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Abstract. In the this paper, we give neccessary and sufficient con-
ditions for a function even with respect to the first argument but
odd with respect to the second one to belong to the Nikol’skii classes
defined by a mixed modulus of smoothness of a mixed derivative
(both have arbitrary integer orders). These conditions involve the
growth of partial sum of Fourier cosine-sine coefficients with power
weights or the rate of decreasing to zero of these coefficients. A
similar problem for generalized "small" Nikol’skii classes is also
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1. Introduction. Let {ak}∞k=1 be a sequence of real numbers, such

that
∞∑
k=1

|ak| <∞. Then the functions

f(x) =
∞∑
k=1

ak cos kx (1)

and

g(x) =
∞∑
k=1

ak sin kx (2)

are continuous and 2π-periodic (i. e., f, g ∈ C2π) and (1) is the Fourier
series of f , correspondingly, (2) is the Fourier series of g. Lorentz [13]

established that the condition
∞∑
k=n

|ak| = O(n−α), n ∈ N, for 0 < α < 1
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implies f ∈ Lip(α) or g ∈ Lip(α). For ak > 0, Boas [2] proved the
following

Theorem 1. (i) Let ak > 0, k ∈ N, 0 < α < 1 and {ak}∞k=1 be the
sequence of Fourier sine or cosine coefficients of ϕ. Then ϕ ∈ Lip(α) if

and only if
∞∑
k=n

ak = O(n−α), n ∈ N, or, equivalently,
n∑
k=1

kak = O(n1−α),

n ∈ N.
(ii) If ak > 0, k ∈ N, {ak}∞k=1 is the sequence of Fourier sine coefficients

of g, then g ∈ Lip(1) if and only if
∞∑
k=1

kak <∞.

Similar result to (i) was earlier obtained by Rubinstein [19] (see also
Theorem A in [26]).

Nemeth [15] established several generalizations of Theorem A and gave
a sharp version of Theorem 3 from [2]. Dyachenko [6] studied trigonomet-
ric series with coeffcients of fractional order monotonicity, and obtained
conditions for sums of such series to belong Lipschitz classes.

If ω is increasing and continuous on [0; 2π], ω(0) = 0, then ω ∈ Φ. A

function ω ∈ Φ belongs to the Bary class B, if
∞∑
k=n

k−1ω(k−1) = O(ω(n−1)),

n ∈ N; respectively, it belongs to the Bary-Stechkin class Bα, α > 0, if
n∑
k=1

kα−1ω(k−1) = O(nαω(n−1)), n ∈ N (see [1]).

In the paper [3] by Butzer et al, several properties of fractional modulus
of smoothness ωβ(f, δ), β > 0, and its applications to the approximation
theory were studied. Tikhonov [21], [22] proved a generalization of the
Boas results in the case of fractional modulus of smoothness. In [23],
the same author obtained the Boas type results for the Nikol’skii spaces
WαHω

β of functions. Let us note, that the previous results of the Boas type
connected with Nikol’skii classes belong to Chan [4] and Nemeth [16].

For multiple complex Fourier series one can note the papers by Móricz
and Fülöp: [10] and [14]. Their results were generalized by the author of
this paper in [26]. For the double cosine-sine series, Tevzadze [20] proved
the following

Theorem 2. Let m,n ∈ N, aik > 0 for all i, k ∈ N,
∞∑

i, k=1

aik < ∞,

h(x, y) =
∞∑

i, k=1

aik cos ix sin ky and ω(t, τ) be an increasing in each variable
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function on [0, 1]2, such that ω(0, 0) = 0 and

1∫
t

1∫
τ

ω(u, v)u−m−1v−n−1 du dv 6 C1ω(t, τ)t−mτ−n, t, τ ∈ (0, 1], (3)

t∫
0

1∫
τ

ω(u, v)u−1v−n−1 du dv 6 C2ω(t, τ)τ−n, t, τ ∈ (0, 1], (4)

1∫
t

τ∫
0

ω(u, v)u−m−1v−1 du dv 6 C3ω(t, τ)t−m, t, τ ∈ (0, 1], (5)

t∫
0

τ∫
0

ω(u,v)u−1v−1 du dv 6 C4ω(t, τ), t, τ ∈ (0, 1]. (6)

Then h ∈ Hm,n(ω) (see the next section) if and only if

p∑
i=[p/2]

q∑
k=[q/2]

aik 6 Cω(1/p, 1/q), p, q ∈ N ∩ [2,+∞).

Similar results were obtained in [20] for double sine and cosine se-
ries. Fülöp (see [8] and [9]) gave the necessary and sufficient conditions
for sums of sine, cosine, and mixed double series to belong the space
Λ∗(2) = H2, 2(ω1, 1) (see the next section), where ωα, β(u,v) = uαvβ,
0 < α, β 6 1. Donskikh [5] proved some multidimesional analogues of
Fülöp results. Results from [8] and [9] were generalized by Yu [28] for
classes HHω = H1, 1(ω) (see the next section), where ω satisfies the con-
ditions similar to (3)–(6) in the case m = n = 1. Han, Li, and Yu [11]
considered mixed modulus of smoothness of natural orders and obtained

Theorem 3. Let ω(u, v) be a conitinuous on [0, 2π]2, increasing and sub-
additive in each variable function, such that ω(0, 0) = 0, ajk > 0 for all

j, k ∈ N,
∞∑
j=1

∞∑
k=1

ajk <∞, r, s ∈ N.

(i) If the following relations

m∑
j=1

n∑
k=1

jrksajk = O(mrnsω(1/m, 1/n)), m, n ∈ N; (7)
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m∑
j=1

∞∑
k=n+1

jrajk = O(mrω(1/m, 1/n)), m, n ∈ N; (8)

∞∑
j=m+1

n∑
k=1

ksajk = O(nsω(1/m, 1/n)), m, n ∈ N; (9)

∞∑
j=m+1

∞∑
k=n+1

ajk = O(ω(1/m, 1/n)), m, n ∈ N; (10)

are valid, then g(x, y) =
∞∑
k=1

∞∑
k=1

ajk sin jx sin ky belongs to Hm,n(ω).

(ii) If g ∈ Hm,n(ω), then
m∑
j=1

n∑
k=1

jr
∗
ks

∗
ajk = O(mr∗ns

∗
ω(1/m, 1/n)),

where m,n ∈ N, r∗ = r + 1 for even r and r∗ = r for odd r.

Using several conditions on ω, the authors of [11] obtained some crite-
ria for g ∈ Hm,n(ω) in terms of Fourier coefficients of g, but the confusion
in formula numeration in [11, Theorem C] makes understanding of state-
ments hard. The conditions (7)–(10) are not independent (see Lemmas 2
and 4 below). Using these facts, results of Theorem 3 were rewritten in a
new form and extended to the Nikol’skii classes in [27].

In the present study, we extend Theorem 3 and its counterpart from
[27] to the case of differentiable even with respect to the first argument and
odd with respect to the second one functions, using the mixed modulus
of smoothness and derivatives of arbitrary natural orders (Theorem 4).
In the case of weak monotone Fourier coefficients with a given rate of
decreasing, we give the sharp conditions for h from Theorem 2 to belong
to the Nikol’skii classes W r, sHm,n(ω) (Theorem 5). Finally, we obtain an
o-analogue of Theorem 4 (Theorem 6). The results are dependent on the
evenness of m+ r and n+ s.

2. Definitions. Let r, s ∈ Z+ = {0,1, . . .}, {ajk}j, k∈N ⊂ R and
∞∑
j=1

∞∑
k=1

jrks|ajk| <∞. (11)

It follows From (11) that the series
∞∑
j=1

∞∑
k=1

ajk cos jx sin ky (12)
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and
∞∑
j=1

∞∑
k=1

jrksajk cos(jx+ πr/2) sin(ky + πs/2) (13)

converge absolutely and uniformly to functions h(x, y) and ψ(x, y), respec-
tively. By the classical theorem on differentiabilty of function series, we
have

h(r,s)(x, y) :=
∂r+sh(x, y)

∂xr∂ys
= ψ(x, y)

everywhere. Let

4̇m,n
t,τ f(x, y) =

m∑
j=0

n∑
k=0

(−1)j+k
(
m

j

)(
n

k

)
f(x+(m−2j)t/2, y+(n−2k)τ/2)

be the mixed difference of orders m,n with steps t, τ . For 4̇m,n
t,τ h

(r,s)(x, y)

see Lemma 5. Let us consider the class Φ(2) of positive on [0, 2π]2\{(0, 0)}
functions ω, for which ω(0, 0)=0, ω(x1, y1)6ω(x2, y1), ω(x1, y1) 6 ω(x1, y2)
if x2 > x1, y2 > y1, xi, yi ∈ [0, 2π], i = 1, 2.

If ω ∈ Φ(2) is such that
∞∑
i=m

∞∑
j=n

(ij)−1ω

(
2π

i
,
2π

j

)
= O

(
ω

(
2π

m
,
2π

n

))
, m, n ∈ N,

then ω belongs to the class BB.
If m,n > 0 and for ω ∈ Φ(2) the inequality

j∑
i=1

l∑
k=1

im−1kn−1ω

(
2π

i
,
2π

k

)
= O

(
jmlnω

(
2π

j
,
2π

l

))
, j, l ∈ N,

is valid, then ω belongs to the class BmBn. One-dimensional analogues
of these classes were introduced by Bary and Stechkin [1]; for the two-
dimensional case see, for example, [28]. For m,n ∈ N and ω ∈ Φ(2), we
will write f ∈ Hm,n(ω), if for all δ1, δ2 ∈ [0, 2π] the inequality

ωmn(f, δ1, δ2) := sup{|4̇m,n
t,τ f(x, y)| : 0 6 t 6 δ1, 0 6 τ 6 δ2} 6 Cω(δ1, δ2)

holds and f ∈ W r,sHm,n(ω), r, s ∈ Z+, if f (r, s) exists everywhere and
belongs to Hm,n(ω). Learn more about these classes in Lp setting, e. g.,
in [18]. We will also consider

hm,n(ω) = {f ∈ Hm,n(ω) : ωmn(f, δ1, δ2) = o(ω(δ1, δ2))},
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where δ1, δ2 → 0+, andW r, shm,n(ω) are defined similarly toW r, sHm,n(ω).
In the case r = s = 0, m = n = 1 and ωα,β(u, v) = uαvβ, 0 < α, β 6 1, we
denote W r, sHm,n(ωα, β) by Lip(α, β).

We shall write ω ∈ ∆2, if ω(2t, τ) 6 C1ω(t, τ) for all 2t, τ ∈ [0, 2π] and
ω(t, 2τ) 6 C1ω(t, τ) for all t, 2τ ∈ [0, 2π].

3. Auxiliary propositions. Lemmas 1–4 are proved in [26].

Lemma 1. Let m,n > 0, ω ∈ Φ(2).
(i) If ω ∈ BmBn, then ω ∈ ∆2.
(ii) If ω ∈ BB ∩∆2, then ω(·, t) ∈ B for any fixed t ∈ [0, 2π].

Lemma 2. Let {ajk}j,k∈N ⊂ R+ = [0,+∞), ω ∈ Φ(2), m,n > 0.
(i) If ω ∈ BmBn, then the condition

∞∑
j=M

∞∑
k=N

ajk = O

(
ω

(
2π

M
,
2π

N

))
, M,N ∈ N, (14)

implies

M∑
j=1

N∑
k=1

jmknajk = O

(
MmNnω

(
2π

M
,
2π

N

))
, M,N ∈ N. (15)

(ii) If ω ∈ BB ∩∆2, then (14) follows from (15).

Lemma 3. Let {ajk}j,k∈N ⊂ R+, ω ∈ Φ(2), m,n > 0.
(i) If ω ∈ BmBn, {ajk}j,k∈N satisfies (14) and

∞∑
j=M

∞∑
k=N

ajk = o

(
ω

(
2π

M
,
2π

N

))
, M,N →∞, (16)

then
M∑
j=1

N∑
k=1

jmknajk = o

(
MmNnω

(
2π

M
,
2π

N

))
, M,N →∞. (17)

(ii) If ω ∈ BB ∩∆2, {ajk}j,k∈N satisfies (17), then (16) is valid.

Lemma 4. (i) Let {ajk}j,k∈N ⊂ R+, ω ∈ Φ(2), ω(·, t) ∈ B for all
t ∈ [0, 2π], m,n > 0 and the relation (15) is valid. Then

∞∑
j=M

N∑
k=1

knajk = O

(
Nnω

(
2π

M
,
2π

N

))
, M,N ∈ N.
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(ii) If, instead of (15) in (i) we have (17), then

∞∑
j=M

N∑
k=1

knajk = o

(
Nnω

(
2π

M
,
2π

N

))
, M,N →∞.

Lemma 5. If m, k ∈ N, ∆̇m
t f(x) =

m∑
j=0

(−1)j
(
m
j

)
f(x+(m−2j)t/2), then

we have
∆̇m
t cos kx = (2 sin kt/2)m cos(kx+

mπ

2
),

∆̇m
t sin kx = (2 sin kt/2)m sin(kx+

mπ

2
).

In particular, for h defined as the sum of (12) and ψ defined as the sum
of (13), respectively, under condition (11), we obtain

∆̇m,n
t,τ h(x, y) =

∞∑
j=1

∞∑
k=1

ajk cos
(
jx+

mπ

2

)
sin
(
ky +

nπ

2

)
×

× (2 sin jt/2)m(2 sin kτ/2)n. (18)

∆̇m,n
t,τ ψ(x, y) =

∞∑
j=1

∞∑
k=1

jrksajk×

× cos
(
jx+

(m+ r)π

2

)
sin
(
ky +

(n+ s)π

2

)
(2 sin jt/2)m(2 sin kτ/2)n.

(19)

Proof. Let ∆̇m
t f(x) be as above. It is known that ∆̇m

t f(x)=∆̇1
t (∆̇

m−1
t f(x))

and that ∆̇1
t e
ikx = (2i sin kt/2)eikx; therefore,

∆̇m
t cos kx = Re(∆̇m

t e
ikx) = Re[(2i sin kt/2)meikx].

The last expression equals to (−1)m/2 cos kx(2 sin kt/2)m for evenm and to
(−1)(m+1)/2 sin kx(2 sin kt/2)m for oddm. Thus, ∆̇m

t cos kx=(2 sin kt/2)m×
× cos(kx+mπ/2). The second formula is proved in a similar manner. Since
∆̇m,n
t,τ h(x,y) is the composition of ∆̇m

t with respect to x and ∆̇n
τ f with

respect to y, we obtain (18). But differentiation and the m-th difference
commute, also the equalities cos(r)(x) = cos(x+ rπ/2), sin(r)(x) = sin(x+
rπ/2) hold, hence (19) is valid. �
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Lemma 6. Let r, s ∈ Z+, f be 2π-periodic in each variable continu-
ous function. If f (r, s) exists everywhere and is continuous, then for any
m,n ∈ N one has

ωm+r, n+s(f, δ1, δ2) 6 δr1δ
s
2ωmn(f (r,s), δ1, δ2), δ1, δ2 ∈ [0, 2π].

Lemma 6 may be proved in the same way as similar one-dimensional
result (see [25, Ch.3, § 3.3, (1)]) using representation of higher order dif-
ference by means of derivative (see [25, Ch.3, § 3.3, (4)]) and the equality
of type ∆̇m+r

h = ∆̇r
h(∆̇

m
h ) with respect to both variables. For this lemma

in the case of mixed Lp moduli of smoothness see [17] or [18].

4. Main results

Theorem 4. (i) Assume that r, s ∈ Z+, {ajk}j, k∈N satisfies the condition
(11) and h(x, y) is the sum of (12). If m,n ∈ N, ω ∈ BB ∩ ∆2 and the
condition

M∑
j=1

N∑
k=1

jm+rkn+s|ajk| = O

(
MmNnω

(
2π

M
,
2π

N

))
, M,N ∈ N, (20)

holds, then h ∈ W r,sHm,n(ω).
(ii) Let {ajk}j, k∈N ⊂ R+ = [0,∞) satisfy the condition (11), h(x, y)

be the sum of (12), m,n, r, s be as in the part (i). If ω ∈ BB ∩ ∆2 and
m+ r is even, n+ s is odd, then from h ∈ W r,sHm,n(ω) it follows that the
condition (20) is valid. Ifm+r is odd or n+s is even and ω ∈ BmBn∩BB,
then h ∈ W r,sHm,n(ω) also implies (20).

Proof. (i) Let the condition (20) be valid. By (19) from Lemma 5, we
have for t, τ > 0 an upper estimate for |∆̇m,n

t,τ h
(r,s)(x, y)| of the type

2m+n

(
M∑
j=1

N∑
k=1

+
∞∑

j=M+1

N∑
k=1

+
M∑
j=1

∞∑
k=N+1

+
∑
j>M

∑
k>N

)
jrks|ajk|×

×
∣∣∣∣sin jt2

∣∣∣∣m ∣∣∣∣sin kτ2
∣∣∣∣n =: I

(1)
MN + I

(2)
MN + I

(3)
MN + I

(4)
MN , (21)

where M = [2π/t], N = [2π/τ ]. By virtue of the inequality | sinx| 6 |x|,
x ∈ R, and (20), we find that for t, τ ∈ (0, 2π]

I
(1)
MN 6 tmτn

M∑
j=1

N∑
k=1

jm+rkn+s|ajk| = O(ω(t, τ)).
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Using Lemma 5, inequalities | sinx| 6 1 and | sinx| 6 |x|, x ∈ R, we
have

I
(2)
MN 6 2mτn

∞∑
j=M+1

N∑
k=1

jrkn+s|ajk|. (22)

One may rewrite (20) in the form

M∑
j=1

N∑
k=1

jmkn(jrks|ajk|) = O

(
MmNnω

(
2π

M
,
2π

N

))
, M,N ∈ N, (23)

and by Lemma 1(ii) and Lemma 4(i) we obtain

∞∑
j=M+1

N∑
k=1

kn(jrks|ajk|) = O

(
Nnω

(
2π

M
,
2π

N

))
, M,N ∈ N. (24)

From (22) and (24) we deduce that I(2)MN = O(ω(t,τ)), t,τ ∈ [0, 2π]. Simi-
larly, we estimate I(3)MN . Finally, by the condition ω ∈ BB ∩∆2 and part
(ii) of Lemma 2 (we again write (20) in the form (23))

I
(4)
MN 6

∞∑
j=M+1

∞∑
k=N+1

2m+njrks|ajk| = O(ω(t,τ)), t, τ ∈ [0, 2π].

Combining the obtained estimates, we see that

|∆m,n
t,τ h

(r,s)(x, y)| = O(ω(t,τ)), t, τ ∈ [0, 2π],

whence the statement h ∈ W r,sHm,n(ω) follows.

(ii) In Steps I-IV, we assume that r = s = 0 and set t = M−1, τ = N−1

for M,N ∈ N.
Step I. Let m be even, n be odd. Then, by Lemma 5, we have

C1ω(t,τ) > |∆̇m,n
t,τ h(0,v)| =

∣∣∣ ∞∑
j=1

∞∑
k=1

ajk(2 sin jt/2)m(2 sin kτ/2)n cos kv
∣∣∣.

(25)
Since the series in the right-hand side of (25) converges uniformly in v, it
may be integrated term by term over v ∈ [−τ/2, τ/2], and we obtain

C1τω(t,τ) >
∞∑
j=1

∞∑
k=1

k−1(2 sin jt/2)m(2 sin kτ/2)n+1ajk >
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> C2

M∑
j=1

N∑
k=1

(jt)m(kτ)n+1k−1ajk

and

M∑
j=1

N∑
k=1

jmknajk 6 C3M
mNnω(t, τ) 6 C3M

mNnω(2π/M, 2π/N).

Step II. Let m, n be even. Then, by Lemma 5, we have

C1ω(t, τ) > |∆̇m,n
t,τ h(0, v)| =

∣∣∣ ∞∑
j=1

∞∑
k=1

ajk(2 sin jt/2)m(2 sin kτ/2)n sin kv
∣∣∣.

The series in the right-hand side may be integrated term by term over
v ∈ [0, τ ], and we obtain

C1τω(t, τ) >
∞∑
j=1

∞∑
k=1

k−1(2 sin jt/2)m(2 sin kτ/2)najk(1− cos kτ) =

= 2−1
∞∑
j=1

∞∑
k=1

k−1(2 sin jt/2)m(2 sin kτ/2)n+2ajk >

> C4

M∑
j=1

N∑
k=1

(jt)m(kτ)n+2k−1ajk

and

M∑
j=1

N∑
k=1

jmkn+1ajk 6 C5M
mNn+1ω(2π/M, 2π/N), M,N ∈ N.

By the condition ω∈BB∩∆2 (see Lemma 1) and Lemma 2 (ii), we obtain
(14), while the condition ω ∈ BmBn, (14) and Lemma 2 (i) imply (20).

Step III. Let m, n be odd. Then, by Lemma 5, we have

C1ω(t,τ) > |∆̇m,n
t,τ h(u,v)| =

=
∣∣∣ ∞∑
j=1

∞∑
k=1

ajk(2 sin jt/2)m(2 sin kτ/2)n sin ju cos kv
∣∣∣ (26)
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for u, v ∈ R. The series in the right-hand side of (26) uniformly converges
in v and may be integrated term by term over v ∈ [−τ/2, τ/2]. Therefore,

C1τω(t, τ) >
∣∣∣ ∞∑
j=1

∞∑
k=1

k−1ajk(2 sin jt/2)m(2 sin kτ/2)n+1 sin ju
∣∣∣, u ∈ R.

(27)
Substituting u = t/2 into (27), we obtain

C1τω(t, τ) > 2−1
∞∑
j=1

∞∑
k=1

k−1ajk(2 sin jt/2)m+1(2 sin kτ/2)n+1 >

> C6

M∑
j=1

N∑
k=1

(jt)m+1(kτ)n+1k−1ajk

and

M∑
j=1

N∑
k=1

jm+1knajk 6 C7M
m+1Nnω(2π/M, 2π/N), M,N ∈ N.

By Lemmas 2 and 1 and the condition ω ∈ BB ∩ BmBn, we deduce,
similarly to Step II, that (20) holds.

Step IV. Let m be odd, n be even. By Lemma 5, we have

C1ω(t,τ) >
∣∣∣ ∞∑
j=1

∞∑
k=1

ajk(2 sin jt/2)m(2 sin kτ/2)n sin ju sin kv
∣∣∣, u, v ∈ R.

(28)
Integrating (28) over v ∈ [0, τ ], we obtain

C1τω(t,τ) >
∣∣∣ ∞∑
j=1

∞∑
k=1

k−1ajk(2 sin jt/2)m(2 sin kτ/2)n sin ju(1− cos kτ)
∣∣∣,

(29)
where u ∈ R. Substituting u = t/2 into (29), we obtain

C1τω(t,τ) > 4−1
∞∑
j=1

∞∑
k=1

k−1ajk(2 sin jt/2)m+1(2 sin kτ/2)n+2 >

> C8

M∑
j=1

N∑
k=1

(jt)m+1(kτ)n+2k−1ajk
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and
M∑
j=1

N∑
k=1

jm+1kn+1ajk 6 C7M
m+1Nn+1ω(2π/M, 2π/N), M,N ∈ N.

Using Lemmas 2 and 1 and the condition ω ∈ BB ∩ BmBn, we deduce,
again, that (20) holds.

Step V. Secondly, we consider the general case r, s ∈ Z+.
If h ∈ W r,sHm,n(ω), then, by Lemma 6,

ωm+r, n+s(h, δ1,δ2) 6 δr1δ
s
2ωm,n(h(r,s), δ1, δ2) 6 C5δ

r
1δ
s
2ω(δ1, δ2),

i. e., W r,sHm,n(ω) ⊂ Hm+r, n+s(Ωr,s), where Ωr,s(δ1, δ2) = δr1δ
s
2ω(δ1, δ2). If

ω ∈ BB∩∆2, then Ωr,s also belongs to BB∩∆2, while if ω ∈ BmBn, then,
by definition, Ωr,s belongs to Bm+r, n+s. Applying the results obtained in
Steps I-IV in all cases, we have

M∑
j=1

N∑
k=1

jm+rkn+sajk = O
(
Mm+rNn+sΩr,s

(2π

M
,
2π

N

))
=

= O
(
MmNnω

(2π

M
,
2π

N

))
.

Thus, (20) holds under conditions of part (ii) of Theorem 1. �

Corollary 1. If m = n = 1, ω ∈ BB ∩B1B1, {ajk}∞j,k=1 ⊂ R+ satisfies
(11) and h(x, y) is the sum of (12), then the conditions

M∑
j=1

N∑
k=1

jkajk = O(MNω(2π/M, 2π/N)), M,N ∈ N,

and h ∈ H1,1(ω) are equivalent.

Corollary 2. If m = 2, n = 1, ω ∈ BB ∩∆2, {ajk}∞j,k=1 ⊂ R+ satisfies
(11) and h(x, y) is the sum of (12), then the conditions

M∑
j=1

N∑
k=1

j2kajk = O(M2Nω(2π/M, 2π/N)), M,N ∈ N,

and h ∈ H2,1(ω) are equivalent. In particular, ω2,1(f, δ1, δ2) = O(δ21δ2),

δ1, δ2 ∈ [0, 2π], if and only if the series
∞∑
j=1

∞∑
k=1

j2kajk converges.
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Corollary 3. Let {ajk}∞j,k=1 and h be as in Corollary 2. Then, h ∈ Λ∗(2)
(see Introduction) if and only if the condition

∞∑
j=M

∞∑
k=N

ajk = O(M−1N−1), M,N ∈ N,

holds.

Remark. Corollary 3 is obtained by Fülöp [9] together with its "small"
analogue that may be derived from Theorem 6. Let us note that a par-
ticular case ω(δ1,δ2) = δ21δ2 in Corollary 2 corresponds to the exclusive
case (ii) in Theorem 1.

5. Concluding remarks. We say that {ajk}∞j,k=1 is weak mono-
tone if ajk > 0 for all j, k and aij 6 Cakl for all i ∈ [k, 2k − 1], j ∈
[l, 2l−1]. The famous Lorentz theorem [13] states that if {an}∞n=1 decreases
to zero and 0 < α < 1, then the assertions (i) an = O(n−α−1), n ∈ N,
(ii) f(x) =

∞∑
n=1

an cosnx ∈ Lip(α) and (iii) g(x) =
∞∑
n=1

an sinnx ∈ Lip(α)

are equivalent. Several one-dimensional generalizations of the Lorentz
theorem to generalized Lipschitz or Nikol’skii spaces and classes of gen-
eral monotone sequences may be found in papers of Tikhonov [23] and
[24]. The following theorem is an extension of the Lorentz result and
results from [23] to the two-dimensional mixed case. Applications of one-
dimensional weak monotonicty can be found in [12]. Also, we note the
paper by Dyachenko and Tikhonov [7], where the estimates of Fourier
coefficients satisfying another definition of weak monotonicity are given.

Theorem 5. Let {ajk}∞j,k=1 be weak monotone, m,n ∈ N, r, s ∈ Z+,
ω ∈ BB ∩ BmBn. If {ajk}∞j,k=1 satisfies (11), h(x, y) is the sum of (12),
then the conditions

(i) h ∈ W r,sHm,n(ω);
and
(ii) ajk = O(j−r−1k−s−1ω(2π/j, 2π/k)), j, k ∈ N, are equivalent.

The proof of Theorem 5 is similar to the proof of Theorem 2 from [27].
The last theorem is the o-analog of Theorem 4.

Theorem 6. (i) Let m,n ∈ N, r, s ∈ Z+, ω ∈ BB ∩ ∆2. If {ajk}∞j,k=1

satisfies (11), h is the sum of (12) and the conditions (20) and
M∑
j=1

N∑
k=1

jm+rkn+s|ajk| = o(MmNnω(2π/M, 2π/N)), M,N →∞, (30)
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are valid, then h ∈ W r,shm,n(ω).
(ii) If m,n ∈ N, r, s ∈ Z+, aj,k > 0 for all j, k ∈ N, {ajk}∞j,k=1 satisfies

(11), h is the sum of (12), ω ∈ BB ∩ ∆2, m + r is even, n + s is odd,
and h ∈ W r,shm,n(ω), then (30) is valid. If, in addition to the previous
conditions of (ii), we have ω ∈ BmBn, then also (30) is valid.

Proof. Similarly to the proof of Theorem 4, we use the estimate (21) for
t, τ ∈ (0, 2π] and M = [2π/t], N = [2π/τ ]. By (30) and the condition
ω ∈ ∆2, we find that

I
(1)
MN 6

M∑
j=1

N∑
k=1

jrks|ajk|(jt)m(kτ)n 6

6 εtmτnMmNnω(2π/M, 2π/N) 6 C1εω(t, τ), 0 < t, τ < δ1(ε). (31)

By Lemma 4 (ii) applied to {jrksajk}∞j,k=1 and (30) for M,N > n0(ε), we
obtain

I
(2)
MN 6 C2τ

n

∞∑
j=M+1

N∑
k=1

jrkn+sajk < ετnNnω

(
2π

M
,
2π

N

)
6 C3εω(t,τ),

(32)
where 0 < t,τ < δ2(ε). The quantity I

(3)
MN is estimated in a similar manner

for 0 < t, τ < δ3(ε). By the condition ω ∈ BB ∩∆2 and Lemma 3 (ii), we
have I(4)MN = o(MmNnω(2π/M, 2π/N)), M,N →∞, whence

I
(4)
MN 6 C4εω(t, τ), 0 < t, τ < δ4(ε). (33)

From estimates (31)–(33) we find that |∆̇m,n
t,τ h

(r,s)(x, y)| 6 C5εω(t, τ) for
all t, τ < δ(ε) := min16i64 δi(ε), i. e. h ∈ W r,shm,n(ω).

(ii) The assertion is proved similarly to the proof of (ii) from Theo-
rem 4. We may substitute in all steps of this proof C1 instead of η and get
at the end of Steps I-IV an estimate of type KηMmNnω(2π/M, 2π/N),
where K depends on m,n. Setting Kη = ε, we finish the proof. �

Remark. It is interesting to obtain a variant of Theorem 4 without the
condition ω ∈ BmBn. The first attempt in this direction may be found
in [27, Theorem 3], but this result gives only sufficient conditions for an
odd in each argument functions to belong to a Nikol’skii class.

Acknowledgement. Author thanks all referees for their valuable
comments improving the paper.
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