x > at,

y(t− x/a) + p+(x+ at)− p+(at− x) for 0 < x < at,

y(t+ x/a) + p−(x− at)− p−(−at− x) for − at < x < 0,

p−(x− at) + u0(x+ at)− p−(x+ at) for x < −at,

where y(t) is a solution to equation (22) with the ω-periodic function
p(x) := p+(x) + p−(−x), x > 0, and satisfies the initial condition (23).
Then the results of Theorem 2 remain true as t→ +∞.

4. Limiting amplitude principle. For simplicity, we consider only
the case m > 0 and apply the results of Theorem 2 to the following
problem for a function u(x, t) ∈ C(R2):

(µ+mδ(x))ü(x, t) = κu′′(x, t) + δ(x)F (u(x, t)), t > 0, x ∈ R, (32)

u(x, t) |t60= p(x+ at), x ∈ R. (33)

Here a =
√
κ/µ and the function F satisfies condition (F2) or (F3).

The function p from equation (33) satisfies the following conditions: (i)
p ∈ C1(R); (ii) there exist numbers ω > 0 and p0 ∈ R such that F (p0) = 0
and

p(z + ω) = p(z) for z > 0, p(z) = p0 for z 6 0.

Note that the function p(x + at) is a solution of equation (32) for t < 0.
Therefore, we can consider equation (32) for t ∈ R. In particular, we have

u0(x) = u(x, t)|t=0 = p(x), u1(x) = u̇(x, t)|t=0 = ap′(x), x ∈ R,



58 T. V. Dudnikova

y(0) = u0(0) = p0, ẏ(0) = 0.

Then f±(z) = 0 and g±(z) = p(z) for ±z > 0. Therefore, by (19),

u(x, t) =


p(x+ at) for x > at,
y(t− x/a)− p(at−x) + p(x+at) for 0 < x < at,
y(t+ x/a) for − at < x < 0,
p0 for x < −at,

(34)

where y(t) is a solution to equation (22) for t > 0, and y(t) = p0 for
t 6 0. By Lemma 1, the Cauchy problem (32), (33) has a unique solution
u(x, t) ∈ E for every function p ∈ C1(R).

Let yp(t) be the ω/a-periodic solution toequation (22) with the initial
data (p̄0, ȳ1) = lim

n→∞
T n(p0, 0). We extend yp(t) ≡ p̄0 for t < 0 and define

up(x, t) =

{
yp(t− x/a)− p(at− x) + p(x+ at), if x > 0, t > 0,
yp(t+ x/a), if x < 0, t > 0.

Then up(x, t) ∈ E , up(x, t) is the solution to equation (32) under the
condition

up(x, t)|t60 = p̄(x+ at),

where p̄(x) = p̄0 + p(x)− p0 for x ∈ R. Moreover, the identity (11) holds.
Then, the convergence (12) follows from equality (34) and bound (28).

5. Nonlinear gyroscopic Lamb system. The results obtained
above for the model (1) can be generalized to the nonlinear gyroscopic
Lamb system of the form

µü(x,t) = κu′′(x,t), t ∈ R, x ∈ R \ {0},
Mÿ(t) + Sẏ(t) = F (y(t)) + κ [u′(0 + ,t)− u′(0− ,t)], t ∈ R,
y(t) = u(0−, t) = u(0+, t), t ∈ R.

(35)

Here u(x, t) = (u1(x, t), . . . , un(x, t)) ∈ Rn, y(t) ∈ Rn, M is a positive-
definite symmetric n×nmatrix, S is skew, F (y) = −∇V (y) ∈ C1(Rn;Rn),
where the potential energy V ∈ C2(Rn;R) satisfies the condition (6). In
the linear case, when F (y) = Λy with some symmetric matrix Λ, the
model (35) is called the gyroscopic Lamb system, see, e. g., [4, 13]. We
study the Cauchy problem for system (35) with the initial conditions

u(x, t)|t=0 = u0(x), u̇(x, t)|t=0 = u1(x), x ∈ R, ẏ|t=0 = y1. (36)
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Here u0(x), u1(x) are real vector-valued functions, y1 ∈ Rn. Set Ck(R) ≡
Ck(R;Rn), L2

loc(R) ≡ L2
loc(R;Rn), L2

loc(R2) ≡ L2
loc(R2;Rn). Introduce the

spaces E and H by a similar way as in Definitions 1 and 2. Then the
following result is valid (cf Lemma 1):

Lemma 6. Let conditions (6) hold and (u0,u1) ∈ H, y1 ∈ Rn. Then the
Cauchy problem (35), (36) has a unique solution u(x, t) ∈ E .
Proof. Using the d’Alembert method, we represent the solution u(x, t)
for t > 0 in the form (19), where the vector-valued functions f±, g± are
defined by (18) and f±, g± ∈ C(R±;Rn). Hence, as in the model (1), the
dynamics of the system (35) reduces to the following equation (cf (14)):

Mÿ(t) + (S + (2κ/a)I) ẏ(t)− F (y(t)) = 2κp′(at), t > 0, (37)

with the initial data y|t=0 = y0 = u0(0), ẏ|t=0 = y1. Here I denotes the
identity matrix in Rn. Similarly to (26), we obtain the following a priori
bound,

sup
[0,τ ]

[
1

2

(
ẏ(t)TMẏ(t)

)
+ V (y(t))

]
6 C1τ + C2 for any τ > 0,

with some positive constants C1, C2. Using the similar reasonings as in
the proof of Lemma 2, we conclude that for any values (y0, y1) ∈ R2n,
equation (37) has a unique solution y(t) ∈ C1(R+;Rn). Hence, the repre-
sentation (19) implies Lemma 6. �

Remark. (cf Lemma 5) Let conditions (6) hold. Then the system (37) is
dissipative. This follows from [14, Theorem 2.4] and the behavior of the
function v(y, ẏ) = 1

2

(
ẏTMẏ

)
+ V (y). Therefore, there exists a character-

istical set I ⊂ R2n associated with system (37). Furthermore, the set I
has properties similar to assertions (i)–(v) from Corollary 1. Hence, the
integral set S ⊂ R2n+1 has properties similar to Corollary 2.

Under the additional restrictions on the function V (y) the system (37)
has the convergence property.

Lemma 7. Let S = 0, M = I and F (y) = −Λy + f(y), where Λ is a
positive-definite symmetric matrix, f ≡ 0 or there exists L > 0 such that
|f(y1) − f(y2)| 6 L|y1 − y2| for any y1, y2 ∈ Rn (cf Examples 1 and 2 in
Section 3). Write Y = (y, ẏ) ∈ R2n. Then, the system (37) is of the form

Ẏ = AY +G(Y ) + P (at), t > 0,
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with

A =

(
0 I
−Λ −(2κ/a)I

)
, G(Y ) =

(
0

f(Y )

)
, P (at) =

(
0

2κp′(at)

)
.

Here all characteristic numbers of the matrix A have negative real parts,
|G(Y1) − G(Y2)| 6 L|Y1 − Y2|, P ∈ C(R+) and P (at) is periodic with
ω/a-period. Hence, if L is small enough, then (37) is a system with con-
vergence.

This lemma follows from [14, Theorem 7.5].

Corollary. If the system (37) has the convergence property, then the
assertion (12) holds with the function up(x, t) satisfying (11).
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