
66 Probl. Anal. Issues Anal. Vol. 9 (27), No 1, 2020, pp. 66–82
DOI: 10.15393/j3.art.2020.6770

UDC 517.968, 517.988

H. K. Kadhim, M. A. Abdul Hussain

THE ANALYSIS OF BIFURCATION SOLUTIONS OF THE
CAMASSA–HOLM EQUATION BY ANGULAR

SINGULARITIES

Abstract. This paper studies bifurcation solutions of the Camassa –
Holm equation by using the local Lyapunov – Schmidt method. The
Camassa–Holm equation is studied by reduction to an ODE. We
find the key function that corresponds to the functional related to
this equation and defined on a new domain. The bifurcation anal-
ysis of the key function is investigated by the angular singularities.
We find the parametric equation of the bifurcation set (caustic)
with its geometric description. Also, the bifurcation spreading of
the critical points is found.
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1. Introduction. The nonlinear problems that occur in mathematics
and physics may be formed in the form of operator equations

𝑓(𝑥, 𝜆) = 𝑏, 𝑥 ∈ 𝑂, 𝑏 ∈ 𝑌, 𝜆 ∈ R𝑛, (1)

where 𝑓 is a smooth Fredholm map with the zero index, 𝑋, 𝑌 are Banach
spaces, and 𝑂 ⊆ 𝑋 is open. These problems can be reduced to finite-
dimensional equations

Θ(𝜉, 𝜆) = 𝛽, 𝜉 ∈ 𝑀, 𝛽 ∈ 𝑁, (2)

where 𝑀 and 𝑁 are smooth finite-dimensional manifolds. The Lya-
punov – Schmidt method can reduce equation (1) to equation (2) so that
equation (2) preserves all the analytical and topological features of equa-
tion (1) (bifurcation diagram, multiplicity, etc): see, e. g., [8], [12], [10],
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[9]. Singularities of smooth maps play an important role in investiga-
tion of bifurcation solutions of boundary-value problems (BVPs). One
can find a good review of these studies in [5]. The study of singular-
ities of smooth maps and their applications to the BVPs were signif-
icantly developed in the works of Sapronov and his group, for exam-
ple, in [11], Shvyreva studied the boundary singularities of the functioñ︁𝑊 (𝜂, 𝛾) = 𝜂41 + (𝑐𝜂1 + 𝜂2 )2 − 2𝜀1𝜂

2
1 + 2𝜀2𝜂

2
1𝜂2 + 2𝜀3𝜂1𝜂2 + 2𝜀4𝜂1 + 2𝜀5𝜂2,

where 𝜂 = ( 𝜂1, 𝜂2), 𝛾 = (𝜀1, 𝜀2, 𝜀3, 𝜀4, 𝜀5), 𝜂1, 𝜂2 > 0, and considered the
functional

𝑉 (𝑢, 𝜆) =

𝜋∫︁
0

(︂(︀
𝑢

′)︀2
2

+ 𝜆(cos(𝑢 (𝑥)) − 1)

)︂
𝑑𝑥,

with the extra condition ⟨𝑢, 𝜔⟩ =
𝜋∫︀
0

𝑢(𝑥)𝜔(𝑥) 𝑑𝑥 > 0, as an application of

her results. Abdul Hussain studied in [1] the following problem:

𝑑4𝑢

𝑑𝑥4
+ 𝛼

𝑑2𝑢

𝑑𝑥2
+ 𝛽𝑢 + 𝑢2 = 0, 𝑢(0) = 𝑢(1) = 𝑢

′′
(0) = 𝑢

′′
(1) = 0,

with the extra condition 𝑢(𝑥1) > 0, 𝑢(𝑥2) > 0, 𝑥1, 𝑥2 ∈ [0,1], by consider-
ing the following functional energy:

𝑉 (𝑢, 𝜆) =

1∫︁
0

(︃
(𝑢′′)2

2
− 𝛼

(𝑢′)2

2
+ 𝛽

𝑢2

2
+

𝑢3

3

)︃
𝑑𝑥,

which is reduced to the study of the following key function with bound-
aries,

𝑊 (𝜉, 𝛾) =
𝜉31
3

+ 𝜉1𝜉
2
2 + 𝛿 𝜉22 + 𝛽 𝜉1 + 𝑜

(︀
|𝜉|3
)︀

+ 𝑂
(︀
|𝜉|3
)︀
𝑂 (𝛾) ,

where 𝜉1 − 𝑎 𝜉2 > 0, 𝜉1 + 𝑏 𝜉2 > 0. In this paper, we consider a boundary-
value problem not previously studied in the same way; see Section 3.De-
tails on the purpose of the paper are also given there.

The Lyapunov-Schmidt method supposes that 𝑓 : Ω ⊂ 𝐸 → 𝐹 is a
smooth nonlinear Fredholm map of zero index. The map 𝑓 is said to have
the variational property, when there exists a functional 𝑉 : Ω ⊂ 𝐸 → R,
such that 𝑓 = grad𝐻𝑉 or, equivalently, 𝜕𝑉

𝜕𝑥
(𝑥, 𝜆)ℎ = ⟨𝑓(𝑥, 𝜆), ℎ⟩𝐻 , ∀𝑥 ∈ Ω,
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ℎ ∈ 𝐸, where ⟨· , ·⟩𝐻 is the scalar inner product in the Hilbert space 𝐻.
Also, it assumes that 𝐸 ⊂ 𝐹 ⊂ 𝐻. The solutions of equation 𝑓(𝑥, 𝜆) = 0
are the critical points of functional 𝑉 (𝑥, 𝜆). The finite-dimensional re-
duction method (the Lyapunov-Schmidt method) can reduce the problem
𝑉 (𝑥, 𝜆) → extr, 𝑥 ∈ 𝐸, 𝜆 ∈ R𝑛 to the equivalent problem 𝑊 (𝜉, 𝜆) → extr,
𝜉 ∈ R𝑛, where 𝑊 (𝜉, 𝜆) is called the key function. If 𝑁 = 𝑠𝑝𝑎𝑛{𝑒1, . . . , 𝑒𝑛}
is a subspace of a Banach space 𝐸, where {𝑒1, . . . , 𝑒𝑛} is an orthonor-
mal set in 𝐻, then the key function 𝑊 (𝜉, 𝜆) can be defined by the form
𝑊 (𝜉, 𝜆) = inf

𝑥:⟨𝑥,𝑒𝑖⟩=𝜉𝑖
𝑉 (𝑥, 𝜆), 𝜉 = (𝜉1, . . . , 𝜉𝑛). The function 𝑊 preserves

all topological and analytical properties of the functional 𝑉 (multiplic-
ity, bifurcation diagram, etc) [9]. The study of bifurcating solutions of
the functional 𝑉 is tantamount to the study of bifurcating solutions of
the key function. If 𝑓 possesses a variational property, then the equation
Θ(𝜉, 𝜆) = grad𝑊 (𝜉, 𝜆) = 0 is called the bifurcating equation.

Definition 1. [4] The set of all 𝜆 for which the function 𝑓(𝑥, 𝜆) possesses
degenerate critical points is called the bifurcation set (caustic) and denoted
by Σ.

2. Angular singularities of Fredholm functionals [4]. To in-
vestigate the behavior of a Fredholm functional in a neighborhood of an
angular singular point, one uses the reduction to an analogous extremal
problem

𝑊 (𝑥) → extr,

where 𝑥 ∈ 𝐶, 𝐶 = {𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑚, 𝑥𝑚+1, . . . , 𝑥𝑚+𝑡, . . . , 𝑥𝑛)⊤ ∈ R𝑛 :
∃ integers 𝑡,𝑚 ∋ 0 6 𝑡 6 𝑛−𝑚 and 𝑥𝑚 > 0, 𝑥𝑚+1 > 0, . . . , 𝑥𝑚+𝑡 > 0}.
We say that a point 𝑎 ∈ 𝐶 is conditionally critical for a smooth function
𝑊 in R𝑛 if grad𝑊 (𝑎) is orthogonal to the least face of 𝐶 containing 𝑎, and
the set {(𝑥𝑚, 𝑥𝑚+1, . . . , 𝑥𝑚+𝑡)

⊤ ∈ R𝑛 : 𝑥𝑚 > 0, 𝑥𝑚+1 > 0, . . . , 𝑥𝑚+𝑡 > 0}
is called the 𝑚-hedral angle.
The multiplicity of the conditionally critical point 𝑎 (denoted by 𝜇) is the
dimension of the quotient algebra: the set

̂︀𝑄 =

∏︀
𝑎(R𝑛)

𝐼
,

where
∏︀

𝑎(R𝑛) is the ring of germs of smooth functions on R𝑛 at the point
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𝑎 and

𝐼 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︂
𝜕𝑊

𝜕𝑥1

, . . . , 𝑥𝑚
𝜕𝑊

𝜕𝑥𝑚

, . . . , 𝑥𝑚+𝑡
𝜕𝑊

𝜕𝑥𝑚+𝑡

, . . . ,
𝜕𝑊

𝜕𝑥𝑛

)︂
, for all 𝑚 > 1,(︂

𝑥𝑚
𝜕𝑊

𝜕𝑥𝑚

, . . . , 𝑥𝑚+𝑡
𝜕𝑊

𝜕𝑥𝑚+𝑡

, . . . ,
𝜕𝑊

𝜕𝑥𝑛

)︂
, for 𝑚 = 1

is the angular Jacobi ideal in
∏︀

𝑎(R𝑛). The multiplicity 𝜇 of a conditionally
critical point 𝑎 is equal to the sum of multiplicities 𝜇+ 𝜇0, where 𝜇 is the
(usual) multiplicity of 𝑊 on R𝑛, while 𝜇0 is the (usual) multiplicity of the
restriction 𝑊 | 𝜕𝐶 (where 𝜕𝐶 is the boundary of the set 𝐶).

If a critical point is “usual”, then spreadings of bifurcating extremes
(bif-spreadings) are represented by the row (𝑐0, 𝑐1, . . . , 𝑐𝑛), where 𝑐𝑖 is the
number of critical points of the Morse index 𝑖. If we are dealing with an
angular (or boundary) critical point, then bif-spreadings are represented
by the following matrix of order (𝑚 + 𝑡 + 1) × (𝑛 + 1):⎛⎜⎜⎜⎜⎜⎜⎝

𝑐10 𝑐11 . . 𝑐1𝑛
𝑐20 𝑐21 . . 𝑐2𝑛
. . . . .
. . . . .

𝑐𝑚+𝑡
0 𝑐𝑚+𝑡

1 . . 𝑐𝑚+𝑡
𝑛

𝑐0 𝑐1 . . 𝑐𝑛

⎞⎟⎟⎟⎟⎟⎟⎠ .

Here 𝑐𝑗𝑖 is the number of the angular critical points of index 𝑖
(for 𝑗 = 1, 2, . . . ,𝑚 + 𝑡), while 𝑐𝑖 is the number of usual (situated in-
side 𝐶) critical points of index 𝑖.

3. Bifurcation solutions of the Camassa-Holm equation.
In 1993, Camassa and Holm used the Hamiltonian method to derive a new
formula for a completely integrable shallow water wave equation

𝑢𝑡 + 2𝑘𝑢𝑥 − 𝑢𝑥𝑥𝑡 + 3𝑢𝑢𝑥 = 2𝑢𝑥𝑢𝑥𝑥 + 𝑢𝑢𝑥𝑥𝑥, (3)

where 𝑢 is the fluid speed in the 𝑥 direction (or, equivalently, the height
of the waters free surface above a flat bottom), 𝑘 is a constant related to
the critical depthless water wave velocity, and subscripts indicate partial
derivatives. This equation keeps the higher-order terms (the right-hand
side of (3)) in a little-amplitude expansion of the incompressible Euler
conditions for unidirectional motion of wave at the free surface under the
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effect of gravity. Now, equation (3) is called the equation of Camassa-
Holm (CH). In recently years, CH equation has been generalized to the
general Camassa-Holm (GCH) equation:

𝑢𝑡 + 2𝑘𝑢𝑥 − 𝑢𝑥𝑥𝑡 +
1

2
[𝑓(𝑢)]𝑥 = 2𝑢𝑥𝑢𝑥𝑥 + 𝑢𝑢𝑥𝑥𝑥, (4)

where 𝑓(𝑢) is a function of 𝑢 and [𝑓(𝑢)]𝑥 is the derivative of 𝑓 with respect
to 𝑥. In [6], [7], the authors investigated bifurcations of the traveling-wave
solutions for the general Camassa-Holm equation (3) and the correspond-
ing traveling-wave system with 𝑓(𝑢) = 𝛼 𝑢2 + 𝛽 𝑢3. Note that we can
obtain equation (3) from equation (4) by assuming 𝛼 = 3 and 𝛽 = 0 in
the function 𝑓(𝑢) = 𝛼 𝑢2 + 𝛽 𝑢3.

Suppose that 𝑢 (𝑥,𝑡) = 𝑧 (𝑦), 𝑦 = 𝑥 − 𝛼𝑡, where 𝛼 is the wave speed.
Equation (3) can be converted to an ODE with the variable 𝑧 (𝑦):

𝛼𝑧′′ + 𝛽𝑧 +
3

2
𝑧2 −

(︂
1

2
(𝑧′)2 + 𝑧𝑧′′

)︂
= 0, (5)

where 𝛼, 𝛽 are parameters and ′ = 𝑑/𝑑𝑦.
In this section, we investigate bifurcation solutions of equation (5) with

the boundary conditions that satisfy equation (5):

𝑧(0) = 𝑧(1) = 0,

where 𝑧 = 𝑧(𝑦), 𝑦 ∈ [0, 1].
Assume that 𝑓 : 𝐸 → 𝑀 is a nonlinear Fredholm operator with zero

index, from the Banach space 𝐸 to the Banach space 𝑀 , 𝐸 = 𝐶2 ([0, 1],R)
is the space of all continuous functions that have derivatives of order at
least two, 𝑀 = 𝐶0([0, 1],R) is the space of all continuous functions, and
𝑓 is defined by the operator equation:

𝑓 (𝑧, 𝜆) = 𝛼𝑧′′ + 𝛽𝑧 +
3

2
𝑧2 −

(︂
1

2
(𝑧′)2 + 𝑧𝑧′′

)︂
= 0, (6)

where 𝜆 = (𝛼, 𝛽). Every solution of the equation (5) (1-periodic solution)
is a solution of the operator equation (6). Since the operator 𝑓 possesses
the variational property, there exists a functional 𝑉 , such that

𝑓(𝑧, 𝜆) = grad𝐻𝑉 (𝑧, 𝜆),
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where

𝑉 (𝑧, 𝜆) =
1

2

1∫︁
0

(︁
−𝛼 (𝑧′)

2
+ 𝛽𝑧2 + 𝑧3 + 𝑧 (𝑧′)2

)︁
𝑑𝑥,

grad𝐻𝑉 denotes the gradient of 𝑉 , and 𝑧 fulfills the following conditions:

⟨𝑒1, 𝑧⟩ + 𝑎 ⟨𝑒2, 𝑧⟩ > 0, (7a)

⟨𝑒1, 𝑧⟩ − 𝑎 ⟨𝑒2, 𝑧⟩ > 0, (7b)

Here {𝑒1,𝑒2} ⊂ 𝐸 is an orthonormal set in the Hilbert space 𝐻, ⟨· ,·⟩ is
the scalar inner product in 𝐻, and 𝑎 is a positive real constant.

In this case, every solution of equation (6) is a critical point of the
functional 𝑉 .

The purpose of this paper is to find the solution areas of equation
(5), where each bifurcating solution of (5) equals a critical point of the
functional 𝑉 and each critical point of the functional 𝑉 coincides with
a critical point of the key function of the functional 𝑉 . Therefore, in
subsections below we investigate bifurcating extremes of the function (8),
equivalent to investigating bifurcating extremes of functional 𝑉 by the
key function (i.e., studying bifurcating solutions of functional 𝑉 is tanta-
mount to studying bifurcating solutions of this function). Hence, studying
bifurcating solutions of equation (5) is equivalent to studying bifurcating
solutions of function (8).

3.1 Singularities of the function of codimension three. In this
subsection, we consider the function that has codimension three at the
origin [2]. It is defined by

𝑊 (𝑠, 𝜌) =
𝜂31
3

+
𝜂32
3

+ 𝜂2𝜂
2
1 + 𝜂22𝜂1 + 𝜆1𝜂2𝜂1 + 𝜆2

(︀
𝜂21 + 𝜂22

)︀
, (8)

where 𝑠 = (𝜂1, 𝜂2), 𝜂1, 𝜂2 > 0, 𝜌 = (𝜆1, 𝜆2) and 𝜆1, 𝜆2 are parameters.
The function (8) has codimension three at the origin, hence it has

multiplicity four. The main purpose is to find a geometrical description
(a bifurcation diagram) of the caustic of function (8), and then to deter-
mine the spreading of the critical points of this function. The germ (the
principle part) of function (8) is

𝑊0 =
𝜂31
3

+
𝜂32
3
.
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So, from section we have 𝐼 = (𝜂1
𝜕𝑊0

𝜕𝜂1
, 𝜂2

𝜕𝑊0

𝜕𝜂2
) = (𝜂31, 𝜂

3
2), and 𝜇 = 9 where

𝜇 = 3 and 𝜇0 = 6. Since multiplicity 𝜇 is equal to the number of critical
points [3], the number of critical points of function (8) is nine; three of
these points lie on the boundary 𝜂1 = 0, three points lie on the boundary
𝜂2 = 0, and three points lie in the interior. So, the caustic of function (8)
is the union of six sets:

Σ = Σ0,0 ∪ Σ𝑖𝑛𝑡
0,1 ∪ Σ𝑒𝑥𝑡

0,1 ∪ Σ𝑖𝑛𝑡
1,0 ∪ Σ𝑒𝑥𝑡

1,0 ∪ Σ1,1,

where Σ0,0 is the subset (component) of the caustic corresponding to the
degeneration at the vertex (0, 0); Σ𝑖𝑛𝑡

0,1 and Σ𝑒𝑥𝑡
0,1 are the subsets (compo-

nents) of the caustic corresponding to the degeneration of boundary sin-
gularities along the boundary 𝜂1 = 0 and along the normal, respectively;
Σ𝑖𝑛𝑡

1,0 and Σ𝑒𝑥𝑡
1,0 are the same for the boundary 𝜂2 = 0 and its normal; finally,

Σ1,1 is the component corresponding to the degeneration of the interior
(non-boundary) critical points.

3.2. Degeneration at the vertex (0, 0). To determine the set Σ0,0,
we must find the following union:{︁

(𝜆1, 𝜆2) :
𝜕𝑊 (0, 0, 𝜆1, 𝜆2)

𝜕𝜂1
= 0
}︁⋃︁{︁

(𝜆1, 𝜆2) :
𝜕𝑊 (0, 0, 𝜆1, 𝜆2)

𝜕𝜂2
= 0
}︁
.

Since the conditions in the two sets above are satisfied for all pairs (𝜆1, 𝜆2)
in the plane, there is no graphical representation of the set Σ0,0, so it is
empty.

3.3. Degeneration along the boundary 𝜂1 = 0 (internal de-
generation). The next lemma gives the equation that describes the set
Σ𝑖𝑛𝑡

0,1.

Lemma 1. The parametric equation that represents the set Σ𝑖𝑛𝑡
0,1 is

𝜆2
2 = 0.

Proof. To determine the set Σ𝑖𝑛𝑡
0,1, we consider the boundary critical points

of function (8), such that the second-order partial derivative of this func-
tion with respect to 𝜂2 vanishes at these points, i.e, the following relations
are valid:

𝜕𝑊 (0, 𝜂2, 𝜆1, 𝜆2)

𝜕𝜂2
=

𝜕2𝑊 (0, 𝜂2, 𝜆1, 𝜆2)

𝜕𝜂22
= 0, 𝜂2 > 0
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or
𝜂22 + 2 𝜂2𝜆2 = 𝜂2 + 𝜆2 = 0.

We can represent the relations above as the system of equations

𝜂22 + 2 𝜂2𝜆2 = 0 (9a)
𝜂2 + 𝜆2 = 0. (9b)

From equation (9b), we get 𝜂2 = −𝜆2, and substituting the value of 𝜂2 in
equation (9a), we find

𝜆2
2 = 0,

which represents the set Σ𝑖𝑛𝑡
0,1. �

3.4. Degeneration along the boundary 𝜂1 = 0 (external de-
generation). The next lemma gives the equation that describes the set
Σ𝑒𝑥𝑡

0,1 .

Lemma 2. The parametric equation that represents the set Σ𝑒𝑥𝑡
0,1 is

(−2𝜆2 + 𝜆1)𝜆1 = 0.

Proof. To determine the set Σ𝑒𝑥𝑡
0,1 , we consider the boundary critical points

of function (8), such that the first-order partial derivative of this function
with respect to 𝜂1 vanishes at these points, i. e, the following relations are
valid:

𝜕𝑊 (0, 𝜂2, 𝜆1, 𝜆2)

𝜕𝜂2
=

𝜕𝑊 (0, 𝜂2, 𝜆1, 𝜆2)

𝜕𝜂1
= 0, 𝜂2 > 0

or
𝜂22 + 2 𝜂2𝜆2 = 𝜂22 + 𝜂2𝜆1 = 0.

We can represent the above relations by the system of equations

𝜂22 + 2 𝜂2𝜆2 = 0 (10a)
𝜂22 + 𝜂2𝜆1 = 0. (10b)

Since 𝜂2>0, by the above assumption, equation (10b) yields only 𝜂2 =−𝜆1;
substituting the value of 𝜂2 in equation (10a), we get the equation

(−2𝜆2 + 𝜆1)𝜆1 = 0.

�
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3.5. Degeneration along the boundary 𝜂2 = 0 (internal degen-
eration). To determine the set Σ𝑖𝑛𝑡

1,0, we consider the boundary critical
points of function (8), such that the second-order partial derivative of this
function with respect to 𝜂1 vanishes at these points, i. e, the following
relations are valid:

𝜕𝑊 (𝜂1, 0, 𝜆1, 𝜆2)

𝜕𝜂1
=

𝜕2𝑊 (𝜂1, 0, 𝜆1, 𝜆2)

𝜕𝜂21
= 0, 𝜂1 > 0

or
𝜂21 + 2 𝜂1𝜆2 = 2 𝜂1 + 2𝜆2.

Lemma 3. The parametric equation cwfor the set Σ𝑖𝑛𝑡
1,0 is

𝜆2
2 = 0.

Proof. The proof is similar to the proof of Lemma 1. �

3.6. Degeneration along the boundary 𝜂2 = 0 (external de-
generation). To determine the set Σ𝑒𝑥𝑡

1,0 r, consider the boundary critical
points of function (8), such that the first-order partial derivative of this
function with respect to 𝜂2 vanishes at these points, i. e, the following
relations are valid:

𝜕𝑊 (𝜂1, 0, 𝜆1, 𝜆2)

𝜕𝜂1
=

𝜕𝑊 (𝜂1, 0, 𝜆1, 𝜆2)

𝜕𝜂2
= 0, 𝜂1 > 0

or
𝜂21 + 2 𝜂1𝜆2 = 𝜂21 + 𝜂1𝜆1 = 0.

Lemma 4. The parametric equation that represents the set Σ𝑒𝑥𝑡
1,0 is

(−2𝜆2 + 𝜆1)𝜆1 = 0.

Proof. The proof is similar to the proof of Lemma 2. �

3.7. Degeneration of the interior (non-boundary). The next
lemma gives the equation that represents the set Σ1,1.

Lemma 5. The parametric equation that represents the set Σ1,1 is

𝜆3
1 + 2𝜆2

1𝜆2 − 4𝜆1𝜆
2
2 − 8𝜆3

2 = 0.
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Proof. To determine the set Σ1,1, consider the critical points of func-
tion (8), defined by the system

𝜕𝑊 (𝜂1, 𝜂2, 𝜆1, 𝜆2)

𝜕𝜂1
=

𝜕𝑊 (𝜂1, 𝜂2, 𝜆1, 𝜆2)

𝜕𝜂2
= 0, 𝜂1, 𝜂2 > 0.

or

𝜂21 +2 𝜂1𝜂2 +2 𝜂1𝜆2 +𝜂22 +𝜂2𝜆1 = 𝜂21 +2 𝜂1𝜂2 +𝜂1𝜆1 +𝜂22 +2 𝜂2𝜆2 = 0. (11)

Then, make the Hessian determinant of function (8) vanish to get the
equation

− 4 𝜂1𝜆1 + 8 𝜂1𝜆2 − 4 𝜂2𝜆1 + 8 𝜂2𝜆2 − 𝜆2
1 + 4𝜆2

2 = 0. (12)

We can express (11) and (12) in the following system:

𝜂21 + 2 𝜂1𝜂2 + 2 𝜂1𝜆2 + 𝜂22 + 𝜂2𝜆1 = 0, (13a)
𝜂21 + 2 𝜂1𝜂2 + 𝜂1𝜆1 + 𝜂22 + 2 𝜂2𝜆2 = 0, (13b)

−4 𝜂1𝜆1 + 8 𝜂1𝜆2 − 4 𝜂2𝜆1 + 8 𝜂2𝜆2 − 𝜆2
1 + 4𝜆2

2 = 0. (13c)

By subtracting equation (13b) from equation (13a), we get

(−𝜆1 + 2𝜆2)𝜂1 + (𝜆1 − 2𝜆2)𝜂2 = 0.

This implies (𝜂1 − 𝜂2)(−𝜆1 + 2𝜆2) = 0 and, in turn, gives the system

𝜂1 = 𝜂2, (14a)
(−𝜆1 + 2𝜆2) = 0, (14b)

Solving (14a) together with (13c), we obtain 𝜂1 = 𝜂2 = − (𝜆1+2𝜆2)
8

. Sub-
stituting the values of 𝜂1 and 𝜂2 to equation (13a), we get

𝜆2
1 + 4𝜆2𝜆1 + 4𝜆2

2 = 0. (15)

Multiplying (14b) by (15) yields 𝜆3
1 + 2𝜆2

1𝜆2 − 4𝜆1𝜆
2
2 − 8𝜆3

2 = 0. �

Theorem 1. Parametric equation of the bifurcation set (caustic) of
function (8) is given by the equation(︀

𝜆3
1 + 2𝜆2

1𝜆2 − 4𝜆1𝜆
2
2 − 8𝜆3

2

)︀
(−2𝜆2 + 𝜆1)

2 𝜆2
1𝜆

4
2 = 0.



76 H. K. Kadhim, M. A. Abdul Hussain

Proof. Since, the caustic of function (8) consists of the union of six sets,

Σ = Σ0,0 ∪ Σ𝑖𝑛𝑡
0,1 ∪ Σ𝑒𝑥𝑡

0,1 ∪ Σ𝑖𝑛𝑡
1,0 ∪ Σ𝑒𝑥𝑡

1,0 ∪ Σ1,1,

so, the parametric equation of the caustic is composed of the product of
all left-hand sides of the equations for the caustic components, which is
equal to zero. Since the equations of the caustic components were found
in lemmas (1), (2), (3), (4), and (5), the equation(︀

𝜆3
1 + 2𝜆2

1𝜆2 − 4𝜆1𝜆
2
2 − 8𝜆3

2

)︀
(−2𝜆2 + 𝜆1)

2 𝜆2
1𝜆

4
2 = 0.

represents the parametric equation of the bifurcating set (caustic) of func-
tion (8). �

Proposition 1. If the condition 𝜆2 < −1
2
𝜆1, 0 ̸= 𝜆2 ̸= 1

2
𝜆1, is satisfied,

function (8) has three non-degenerate real critical points (one interior and
two boundary points: one point on 𝜂1 = 0 and the other on 𝜂2 = 0).

Proof. The critical points of function (8) can be expressed as follows:

𝑃1 =
(︁−1

4
𝜆1 −

1

2
𝜆2,

−1

4
𝜆1 −

1

2
𝜆2

)︁
, 𝑃2 = (0,− 2𝜆2),

𝑃3 = (−2𝜆2, 0), 𝑃4 = (0, 0).

The point 𝑃1 is a non-degenerate real point, in the interior of the do-
main of function (8), if the conditions −1

4
𝜆1 − 1

2
𝜆2 > 0 and (𝜆1 − 2𝜆2)

(𝜆1 + 2𝜆2) ̸= 0 are satisfied. These conditions imply 𝜆2 < −1
2
𝜆1 and

𝜆2 ̸= 1
2
𝜆1, otherwise 𝑃1 can nott be a non-degenerate real point in the

interior of the domain of function (8). Clearly, the two points 𝑃2 and 𝑃3

are non-degenerate boundary real points for all 0 ̸= 𝜆2 ̸= 1
2
𝜆1 (the point

𝑃2 lies on 𝜂1 = 0 and the point 𝑃3 lies on 𝜂2 = 0). The point 𝑃4 is a
vertical point (i. e., it is neither an interior point nor a boundary point).
This completes the proof. �

Theorem 2. The matrices of bif-spreadings of the critical points of
function (8) are as follows:⎛⎝0 0 0

0 0 0
1 0 0

⎞⎠ ,

⎛⎝1 0 0
1 0 0
0 0 0

⎞⎠ ,

⎛⎝1 0 0
1 0 0
0 1 0

⎞⎠ ,

⎛⎝0 1 0
0 1 0
1 0 0

⎞⎠ . (16)

Proof. The caustic equation, which we have found in Theorem (1), can be
represented geometrically: see Figure 1. This figure decomposes the plane
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Figure 1: Describes the caustic of function (8) in 𝜆1 𝜆2-plane

of parameters into eight regions 𝑊𝑖, 𝑖 = 1, 2, . . . ,7, 8; every region con-
tains a fixed number of non-degenerate real critical points. These points
are divided into internal and boundary points. The quality of the internal
points can be determined using the second-derivative test, while the qual-
ity of the boundary points can be determined using the Morse lemma [4].
Hence,the spreading of the critical points is as follows: if the parameters
𝜆1, 𝜆2 belong to

1) 𝑊1: then we have one interior minimum critical point;
2) 𝑊5: then we have two critical points (one minimum point on the

boundary 𝜂1 = 0 and one minimum point on the boundary 𝜂2 = 0);
3) 𝑊6 or 𝑊7: then we have three critical points (one minimum point on

the boundary 𝜂1 = 0, one minimum point on the boundary 𝜂2 = 0,
and one interior saddle point);

4) 𝑊8: then we have three critical points (one saddle point on the
boundary 𝜂1 = 0, one saddle point on the boundary 𝜂2 = 0, and one
interior minimum point);
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5) 𝑊2 or 𝑊3 or 𝑊4: then we have no real critical points in the domain
{(𝜂1,𝜂2) : 𝜂1 > 0, 𝜂2 > 0}.

Using this, we get the matrices of bif-spreadings as is described in (16). �

In addition, the values of the Morse index at a given vertex that
corresponds to one of the previous eight regions are defined as follows:
𝑖𝑛𝑑𝑒𝑥 = 0 ⇔ 𝜆1, 𝜆2 belong to any region of the previous eight regions.

In figure 2, parts (a), (b), (c), and (d) show the locations of contour
lines with respect to the boundaries of the domain of function (8), num-
ber and type of critical points corresponding for all regions in the caustic
of function (8); (a) corresponds to 𝑊1, (b) corresponds to 𝑊5, (c) corre-
sponds to 𝑊6 or 𝑊7, and (d) corresponds to 𝑊8.

(a) (b) (c) (d)

Figure 2

Therefore, in subsections below we investigate bifurcating extremes of
the function (8), equivalent to investigating bifurcating extremes of func-
tional 𝑉 by the key function In the following theorem, we prove that
investigating of bifurcating extremes of functional 𝑉 is reduced to inves-
tigating of bifurcating extremes of function (8).

Theorem 3. The normal form of the key function 𝑊1 corresponding to
the functional 𝑉 is given by

𝑊1(𝑦, 𝜌) =
𝜂31
3

+
𝜂32
3

+ 𝜂2𝜂
2
1 + 𝜂22𝜂1 + 𝜆1𝜂2𝜂1 + 𝜆2

(︀
𝜂21 + 𝜂22

)︀
where 𝑦 = (𝜂1, 𝜂2), 𝜂1, 𝜂2 > 0, 𝜌 = (𝜆1, 𝜆2) and 𝜆1, 𝜆2 are the parameters.

Proof. By using the Lyapunov-Schmidt scheme, the linearized equation
corresponding to the equation (6) at the point (0, 𝜆) gets the form

𝐴 ℎ = 0, ℎ ∈ 𝐸,

ℎ(0) = ℎ(1) = 0,
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where 𝐴 = 𝛼
𝑑2

𝑑𝑥2
+ 𝛽.

The solution of the linearized equation that satisfies also the initial
conditions is given by 𝑒𝑝 (𝑥) = 𝑐𝑝 sin (𝑝𝜋𝑥), 𝑝 = 1, 2, . . ., and the charac-
teristic equation corresponding to this solution is

−𝛼(𝑝𝜋)2 + 𝛽 = 0.

This equation defines characteristic lines ℓ𝑝 in the 𝛼𝛽-plane. The char-
acteristic lines ℓ𝑝 consist of the points (𝛼, 𝛽), for which the linearized
equation has non-zero solutions [10]. The point of intersection of the
characteristic lines in the 𝛼𝛽-plane is the bifurcation point, so the bifur-
cation point for the equation (6) is (𝛼, 𝛽) = (0, 0). The following values
of the parameters 𝛼, 𝛽: 𝛼 = 0 + 𝛿1, 𝛽 = 0 + 𝛿2, where 𝛿1 and 𝛿2 are small
parameters, lead to a bifurcation along the modes 𝑒1 (𝑥) = 𝑐1 sin (𝜋𝑥),
𝑒2 (𝑥) = 𝑐2 sin (2𝜋𝑥). Since ‖𝑒1‖ = ‖𝑒2‖ = 1, we have 𝑐1 = 𝑐2 =

√
2.

Let𝑁 = 𝐾𝑒𝑟(𝐴) = 𝑠𝑝𝑎𝑛{𝑒1, 𝑒2}; then the space 𝐸 can be decomposed
in the direct sum of two subspaces, 𝑁 and the orthogonal complement to
𝑁 :

𝐸 = 𝑁 ⊕ 𝑁⊥, 𝑁⊥ =
{︁
𝑣 ∈ 𝐸 :

1∫︁
0

𝑣 𝑒𝑘 𝑑𝑥 = 0, 𝑘 = 1, 2
}︁
.

Similarly, the space 𝑀 can be decomposed in the direct sum of two
subspaces, 𝑁 and the orthogonal complement to 𝑁 :

𝑀 = 𝑁 ⊕ ̃︀𝑁⊥, ̃︀𝑁⊥ =
{︁
𝜔 ∈ 𝑀 :

1∫︁
0

𝜔 𝑒𝑘 𝑑𝑥 = 0, 𝑘 = 1, 2
}︁
.

There exist two projections 𝑃 : 𝐸 → 𝑁 and 𝐼 − 𝑃 : 𝐸→𝑁⊥, such that
𝑃𝑧 = 𝜔 and (𝐼−𝑃 )𝑧 = 𝑣 (𝐼 is the identity operator). Hence, every vector
𝑧 ∈ 𝐸 can be written in the form

𝑧 = 𝜔 + 𝑣, (17)

where 𝜔 = 𝑥1𝑒1 + 𝑥2𝑒2 ∈ 𝑁, 𝑣 ∈ 𝑁⊥, 𝑥𝑖 = ⟨𝑧, 𝑒𝑖⟩. Thus, by the implicit
function theorem, there exists a smooth map Θ : 𝑁 → 𝑁⊥, such that

̃︁𝑊 (𝑤, 𝛾) = 𝑉 (Θ (𝑤, 𝛾), 𝛾) ,
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𝑤 = (𝑥1, 𝑥2) , 𝛾 = (𝛿1, 𝛿2) .

Then the key function ̃︁𝑊 can be written in the the form

̃︁𝑊 (𝑤, 𝛾) = 𝑉 (𝑥1𝑒1 + 𝑥2𝑒2 + Θ (𝑥1𝑒1 + 𝑥2𝑒2,𝛾) , 𝛾) =

= 𝑊2 (𝑤, 𝛾) + 𝑜
(︀
|𝑤|3

)︀
+ 𝑂

(︀
|𝑤|3

)︀
𝑂(𝛾),

where,

𝑊2 (𝑤, 𝛾) =
(︁4

3

√
2

𝜋
+

2

3

√
2𝜋
)︁
𝑥3
1 +

(︁16
√

2

5 𝜋
+

24
√

2𝜋

5

)︁
𝑥2
2 𝑥1+

+
(︁−1

2
𝛼𝜋2 +

𝛽

2

)︁
𝑥2
1 +

(︁
−2𝛼𝜋2 +

𝛽

2

)︁
𝑥2
2.

Now, substitute the value of 𝑧 in (17) in the conditions (7a) and (7b),
respectively, to get

𝑥1 + 𝑎 𝑥2 > 0, (18a)
𝑥1 − 𝑎 𝑥2 > 0. (18b)

Changing variables, we get 𝜂1 = 𝑥1+𝑎 𝑥2

2
, 𝜂2 = 𝑥1−𝑎,𝑥2

2
. Solving for 𝑥1 and

𝑥2 yields the following: 𝑥1 = 𝜂1 + 𝜂2, and 𝑥2 = 𝜂1−𝜂2
𝑎

; substituting them
in the function 𝑊2, we have

𝑊2 (𝑞, 𝛾) =
(︁4

3

√
2

𝜋
+

2

3

√
2𝜋 +

16
5

√
2

𝜋
+ 24

5

√
2𝜋

𝑎2

)︁
𝜂31+

+
(︁4

3

√
2

𝜋
+

2

3

√
2𝜋 +

16
5

√
2

𝜋
+ 24

5

√
2𝜋

𝑎2

)︁
𝜂2

3+

+
(︁4

√
2

𝜋
+ 2

√
2𝜋 −

16
5

√
2

𝜋
+ 24

5

√
2𝜋

𝑎2

)︁
𝜂2𝜂

2
1+

+
(︁4

√
2

𝜋
+ 2

√
2𝜋 −

16
5

√
2

𝜋
+ 24

5

√
2𝜋

𝑎2

)︁
𝜂2

2𝜂1+

+
(︁
− 𝛼𝜋2 + 𝛽 −

2
(︀
−2𝛼𝜋2 + 1

2
𝛽
)︀

𝑎2

)︁
𝜂2𝜂1+

+
(︁
−1

2
𝛼𝜋2+

1

2
𝛽+

−2𝛼𝜋2 + 1
2
𝛽

𝑎2

)︁
𝜂1

2+
(︁
−1

2
𝛼𝜋2+

1

2
𝛽+

−2𝛼𝜋2 + 1
2
𝛽

𝑎2

)︁
𝜂2

2,

where 𝑞 = (𝜂1, 𝜂2) and 𝜂1, 𝜂2 > 0.



The Analysis of Bifurcation Solutions of the Camassa – Holm Equation...81

The geometrical form of bifurcations of critical points and the first
asymptotics of branches of bifurcating for the function ̃︁𝑊 are completely
determined by its principal part 𝑊2. If we replace 𝜂1 and 𝜂2 by

3
√

5√
2

3

√︂
𝜋 𝑎2

5𝜋2𝑎2 + 36𝜋2 + 10𝑎2 + 24
𝜂1 and

3
√

5√
2

3

√︂
𝜋 𝑎2

5𝜋2𝑎2 + 36𝜋2 + 10𝑎2 + 24
𝜂2

in the function 𝑊2, respectively, then 𝑊1 and 𝑊2 are contact equivalence,
since in this case they have the same germ (the same principal part)

𝑊0(𝜂1, 𝜂2) =
𝜂31
3

+
𝜂32
3
,

and the same deformation. Therefore, the caustic of the function 𝑊2

coincides with the caustic of the function 𝑊1.
Thus, the function 𝑊1 has all the topological and analytical properties

of the functional 𝑉 , so the bifurcation analysis of equation (6) is equivalent
to the study of bifurcation analysis of the function 𝑊1. This shows that
the study of bifurcations of extremes of the functional 𝑉 is reduced to the
study of bifurcation of extremes of function (8). �
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