
68 Probl. Anal. Issues Anal. Vol. 9 (27), No 2, 2020, pp. 68–86
DOI: 10.15393/j3.art.2020.6750

UDC 517.98

Mohammed Shehu Shagari, Akbar Azam

FIXED POINT THEOREMS OF FUZZY SET-VALUED
MAPS WITH APPLICATIONS

Abstract. In this paper, we introduce the notion of Suzuki-type
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1. Introduction. Fixed-point theory is one of the most active
research fields in modern nonlinear functional analysis. A typical fixed-
point equation is of the form 𝑇𝑥 = 𝑥, where 𝑇 is a self-mapping on
a non-empty set 𝑋. This problem can be reformulated as 𝑔(𝑥) = 0,
where 𝑔(𝑥) = 𝑥 − 𝑇𝑥. Though the problem statement is simple, find-
ing a solution may be extremely difficult, and sometimes not possible.
The earliest affirmative response to this problem was announced by Ba-
nach [4] under some suitable conditions: when 𝑇 is a contraction and
𝑋 is endowed with a norm such that the corresponding topology yields
completeness. In 1969, Kannan [13] gave an analogue sort of contractive
condition that demonstrated the existence of a fixed point. The basic dis-
tinction between the Banach fixed-point theorem (BFT) and that of the
Kannan contraction is that continuity of contraction is not needed in the
later. Analogous well-known generalizations of the BFT were established
by Chatterjea [7] and Edelstein [10]. In the last six decades, the above re-
sults have been extended in different directions. Along the way, the notion
of weak contraction was introduced by Berinde [5]. The idea generalized
the well-celebrated fixed-point theorems due to Banach [4], Chatterjea [7],
Zamfirescu [22], and many others. It is well-known that the Banach con-
traction theorem cannot characterize metric completeness. To resolve this
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problem, a generalization of the BFT was given by Suzuki [19]. Later
on, an interesting improvement of the Suzuki fixed-point theorem in the
setting of multivalued mappings was presented by Djoric and Lazovic [9].

Along the lane, the area of applied mathematics witnessed tremendous
developments as a result of the introduction of fuzzy sets by Zadeh [21].
Classically, fuzzy set is characterized by a membership function that as-
signs to each element a grade of membership between zero and one. Later,
Weiss [20] and Butnairu [6] initiated the study of fixed points of fuzzy
mappings. Whereas fixed point theorems for fuzzy set-valued mappings
have been investigated by Heilpern [11], who originated the idea of fuzzy
contractions and proved a fixed-point theorem parallel to the Banach-
Cacciopoli principle in the frame of fuzzy sets. Thereafter, several authors
have studied and applied fuzzy fixed-point results in different directions;
see, for example, [1–3], [12], [14–18], and the references therein.

In this work, motivated by the ideas of Suzuki [19], Djoric and La-
zovic [9], we define the notion of Suzuki-type (𝛼, 𝛽)-weak contractions in
the setting of fuzzy set-valued maps. As a result, fuzzy fixed-point theorem
of Suzuki-type is proved and some consequences are obtained thereafter.
In addition, an application in homotopy result is established to highlight
the usability of one of our results.

2. Fuzzy and Multivalued Mappings. In this section, we present
some useful definitions and basic concepts from the literature, which will
be needed in the sequel. Let (𝑋, 𝑑) be a metric space. We denote by
𝐶𝐵(𝑋) the class of all nonempty, closed, and bounded subsets of 𝑋. Let
𝐻(·, ·) be the Hausdorff metric on 𝐶𝐵(𝑋) induced by 𝑑, that is,

𝐻(𝐴,𝐵) = max
{︁

sup
𝑎∈𝐴

𝑑(𝑎,𝐵), sup
𝑏∈𝐵

𝑑(𝐴, 𝑏)
}︁
,

for 𝐴,𝐵 ∈ 𝐶𝐵(𝑋), where 𝑑(𝑥,𝐴) = inf{𝑑(𝑥, 𝑎) : 𝑎 ∈ 𝐴}. A point 𝑢 in 𝑋
is a fixed point of a multi-valued mapping 𝑇 : 𝑋 −→ 𝐶𝐵(𝑋) if 𝑢 ∈ 𝑇𝑢.
Recall that an ordinary subset 𝐴 of 𝑋 is determined by its characteristic
function 𝜒𝐴, defined by 𝜒𝐴 : 𝐴 → {0, 1}:

𝜒𝐴(𝑥) =

{︃
1, if 𝑥 ∈ 𝐴

0, if 𝑥 /∈ 𝐴.

The value 𝜒𝐴(𝑥) specifies whether an element belongs to 𝐴 or not. This
idea is used to define fuzzy sets by allowing an element 𝑥 ∈ 𝐴 to assume
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any possible value of the interval [0, 1]. Thus, a fuzzy set 𝐴 in 𝑋 is a set
of ordered pairs given as

𝐴 = {(𝑥, 𝜇𝐴(𝑥)) : 𝑥 ∈ 𝑋},

where 𝜇𝐴 : 𝑋 → [0, 1] = 𝐼 and 𝜇𝐴(𝑥) is called the membership function
of 𝑥, or the degree to which 𝑥 ∈ 𝑋 belongs to the fuzzy set 𝐴.

Throughout this paper, we shall let (0, 1] = 𝐼+1 and (0, 1) = 𝐼−1. An
important notion in fuzzy set theory is that of an 𝛼-level set. If 𝐴 is a
fuzzy set in 𝑋, the (crisp) set of elements in 𝑋 belonging to 𝐴 at least of
degree 𝛼 ∈ 𝐼+1 is called the 𝛼-level set, denoted by [𝐴]𝛼. That is,

[𝐴]𝛼 = {𝑥 ∈ 𝑋 : 𝜇𝐴(𝑥) ≥ 𝛼}.

On the other hand,

[𝐴]*𝛼 = {𝑥 ∈ 𝑋 : 𝜇𝐴(𝑥) > 𝛼}

is called the strong 𝛼-level set or strong 𝛼-level cut. Denote by 𝐼𝑋 the
family of all fuzzy sets in 𝑋. Let 𝑋 be an arbitrary set and 𝑌 be a metric
space. A mapping 𝑇 : 𝑋 → 𝐼𝑌 is called fuzzy mapping. A fuzzy mapping
𝑇 is a fuzzy subset of 𝑋 × 𝑌 . The function 𝑇 (𝑥)(𝑦) is the membership
value of 𝑦 in 𝑇 (𝑥). An element 𝑢 in 𝑋 is said to be a fuzzy fixed point
of 𝑇 if there exists an 𝛼 ∈ 𝐼+1 such that 𝑢 ∈ [𝑇𝑢]𝛼. Denote the set of all
fixed points of 𝑇 by ℱ𝑖𝑥(𝑇 ).

Example 1.
Let 𝑋 = [−5, 5] and 𝑌 = [−5, 5]. Define 𝑇 : 𝑋 → 𝐼𝑌 by

𝑇 (𝑥)(𝑦) = cos2 𝑥 cos2 𝑦

for all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 . Then 𝑇 is a fuzzy mapping. Graphical represen-
tation of the fuzzy mapping in Example 1 showing all possible membership
values of 𝑦 in 𝑇 (𝑥) is in Figure 1.

Throughout this paper, the function 𝑟 : 𝐼−1 −→
(︀
1
2
, 1
]︀
is defined by

𝑟(𝛼) =

{︃
1, if 0 < 𝛼 < 1

2

1 − 𝛼, if 1
2
≤ 𝛼 < 1.

For 𝑥, 𝑦 ∈ 𝑋 and 𝛼 ∈ 𝐼+1, define
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Figure 1: Graphical representation of the fuzzy mapping in Example 1

⋁︁
(𝑥, 𝑦) = max

{︂
𝑑(𝑥, 𝑦), 𝑑(𝑥, [𝑇𝑥]𝛼), 𝑑(𝑦, [𝑇𝑦]𝛼),

𝑑(𝑥, [𝑇𝑦]𝛼) + 𝑑(𝑦, [𝑇𝑥]𝛼)

2
,
𝑑(𝑥, [𝑇𝑥]𝛼)𝑑(𝑦, [𝑇𝑦]𝛼)

1 + 𝑑(𝑥, 𝑦)

}︂
and⋀︁

(𝑥, 𝑦) = min

{︂
𝑑(𝑥, [𝑇𝑥]𝛼), 𝑑(𝑦, [𝑇𝑥]𝛼),

𝑑(𝑥, [𝑇𝑥]𝛼)𝑑(𝑦, [𝑇𝑦]𝛼)

1 + 𝑑(𝑥, 𝑦)

}︂
.

3. Fuzzy Fixed Points of Suzuki-type (𝛼, 𝛽)-Weak Contrac-
tions. In this section, we present a fuzzy fixed-point theorem of Suzuki-
type (𝛼, 𝛽)-weak contractions. First, we give the following definition.

Definition 1. A fuzzy mapping 𝑇 : 𝑋 → 𝐼𝑋 is called a Suzuki-type
(𝛼, 𝛽)-weak contraction, if for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ̸= 𝑦 there exist some
𝛼 ∈ 𝐼−1 and 𝛽 ≥ 0, such that

𝑟(𝛼)𝑑(𝑥, [𝑇𝑥]𝛼) ≤ 𝑑(𝑥, 𝑦)

implies
𝐻([𝑇𝑥]𝛼, [𝑇𝑦]𝛼) ≤ 𝛼

⋁︁
(𝑥, 𝑦) + 𝛽

⋀︁
(𝑥, 𝑦).
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Theorem 1. Let (𝑋, 𝑑) be a complete metric space and 𝑇 : 𝑋 → 𝐼𝑋

be a Suzuki-type (𝛼, 𝛽)-weak contraction. Assume that for each 𝑥 ∈ 𝑋
there exists 𝛼 ∈ 𝐼−1, such that [𝑇𝑥]𝛼 is a non-empty closed and bounded
subset of 𝑋. Then ℱ𝑖𝑥(𝑇 ) ̸= ∅.
Proof. Let 𝛼1 ∈ 𝐼−1 be such that 0 < 𝛼 ≤ 𝛼1 < 1, 𝑥1 ∈ 𝑋 and 𝜌 = 1√

𝛼
.

Then, by the assumption, [𝑇𝑥1]𝛼 is nonempty. Therefore, we can find
𝑥2 ∈ 𝑋 such that 𝑥2 ∈ [𝑇𝑥1]𝛼. Since 𝜌 > 1, choose 𝑥3 ∈ [𝑇𝑥2]𝛼, such that

𝑑(𝑥2, 𝑥3) ≤ 𝜌𝐻([𝑇𝑥1]𝛼, [𝑇𝑥2]𝛼).

If 𝑥1 = 𝑥2, then 𝑥1 ∈ [𝑇𝑥1]𝛼 for some 𝛼 ∈ 𝐼−1, and the theorem is proved.
Assume that 𝑥1 ̸= 𝑥2. Since 𝑟(𝛼) ≤ 1,

𝑟(𝛼)𝑑(𝑥1, [𝑇𝑥1]𝛼) ≤ 𝑑(𝑥1, [𝑇𝑥1]𝛼) ≤ 𝑑(𝑥1, 𝑥2)

implies

𝑑(𝑥2, 𝑥3) ≤ 𝜌𝐻([𝑇𝑥1]𝛼, [𝑇𝑥2]𝛼)
1√
𝛼

(︁
𝛼
⋁︁

(𝑥, 𝑦) + 𝛽
⋀︁

(𝑥, 𝑦)
)︁
≤

≤
√
𝛼max

{︂
𝑑(𝑥1, 𝑥2), 𝑑(𝑥1, [𝑇𝑥1]𝛼), 𝑑(𝑥2, [𝑇𝑥2]𝛼),

𝑑(𝑥1, [𝑇𝑥2]𝛼) + 𝑑(𝑥2, [𝑇𝑥1]𝛼)

2
,
𝑑(𝑥1, [𝑇𝑥1]𝛼)𝑑(𝑥2, [𝑇𝑥2]𝛼)

1 + 𝑑(𝑥1, 𝑥1)

}︂
+

+
𝛽√
𝛼

min

{︂
𝑑(𝑥1, [𝑇𝑥1]𝛼), 𝑑(𝑥2, [𝑇𝑥1]𝛼),

𝑑(𝑥1, [𝑇𝑥1]𝛼)𝑑(𝑥2, [𝑇𝑥2]𝛼)

1 + 𝑑(𝑥1, 𝑥2)

}︂
≤

≤
√
𝛼max

{︁
𝑑(𝑥1, 𝑥2), 𝑑(𝑥2, 𝑥3),

𝑑(𝑥1, 𝑥3)+𝑑(𝑥2, 𝑥2)

2
,
𝑑(𝑥1, 𝑥2)𝑑(𝑥2, 𝑥3)

1 + 𝑑(𝑥1, 𝑥2)

}︁
+

+
𝛽√
𝛼

min

{︂
𝑑(𝑥1, 𝑥2), 𝑑(𝑥2, 𝑥2),

𝑑(𝑥1, 𝑥2)𝑑(𝑥2, 𝑥3)

1 + 𝑑(𝑥1, 𝑥2)

}︂
≤

≤
√
𝛼max

{︂
𝑑(𝑥1, 𝑥2), 𝑑(𝑥2, 𝑥3),

𝑑(𝑥1, 𝑥2) + 𝑑(𝑥2, 𝑥3)

2

}︂
≤

≤
√
𝛼max {𝑑(𝑥1, 𝑥2), 𝑑(𝑥2, 𝑥3)} . (1)

If 𝑑(𝑥1, 𝑥2) ≤ 𝑑(𝑥2, 𝑥3), then from (1) we have

𝑑(𝑥2, 𝑥3) ≤
√
𝛼𝑑(𝑥2, 𝑥3) < 𝑑(𝑥2, 𝑥3)

a contradiction. Hence, 𝑑(𝑥1, 𝑥2) > 𝑑(𝑥2, 𝑥3) and (1) becomes

𝑑(𝑥2, 𝑥3) ≤
√
𝛼𝑑(𝑥1, 𝑥2) ≤

√
𝛼1𝑑(𝑥1, 𝑥2).
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Continuing in this way, we generate a sequence {𝑥𝑛}𝑛∈N in 𝑋, such that
𝑥𝑛+1 ∈ [𝑇𝑥𝑛]𝛼 and

𝑑(𝑥𝑛, 𝑥𝑛+1) ≤
√
𝛼1𝑑(𝑥𝑛−1, 𝑥𝑛),

from which we have
∞∑︁
𝑛=1

𝑑(𝑥𝑛, 𝑥𝑛+1) ≤
∞∑︁
𝑛=1

(
√
𝛼1)

𝑛−1
𝑑(𝑥1, 𝑥2) < ∞.

By standard argument, we conclude that {𝑥𝑛}𝑛∈N is a Cauchy sequence
in 𝑋. The completeness of 𝑋 implies that there exists 𝑢 ∈ 𝑋, such that
𝑥𝑛 → 𝑢 as 𝑛 → ∞.

Claim: for all 𝑢 ̸= 𝑧, we have

𝑑(𝑢, [𝑇𝑧]𝛼) ≤ 𝛼max {𝑑(𝑢, 𝑧), 𝑑(𝑧, [𝑇𝑧]𝛼)} . (2)

Since 𝑥𝑛 → 𝑢 as 𝑛 → ∞, there exists a positive integer 𝑚, such that

𝑑(𝑥𝑛, 𝑢) ≤ 1

3
𝑑(𝑢, 𝑧), for all 𝑛 ≥ 𝑚.

Given that 𝑥𝑛+1 ∈ [𝑇𝑥𝑛]𝛼, we get

𝑟(𝛼)𝑑(𝑥𝑛, [𝑇𝑥𝑛]𝛼) ≤ 𝑑(𝑥𝑛, [𝑇𝑥𝑛]𝛼) ≤ 𝑑(𝑥𝑛, 𝑥𝑛+1) ≤

≤ 𝑑(𝑥𝑛, 𝑢) + 𝑑(𝑢, 𝑥𝑛+1) ≤
2

3
𝑑(𝑢, 𝑧).

Thus, for 𝑛 ≥ 𝑚 we have

𝑟(𝛼)𝑑(𝑥𝑛, [𝑇𝑥𝑛]𝛼) ≤ 2

3
𝑑(𝑢, 𝑧) = 𝑑(𝑢, 𝑧) − 1

3
𝑑(𝑢, 𝑧) ≤

≤ 𝑑(𝑢, 𝑧) − 𝑑(𝑢, 𝑥𝑛) ≤ 𝑑(𝑥𝑛, 𝑧). (3)

Hence,
𝑟(𝛼)𝑑(𝑥𝑛, [𝑇𝑥𝑛]𝛼) ≤ 𝑑(𝑥𝑛, 𝑧) (4)

implies

𝑑(𝑥𝑛+1, [𝑇𝑧]𝛼) ≤ 𝐻([𝑇𝑥𝑛]𝛼, [𝑇𝑧]𝛼) ≤

≤ 𝛼max

{︂
𝑑(𝑥𝑛, 𝑧), 𝑑(𝑥𝑛, [𝑇𝑥𝑛]𝛼), 𝑑(𝑧, [𝑇𝑧]𝛼),
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𝑑(𝑥𝑛, [𝑇𝑧]𝛼) + 𝑑(𝑧, [𝑇𝑥𝑛]𝛼)

2
,
𝑑(𝑥𝑛, [𝑇𝑥𝑛]𝛼)𝑑(𝑧, [𝑇𝑧]𝛼)

1 + 𝑑(𝑥𝑛, 𝑧)

}︂
+

+ 𝛽 min

{︂
𝑑(𝑥𝑛, [𝑇𝑥𝑛]𝛼), 𝑑(𝑧, [𝑇𝑥𝑛]𝛼),

𝑑(𝑥𝑛, [𝑇𝑥𝑛]𝛼)𝑑(𝑧, [𝑇𝑧]𝛼)

1 + 𝑑(𝑥𝑛, 𝑧)

}︂
. (5)

From (5), we have

𝑑(𝑥𝑛+1, [𝑇𝑧]𝛼) ≤ 𝛼max

{︂
𝑑(𝑥𝑛, 𝑧), 𝑑(𝑥𝑛, 𝑥𝑛+1), 𝑑(𝑧, [𝑇𝑧]𝛼),

𝑑(𝑥𝑛[𝑇𝑧]𝛼) + 𝑑(𝑧, 𝑥𝑛+1)

2
,
𝑑(𝑥𝑛, [𝑇𝑥𝑛]𝛼)𝑑(𝑧, [𝑇𝑧]𝛼)

1 + 𝑑(𝑥𝑛, 𝑧)

}︂
+

+ 𝛽 min

{︂
𝑑(𝑥𝑛, 𝑥𝑛+1), 𝑑(𝑧, 𝑥𝑛+1),

𝑑(𝑥𝑛, 𝑥𝑛+1)𝑑(𝑧, [𝑇𝑧]𝛼)

1 + 𝑑(𝑥𝑛, 𝑧)

}︂
. (6)

As 𝑛 → ∞ in (6), we obtain

𝑑(𝑢, [𝑇𝑧]𝛼) ≤ 𝛼max

{︂
𝑑(𝑢, 𝑧), 𝑑(𝑧, [𝑇𝑧]𝛼),

𝑑(𝑢, [𝑇𝑧]𝛼) + 𝑑(𝑢, 𝑧)

2

}︂
+

+ 𝛽 min{0, 𝑑(𝑢, 𝑧)} ≤ 𝛼max {𝑑(𝑢, 𝑧), 𝑑(𝑧, [𝑇𝑧]𝛼)}.

Now, to show that 𝑢 ∈ [𝑇𝑢]𝛼 for some 𝛼 ∈ 𝐼−1, we consider the following
two possible cases:

Case(i): 0 < 𝛼 < 1
2
.

Suppose that for all 𝛼 ∈ 𝐼−1, 𝑢 ̸= 𝑝, 𝑢 /∈ [𝑇𝑢]𝛼 and 𝑝 ∈ [𝑇𝑢]𝛼 such that
𝑑(𝑝, 𝑢) < 𝑑(𝑢, [𝑇𝑢]𝛼). Setting 𝑧 = 𝑝 in (2), we have

𝑑(𝑢, [𝑇𝑝]𝛼) ≤ 𝛼max {𝑑(𝑢, 𝑝), 𝑑(𝑝, [𝑇𝑝]𝛼)} . (7)

Now,
𝑟(𝛼)𝑑(𝑢, [𝑇𝑢]𝛼) ≤ 𝑑(𝑢, [𝑇𝑢]𝛼) ≤ 𝑑(𝑢, 𝑝)

implies

𝑑(𝑝, [𝑇𝑝]𝛼) ≤ 𝐻([𝑇𝑢]𝛼, [𝑇𝑝]𝛼) ≤ 𝛼max

{︂
𝑑(𝑢, 𝑝), 𝑑(𝑢, [𝑇𝑢]𝛼), 𝑑(𝑝, [𝑇𝑝]𝛼),

𝑑(𝑢, [𝑇𝑝]𝛼) + 𝑑(𝑝, [𝑇𝑢]𝛼)

2
,
𝑑(𝑢, [𝑇𝑢]𝛼)𝑑(𝑝, [𝑇𝑝]𝛼)

1 + 𝑑(𝑢, 𝑝)

}︂
+

+ 𝛽 min

{︂
𝑑(𝑢, [𝑇𝑢]𝛼), 𝑑(𝑝, [𝑇𝑢]𝛼),

𝑑(𝑢, [𝑇𝑢]𝛼)𝑑(𝑝, [𝑇𝑝]𝛼)

1 + 𝑑(𝑢, 𝑝)

}︂
≤
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≤ 𝛼max

{︂
𝑑(𝑢, 𝑝), 𝑑(𝑝, [𝑇𝑝]𝛼),

𝑑(𝑢, [𝑇𝑝]𝛼)

2
,
𝑑(𝑢, 𝑝)𝑑(𝑝, [𝑇𝑝]𝛼)

1 + 𝑑(𝑢, 𝑝)

}︂
+

+ 𝛽 min

{︂
𝑑(𝑢, 𝑝), 0,

𝑑(𝑢, 𝑝)𝑑(𝑝, [𝑇𝑝]𝛼)

1 + 𝑑(𝑢, 𝑝)

}︂
≤

≤ 𝛼max

{︂
𝑑(𝑢, 𝑝), 𝑑(𝑝, [𝑇𝑝]𝛼),

𝑑(𝑢, 𝑝) + 𝑑(𝑝, [𝑇𝑝]𝛼)

2

}︂
≤

≤ 𝛼max {𝑑(𝑢, 𝑝), 𝑑(𝑝, [𝑇𝑝]𝛼)}. (8)

Assume that 𝑑(𝑢, 𝑝) ≤ 𝑑(𝑝, [𝑇𝑝]𝛼); then from (8) we have

𝑑(𝑝, [𝑇𝑝]𝛼) ≤ 𝛼𝑑(𝑝, [𝑇𝑝]𝛼) < 𝑑(𝑝, [𝑇𝑝]𝛼) :

a contradiction. Hence, 𝑑(𝑢, 𝑝) > 𝑑(𝑝, [𝑇𝑝]𝛼), and

𝑑(𝑝, [𝑇𝑝]𝛼) ≤ 𝛼𝑑(𝑢, 𝑝) < 𝑑(𝑢, 𝑝). (9)

Therefore, (7) becomes 𝑑(𝑢, [𝑇𝑝]𝛼) ≤ 𝛼𝑑(𝑢, 𝑝). Consequently,

𝑑(𝑢, [𝑇𝑢]𝛼) ≤ 𝑑(𝑢, [𝑇𝑝]𝛼) + 𝐻([𝑇𝑝]𝛼, [𝑇𝑢]𝛼) ≤
≤ 𝑑(𝑢, [𝑇𝑝]𝛼) + 𝛼max {𝑑(𝑢, 𝑝), 𝑑(𝑝, [𝑇𝑝]𝛼)} ≤ 𝛼𝑑(𝑢, 𝑝) + 𝛼𝑑(𝑢, 𝑝) =

= 2𝛼𝑑(𝑢, 𝑝) < 𝑑(𝑢, 𝑝) < 𝑑(𝑢, [𝑇𝑢]𝛼), (in view of assumption)

yields a contradiction. Therefore, 𝑢 ∈ [𝑇𝑢]𝛼 for some 𝛼 ∈ 𝐼−1.
Case(ii): 1

2
≤ 𝛼 < 1.

For this, we shall prove that

𝐻 ([𝑇𝑧]𝛼, [𝑇𝑢]𝛼) ≤ 𝛼max

{︂
𝑑(𝑢, 𝑧), 𝑑(𝑧, [𝑇𝑧]𝛼), 𝑑(𝑢, [𝑇𝑢]𝛼),

𝑑(𝑧, [𝑇𝑢]𝛼) + 𝑑(𝑢, [𝑇𝑧]𝛼)

2
,
𝑑(𝑧, [𝑇𝑧]𝛼)𝑑(𝑢, [𝑇𝑢]𝛼)

1 + 𝑑(𝑢, 𝑧)

}︂
+

+ 𝛽 min

{︂
𝑑(𝑧, [𝑇𝑧]𝛼), 𝑑(𝑢, [𝑇𝑧]𝛼),

𝑑(𝑢, [𝑇𝑢]𝛼)𝑑(𝑧, [𝑇𝑧]𝛼)

1 + 𝑑(𝑢, 𝑧)

}︂
, (10)

holds for all𝑧 ∈ 𝑋 with 𝑧 ̸= 𝑢. Now, for each 𝑚 ∈ N, there exists
𝑣𝑚 ∈ [𝑇𝑧]𝛼, such that

𝑑(𝑢, 𝑣𝑚) ≤ 𝑑(𝑢, [𝑇𝑧]𝛼) +
1

5𝑚
𝑑(𝑢, 𝑧).

Thus, we have
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𝑑(𝑧, [𝑇𝑧]𝛼) ≤ 𝑑(𝑧, 𝑣𝑚) ≤ 𝑑(𝑧, 𝑢) + 𝑑(𝑢, 𝑣𝑚) ≤

≤ 𝑑(𝑧, 𝑢) + 𝑑(𝑢, [𝑇𝑧]𝛼) +
1

5𝑚
𝑑(𝑧, 𝑢).

Using (2), we have

𝑑(𝑧, [𝑇𝑧]𝛼) ≤ 𝑑(𝑢, 𝑧) + 𝛼max {𝑑(𝑢, 𝑧), 𝑑(𝑧, [𝑇𝑧]𝛼)} +
1

5𝑚
. (11)

If 𝑑(𝑧, 𝑢) > 𝑑(𝑧, [𝑇𝑧]𝛼), then from (11) we get

𝑑(𝑧, [𝑇𝑧]𝛼) ≤ 𝑑(𝑢, 𝑧) + 𝛼𝑑(𝑢, 𝑧) +
1

5𝑚
𝑑(𝑢, 𝑧) =

[︁
(1 + 𝛼) +

1

5𝑚

]︁
𝑑(𝑢, 𝑧),

from which we have[︁ 1

1 + 𝛼

]︁
𝑑(𝑧, [𝑇𝑧]𝛼) ≤

[︁
1 +

1

5(1 + 𝛼)𝑚

]︁
𝑑(𝑢, 𝑧).

Using 𝑟(𝛼) = 1 − 𝛼, we get

𝑟(𝛼)𝑑(𝑧, [𝑇𝑧]𝛼) = (1 − 𝛼)𝑑(𝑧, [𝑇𝑧]𝛼) ≤
(︁ 1

1 + 𝛼

)︁
𝑑(𝑧, [𝑇𝑧]𝛼) ≤

≤
[︁
1 +

1

5(1 + 𝛼)𝑚

]︁
𝑑(𝑢, 𝑧). (12)

As 𝑚 → ∞ in (12), we have

𝑟(𝛼)𝑑(𝑧, [𝑇𝑧]𝛼) ≤ 𝑑(𝑢, 𝑧).

On the other hand, if 𝑑(𝑢, 𝑧) < 𝑑(𝑧, [𝑇𝑧]𝛼), then (11) gives

𝑑(𝑧, [𝑇𝑧]𝛼) ≤ 𝑑(𝑢, 𝑧) + 𝛼𝑑(𝑧, [𝑇𝑧]𝛼) +
1

5𝑚
𝑑(𝑢, 𝑧),

which yields

(1 − 𝛼)𝑑(𝑧, [𝑇𝑧]𝛼) ≤
(︁

1 +
1

5𝑚

)︁
𝑑(𝑢, 𝑧). (13)

As 𝑚 → ∞ in (13), we have

(1 − 𝛼)𝑑(𝑧, [𝑇𝑧]𝛼) ≤ 𝑑(𝑢, 𝑧).

This shows that 𝑟(𝛼)𝑑(𝑧, [𝑇𝑧]𝛼) ≤ 𝑑(𝑢, 𝑧), which, by Definition 1, im-
plies (10). Moreover, since 𝑥𝑛+1 ̸= 𝑥𝑛 for all 𝑛 ∈ N, then 𝑢 ̸= 𝑥𝑛+1.
Therefore, setting 𝑥𝑛 = 𝑧 in (10), we have
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𝑑(𝑥𝑛+1, [𝑇𝑢]𝛼) ≤ 𝐻 ([𝑇𝑥𝑛]𝛼, [𝑇𝑢]𝛼) ≤

≤ 𝛼max

{︂
𝑑(𝑥𝑛, 𝑢), 𝑑(𝑥𝑛, [𝑇𝑥𝑛]𝛼), 𝑑(𝑢, [𝑇𝑢]𝛼),

𝑑(𝑥𝑛, [𝑇𝑢]𝛼) + 𝑑(𝑢, [𝑇𝑥𝑛]𝛼)

2
,
𝑑(𝑥𝑛, [𝑇𝑥𝑛]𝛼)𝑑(𝑢, [𝑇𝑢]𝛼)

1 + 𝑑(𝑥𝑛, 𝑢)

}︂
+

+ 𝑘 min

{︂
𝑑(𝑥𝑛, [𝑇𝑥𝑛]𝛼), 𝑑(𝑢, [𝑇𝑥𝑛]𝛼),

𝑑(𝑥𝑛, [𝑇𝑥𝑛]𝛼)𝑑(𝑢, [𝑇𝑢]𝛼)

1 + 𝑑(𝑥𝑛, 𝑢)

}︂
≤

≤ 𝛼max

{︂
𝑑(𝑥𝑛, 𝑢), 𝑑(𝑥𝑛, 𝑥𝑛+1), 𝑑(𝑢, [𝑇𝑢]𝛼),

𝑑(𝑥𝑛, [𝑇𝑢]𝛼) + 𝑑(𝑢, 𝑥𝑛+1)

2
,
𝑑(𝑥𝑛, 𝑥𝑛+1)𝑑(𝑢, [𝑇𝑢]𝛼)

1 + 𝑑(𝑥𝑛, 𝑢)

}︂
+

+ 𝛽 min

{︂
𝑑(𝑥𝑛, 𝑥𝑛+1), 𝑑(𝑢, 𝑥𝑛+1),

𝑑(𝑥𝑛, 𝑥𝑛+1)𝑑(𝑢, [𝑇𝑢]𝛼)

1 + 𝑑(𝑥𝑛, 𝑢)

}︂
. (14)

As 𝑛 → ∞ in (14), we have

𝑑(𝑢, [𝑇𝑢]𝛼) ≤ 𝛼max

{︂
𝑑(𝑢, [𝑇𝑢]𝛼),

𝑑(𝑢, [𝑇𝑢]𝛼)

2
, 0

}︂
≤ 𝛼𝑑(𝑢, [𝑇𝑢]𝛼). (15)

Since 1 − 𝛼 > 0, (15) implies that 𝑑(𝑢, [𝑇𝑢]𝛼) = 0, and, consequently,
𝑢 ∈ [𝑇𝑢]𝛼 for some 𝛼 ∈ 𝐼−1. �

Example 2. Let 𝑋 = {1, 2, 3}, {1}, {2}, {3} be crisp sets. Define
𝑑 : 𝑋 ×𝑋 −→ R as follows:

𝑑(𝑥, 𝑦) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if 𝑥 = 𝑦
5
18
, if 𝑥 ̸= 𝑦 and 𝑥, 𝑦 ∈ 𝑋 ∖ {2}

1, if if 𝑥 ̸= 𝑦 and 𝑥, 𝑦 ∈ 𝑋 ∖ {3}
7
18
, if if 𝑥 ̸= 𝑦 and 𝑥, 𝑦 ∈ 𝑋 ∖ {1}.

Define a fuzzy mapping 𝑇 : 𝑋 −→ 𝐼𝑋 as follows:

𝑇 (1)(𝑡) = 𝑇 (3)(𝑡) =

⎧⎪⎨⎪⎩
7
12
, if 𝑡 = 1,

1
3
, if 𝑡 = 2,

0, if 𝑡 = 3,

𝑇 (2)(𝑡) =

⎧⎪⎨⎪⎩
0, if 𝑡 = 1,
1
5
, if 𝑡 = 2
7
12
, if 𝑡 = 3.
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Then, for 𝛼 = 7
12
, we have

[𝑇𝑥]𝛼 = {𝑡 ∈ 𝑋 : 𝑇 (𝑥)(𝑡) ≥ 𝛼} =

{︃
{1}, if 𝑥 ̸= 2

{3}, if 𝑥 = 2.

Consider the following cases:
Case I: For 𝑥 ∈ 𝑋 ∖ {2},

𝑑(𝑥, [𝑇𝑥]𝛼) = inf{𝑑(𝑥, 𝑦) : 𝑦 ∈ [𝑇𝑥]𝛼} = 0.

Hence, for 𝑥 = 𝑦 we have

𝑟(𝛼)𝑑(𝑥, [𝑇𝑥]𝛼) ≤ 𝑑(𝑥, 𝑦).

Case II: For 𝑥 ∈ 𝑋 ∖ {1, 3},

𝑑(𝑥, [𝑇𝑥]𝛼) = inf{𝑑(𝑥, 𝑦) : 𝑦 ∈ [𝑇𝑥]𝛼} =
7

18
.

Therefore, for 𝑥 ̸= 𝑦 we get

𝑟(𝛼)𝑑(𝑥, [𝑇𝑥]𝛼) =
7

36
≤ 𝑑(𝑥, 𝑦).

Thus, from the two cases, it follows that for any 𝛽 ≥ 0 there exists
𝛼 = 7

12
∈ 𝐼−1, such that

𝑟(𝛼)𝑑(𝑥, [𝑇𝑥]𝛼) ≤ 𝑑(𝑥, 𝑦)

implies
𝐻([𝑇𝑥]𝛼, [𝑇𝑦]𝛼) ≤ 𝛼

⋁︁
(𝑥, 𝑦) + 𝛽

⋀︁
(𝑥, 𝑦).

Consequently, all the hypotheses of Theorem 1 are satisfied to obtain
1 ∈ [𝑇1] 7

12
.

Next, we present a local fuzzy fixed point theorem for Suzuki-type
(𝛼, 𝛽)-weak contractions. First, recall that an open ball with radius 𝑟 > 0,
centered at 𝑥0 in a metric space 𝑋, is given by

𝐵𝑟(𝑥0) = {𝑥 ∈ 𝑋 : 𝑑(𝑥, 𝑥0) < 𝑟}.

Theorem 2. Let (𝑋, 𝑑) be a complete metric space, 𝑇 : 𝐵𝑟(𝑥0) → 𝐼𝑋

be a Suzuki-type (𝛼, 𝛽)-weak contraction. Assume that for each 𝑥 ∈ 𝑋
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there exists 𝛼 ∈ 𝐼−1 such that [𝑇𝑥]𝛼 is a nonempty closed and bounded
subset of 𝑋 and

𝑑(𝑥0, [𝑇𝑥0]𝛼) < (1 − 𝛼)𝑟.

Then Fix(𝑇 ) ̸= ∅.

Proof. Let 0<𝜂<𝑟 be such that 0<(1−𝛼)(1+
√
𝛼)≤ 1

1+𝜂
, 𝐵*

𝜂(𝑥0)⊂𝐵𝑟(𝑥0),
and 𝑑(𝑥0, [𝑇𝑥0]𝛼) < (1 − 𝛼)𝜂. Then (1 − 𝛼)𝜂 − 𝑑(𝑥0, [𝑇𝑥0]𝛼) > 0. Choose
𝛾 = (1 − 𝛼)𝜂 − 𝑑(𝑥0, [𝑇𝑥0]𝛼) > 0; then there exists 𝑥1 ∈ [𝑇𝑥0]𝛼, such
that 𝑑(𝑥0, 𝑥1) < 𝑑(𝑥0, [𝑇𝑥0]𝛼) + 𝛾. Thus, 𝑑(𝑥0, 𝑥1) < (1 − 𝛼)𝜂. Now, for
𝜌 = 1√

𝛼
and 𝑥1 ∈ [𝑇𝑥0]𝛼, there exists 𝑥2 ∈ [𝑇𝑥1]𝛼, such that 𝑑(𝑥1, 𝑥2) ≤

≤ 𝜌𝐻([𝑇𝑥0]𝛼, [𝑇𝑥1]𝛼). Note that

𝑟(𝛼)𝑑(𝑥0, [𝑇𝑥0]𝛼) ≤ 𝑟(𝛼)𝑑(𝑥0, 𝑥1) ≤ 𝑑(𝑥0, 𝑥1),

we have

𝑑(𝑥1, 𝑥2) ≤ 𝜌𝐻([𝑇𝑥0]𝛼, [𝑇𝑥1]𝛼) =
1√
𝛼
𝐻 ([𝑇𝑥0]𝛼, [𝑇𝑥1]𝛼) ≤

≤
√
𝛼
⋁︁

(𝑥0, 𝑥1) +
𝛽√
𝛼

⋀︁
(𝑥0, 𝑥1) ≤

≤
√
𝛼max

{︂
𝑑(𝑥0, 𝑥1), 𝑑(𝑥0, [𝑇𝑥0]𝛼), 𝑑(𝑥1, [𝑇𝑥1]𝛼),

𝑑(𝑥0, [𝑇𝑥1]𝛼) + 𝑑(𝑥1, [𝑇𝑥0]𝛼)

2
,
𝑑(𝑥0, [𝑇𝑥0]𝛼)𝑑(𝑥1, [𝑇𝑥1]𝛼)

1 + 𝑑(𝑥0, 𝑥1)

}︂
+

+
𝛽√
𝛼

min

{︂
𝑑(𝑥0, [𝑇𝑥0]𝛼), 𝑑(𝑥1, [𝑇𝑥0]𝛼),

𝑑(𝑥0, [𝑇𝑥0]𝛼)𝑑(𝑥1, [𝑇𝑥1]𝛼)

1 + 𝑑(𝑥0, 𝑥1)

}︂
≤

≤
√
𝛼max

{︂
𝑑(𝑥0, 𝑥1), 𝑑(𝑥0, 𝑥1), 𝑑(𝑥1, 𝑥2),

𝑑(𝑥0, 𝑥2) + 𝑑(𝑥1, 𝑥1)

2
,
𝑑(𝑥0, 𝑥1)𝑑(𝑥1, 𝑥2)

1 + 𝑑(𝑥0, 𝑥1)

}︂
+

+
𝛽√
𝛼

min

{︂
𝑑(𝑥0, 𝑥1), 𝑑(𝑥1, 𝑥1),

𝑑(𝑥0, 𝑥1)𝑑(𝑥1, 𝑥2)

1 + 𝑑(𝑥0, 𝑥1)

}︂
≤

≤
√
𝛼max

{︂
𝑑(𝑥0, 𝑥1), 𝑑(𝑥1, 𝑥2),

𝑑(𝑥0, 𝑥1) + 𝑑(𝑥1, 𝑥2)

2

}︂
+

+
𝛽√
𝛼

min {𝑑(𝑥0, 𝑥1), 0, 𝑑(𝑥1, 𝑥2)} ≤
√
𝛼max {𝑑(𝑥0, 𝑥1), 𝑑(𝑥1, 𝑥2)} . (16)
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If 𝑑(𝑥0, 𝑥1) ≤ 𝑑(𝑥1, 𝑥2), then (16) gives

𝑑(𝑥1, 𝑥2) ≤
√
𝛼𝑑(𝑥1, 𝑥2) < 𝑑(𝑥1, 𝑥2) :

a contradiction. Hence, 𝑑(𝑥0, 𝑥1) > 𝑑(𝑥1, 𝑥2) and

𝑑(𝑥1, 𝑥2) <
√
𝛼𝑑(𝑥0, 𝑥1) <

√
𝛼(1 − 𝛼)𝜂.

Note that by the assumption and the triangle inequality, we have

𝑑(𝑥0, 𝑥2) ≤ 𝑑(𝑥0, 𝑥1)+𝑑(𝑥1, 𝑥2) < (1−𝛼)𝜂+
√
𝛼(1−𝛼)𝜂 ≤ 𝜂

1 + 𝜂
< 𝜂.

Hence, 𝑥2 ∈ 𝐵𝜂(𝑥0). Continuing this process recursively, we generate a
sequence {𝑥𝑛}𝑛∈N, such that
(a) 𝑥𝑛 ∈ 𝐵𝜂(𝑥0) for all 𝑛 ∈ N;
(b) 𝑥𝑛 ∈ [𝑇𝑥𝑛]𝛼 for each 𝑛 ∈ N;
(c) 𝑑(𝑥𝑛, 𝑥𝑛+1) ≤ (

√
𝛼)𝑛(1 − 𝛼)𝜂 for all 𝑛 ∈ N.

From (𝑐), it follows, by usual arguments, that {𝑥𝑛}𝑛∈N is a Cauchy se-
quence and converges to some 𝑢 ∈ 𝐵𝑟(𝑥0). From here, following the steps
in the proof of Theorem 1, we conclude that Fix(𝑇 ) ̸= ∅. �
Corollary 1. Let (𝑋, 𝑑) be a complete metric space and 𝑇 :𝑋 →𝐶𝐵(𝑋)
be a multi-valued mapping. Assume that there exists an 𝛼 ∈ 𝐼−1 and some
constants 𝛽 ≥ 0, such that for all 𝑥, 𝑦 ∈ 𝑋,

𝑟(𝛼)𝑑(𝑥, 𝑇𝑥) ≤ 𝑑(𝑥, 𝑦)

implies
𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝛼

⋁︁
(𝑥, 𝑦) + 𝛽

⋀︁
(𝑥, 𝑦),

where the mapping 𝑟 : 𝐼−1 → 𝐼+1 is defined by

𝑟(𝛼) =

{︃
1, if 0 ≤ 𝛼 < 1

2

1 − 𝛼, if 1
2
≤ 𝛼 < 1.

Then Fix(𝑇 ) ̸= ∅.
Proof. Let 𝐼−1 = (0, 1) and 𝛼 ∈ 𝐼−1 be arbitrary. Consider a mapping
𝜛 : 𝑋 → 𝐼−1 and a fuzzy mapping z : 𝑋 → 𝐼𝑋 defined by

z(𝑥)(𝑡) =

{︃
𝜛(𝑥), if 𝑡 ∈ 𝑇𝑥

0, if 𝑡 /∈ 𝑇𝑥.
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Then

[z𝑥]𝛼 = {𝑡 ∈ 𝑋 : z(𝑥)(𝑡) ≥ 𝜛(𝑥)} = 𝑇𝑥.

Therefore,

𝑑(𝑥, 𝑦) ≥ 𝑟(𝛼)𝑑(𝑥, 𝑇𝑥) = 𝑟(𝛼)𝑑(𝑥, [z𝑥]𝛼).

Thus, Theorem 1 can be applied to finding 𝑢 ∈ 𝑋, such that 𝑢 ∈ 𝑇𝑢. �

In the following, we provide an example to highlight the generality of
Corollary 1.
Example 3. Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑝, 𝑞} and 𝑑 : 𝑋×𝑋 → [0,∞) be defined by

𝑑(𝑎, 𝑏) = 𝑑(𝑎, 𝑐) = 9,

𝑑(𝑏, 𝑞) = 𝑑(𝑐, 𝑝) = 𝑑(𝑐, 𝑞) = 𝑑(𝑏, 𝑐) = 14,

𝑑(𝑎, 𝑝) = 𝑑(𝑎, 𝑞) = 18,

𝑑(𝑏, 𝑝) = 16, 𝑑(𝑝, 𝑞) = 10,

𝑑(𝑢, 𝑢) = 0 and 𝑑(𝑢, 𝑣) = 𝑑(𝑣, 𝑢) for all 𝑢, 𝑣 ∈ 𝑋.

Define 𝑇 : 𝑋 → 𝐶𝐵(𝑋) by

𝑇𝑢 =

⎧⎪⎨⎪⎩
{𝑐}, if 𝑢 ∈ 𝑋 ∖ {𝑎, 𝑏, 𝑐, 𝑝}
{𝑎, 𝑏}, if 𝑢 ∈ 𝑋 ∖ {𝑎, 𝑏, 𝑐, 𝑞}
{𝑎}, if 𝑢 ∈ 𝑋 ∖ {𝑝, 𝑞}.

Now, it is easy to verify that all the assumptions of Corollary 1 are
satisfied with 𝛼 = 8

13
and 𝛽 = 6. In fact,

𝑟(𝛼)𝑑(𝑝, 𝑇𝑝) = 9.85 ≤ 𝑑(𝑝, 𝑞)

implies

𝐻(𝑇𝑝, 𝑇𝑞) = 𝐻 ({𝑎, 𝑏}, {𝑐}) = 14 ≤ 𝛼
⋁︁

(𝑝, 𝑞) + 𝛽
⋀︁

(𝑝, 𝑞) ≤

≤ 8

13
max{10, 14, 14, 14, 18} + 6 min{14, 14, 18} ≤ 95.

Further, we see that there exists 𝑢 = 𝑎 ∈ 𝑋, such that 𝑢 ∈ 𝑇𝑢. On the
other hand, observe that if we set 𝑢 = 𝑝 and 𝑣 = 𝑞, then
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⋁︁
(𝑝, 𝑞) = max

{︂
𝑑(𝑝, 𝑞), 𝑑(𝑝, 𝑇𝑝), 𝑑(𝑞, 𝑇 𝑞),

𝑑(𝑝, 𝑇𝑞) + 𝑑(𝑞, 𝑇𝑝)

2
,
𝑑(𝑝, 𝑇𝑝)𝑑(𝑞, 𝑇 𝑞)

1 + 𝑑(𝑝, 𝑞)

}︂
=

= max{10, 14, 14, 14, 18} = 18,

and
𝐻(𝑇𝑝, 𝑇𝑞) = 14 > 11.08 = 𝛼

⋁︁
(𝑝, 𝑞).

Therefore, the main results in [8, 9] cannot be applied in this case to find
a fixed point of 𝑇 .

5. Application in Homotopy. In this section, we apply Theorem 2
to prove a homotopy result. First, for convenience, we recall the following
familiar definitions.

Definition 2. A relation ≤ is a total order on a set 𝑈 if for all 𝑠, 𝑡, 𝑢 ∈ 𝑈 ,
the following conditions hold:

(i) Reflexivity: 𝑠 ≤ 𝑠;
(ii) Antisymmetry: if 𝑠 ≤ 𝑡 and 𝑡 ≤ 𝑠, then 𝑠 = 𝑡;
(iii) Transitivity: if 𝑠 ≤ 𝑡 and 𝑡 ≤ 𝑢, then 𝑠 ≤ 𝑢;
(iv) Comparability: for every 𝑠, 𝑡 ∈ 𝑈 , either 𝑠 ≤ 𝑡 or 𝑡 ≤ 𝑠.

Recall that if the set 𝑈 satisfies only the axioms (𝑖) − (𝑖𝑖𝑖), then it
is said to be partially ordered. In what follows, we shall call a totally
ordered set a chain.

Lemma 1. (Kuratowski-Zorn’s Lemma ) If 𝑈 is any nonempty partially
ordered set in which every chain has an upper bound, 𝑈 has a maximal
element.

Definition 3. Let 𝑋1 and 𝑋2 be any two topological spaces and 𝜋, 𝜔 :
𝑋1 → 𝑋2 be continuous functions. A function 𝐻 : 𝑋1 × [0, 1] → 𝑋2,
such that for any 𝑢 ∈ 𝑋1 𝐻(𝑢, 0) = 𝜋(𝑢) and 𝐻(𝑢, 1) = 𝜔(𝑢), is called a
homotopy between 𝜋 and 𝜔.

We shall denote the boundary of a set 𝑈 by 𝐵𝑑(𝑈).

Theorem 3. Let (𝑋, 𝑑) be a complete metric space and 𝑈 be an open
subset of 𝑋. If 𝑀 : 𝑈 × [0, 1] → 𝐼𝑋 satisfies the following conditions:

(h1) 𝑢 /∈ 𝑀(𝑢, 𝑡) for every 𝑢 ∈ 𝐵𝑑(𝑈) and 𝑡 ∈ [0, 1];
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(h2) 𝑀(·, 𝑡) : 𝑈 −→ 𝐼𝑋 is a Suzuki-type (𝛼, 𝛽)-weak contraction for all
𝑡 ∈ [0, 1];

(h3) there exist a nondecreasing function 𝑓 : [0, 1] → R, such that
𝐻(𝑀(𝑢, 𝑡),𝑀(𝑢, 𝑠)) ≤ |𝑓(𝑡) − 𝑓(𝑠)| for all 𝑠, 𝑡 ∈ [0, 1] and each
𝑢 ∈ 𝑈 ;

(h4) 𝑀 : 𝑈 × [0, 1] → 𝐼𝑋 is closed and bounded;

then 𝑀(·, 0) has a fixed point.

Proof. Assume that 𝑝 is a fixed point of 𝑀(·, 0). Then, by condition (h1),
𝑝 ∈ 𝑈 . Consider the set

⋀︀*, given by

*⋀︁
= {(𝑡, 𝑢) ∈ [0, 1] × 𝑈 : 𝑢 ∈ 𝑀(𝑢, 𝑡)} .

Note that (0, 𝑝) ∈
⋀︀*; hence

⋀︀* ̸= ∅. Let 𝛼 ∈ 𝐼−1 = (0, 1) and define a
partial order ≤ on

⋀︀* as follows:

(𝑡, 𝑢) ≤ (𝑠, 𝑣) if and only if 𝑡 ≤ 𝑠 and 𝑑(𝑢, 𝑣) ≤ 2

1 − 𝛼
[𝑓(𝑠) − 𝑓(𝑡)] .

Suppose Ω is a chain of
⋀︀* and 𝑡* := sup{𝑡 : (𝑡, 𝑢) ∈ Ω}. Assume that

{𝑡𝑛, 𝑢𝑛} is a sequence in Ω, such that (𝑡𝑛, 𝑢𝑛) ≤ (𝑡𝑛+1, 𝑢𝑛+1) and 𝑡𝑛 → 𝑡*

as 𝑛 → ∞. Then, for all positive integers 𝑚,𝑛(𝑚 > 𝑛),

𝑑(𝑢𝑚, 𝑢𝑛) ≤ 2

1 − 𝛼
|𝑓(𝑡𝑚) − 𝑓(𝑡𝑛)| . (17)

As 𝑚,𝑛 → ∞ in (17), we get 𝑑(𝑢𝑚, 𝑢𝑛) → 0. Hence, {𝑢𝑛}𝑛∈N is a
Cauchy sequence and converges to some 𝑢* ∈ 𝑋. Since 𝑀 is closed
and 𝑢𝑛 ∈ 𝑀(𝑢𝑛, 𝑡𝑛), therefore, 𝑢* ∈ 𝑀(𝑢*, 𝑡*). From condition (ℎ1),
𝑢* ∈ 𝑈 . Thus, (𝑡*, 𝑢*) ∈

⋀︀*. Since Ω is a chain, hence (𝑡, 𝑢) ≤ (𝑡*, 𝑢*)
for all (𝑡, 𝑢) ∈ Ω. In other words, (𝑡*, 𝑢*) is an upper bound of Ω. Thus,
by Kuratowski-Zorn Lemma,

⋀︀* has a maximal element (𝑡0, 𝑢0). Next,
we show that 𝑡0 = 1. Suppose on the contrary: that 𝑡0 < 1. Let
𝑟 = 2

1−𝛼
|𝑓(𝑡) − 𝑓(𝑡0)| > 0 with 𝑡 ∈ (𝑡0, 1], such that 𝐵𝑟(𝑢0) ⊂ 𝑈 . Note

that by condition (h3)

𝑑(𝑢0,𝑀(𝑢0, 𝑡)) ≤ 𝑑(𝑢0,𝑀(𝑢0, 𝑡0)) + 𝐻(𝑀(𝑢0, 𝑡0),𝑀(𝑢0, 𝑡)) ≤

≤ |𝑓(𝑡) − 𝑓(𝑡0)| =
(1 − 𝛼)𝑟

2
< (1 − 𝛼)𝑟.
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Therefore, 𝑀(·, 𝑡) : 𝐵𝑟(𝑢0) → 𝐼𝑋 satisfies all the assumptions of Theo-
rem 2 for every 𝑡 ∈ [0, 1]. Consequently, there exists 𝑢 ∈ 𝐵𝑟(𝑢0), such that
𝑢 ∈ 𝑀(𝑢, 𝑡), which implies that (𝑡, 𝑢) ∈

⋀︀* for all 𝑡 ∈ [0, 1]. Now,

𝑑(𝑢0, 𝑢) ≤ 𝑟 =
2

1 − 𝛼
|𝑓(𝑡) − 𝑓(𝑡0)|,

yields (𝑡0, 𝑢0) < (𝑡, 𝑢), which is a contradiction to the fact that (𝑡0, 𝑢0) is
maximal. Conversely, assume that 𝑀(·, 1) has a fixed point; then, using
similar steps as above, one can show that 𝑀(·, 0) has a fixed point. �
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