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PROOF OF A CONJECTURE ON NIELSEN’S β-FUNCTION

Abstract. In this paper, an inequality for Nielsen’s β-function is
proved. The inequality was posed by Kwara Nantomah as a con-
jecture in 2019.
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1. Introduction. It is well known that there are several ways to
define Nielsen’s β-function (e. g., [5], [6]). We use the following definition:

β(x) =

∞∫
0

e−xt

1 + e−t
dt =

1∫
0

tx−1

1 + t
dt =
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m=0

(−1)m

m+ x
=

=
1

2

(
ψ

(
1 + x

2

)
− ψ

(x
2

))
for x > 0,

where ψ(x) = d ln Γ(x)/dx is the digamma function, Γ(x) is the Euler
Gamma function [8].

It is also known [8] that the special function β(x) is related to the
Euler beta function B(x, y) and to the Gauss hypergeometric function
2F1(a, b; c; d) by

β(x) = − d

dx

(
lnB

(
x

2
,
1

2

))
β(x) =

1

x
(2F1(1, x; 1 + x;−1)) for x > 0.

In the recent years, Nielsen’s β-function has been very intensively studied.
Nantomah and other researchers [5]–[9] introduced and studied some of its
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properties. A lot of interesting inequalities for Nielsen’s β-function have
been discovered and proved. For example, in [5] it was shown that

β(x) + xβ′(x) < 0, (1)
2β′(x) + xβ′′(x) > 0,

for x > 0.
The result follows from the fact that the function x|β(m)(x)|, x > 0,

n ∈ N0 is completely monotonic [7]. It was also shown [5], that

β(x) + β(1− x) =
π

sin(πx)
, 0 < x < 1,

β(x) =
1

x
− β(x+ 1), x > 0, (2)

β(1) = ln(2), β′(1) =
−π2

12
. (3)

We recall, that Gautschi [2] proved an interesting inequality involving the
Euler gamma function Γ(x):

2Γ(x)Γ(1/x)

Γ(x) + Γ(1/x)
> 1, x > 0. (4)

Similarly, Alzer and Jameson [1] proved that

2ψ(x)ψ(1/x)

ψ(x) + ψ(1/x)
> −γ, x > 0, (5)

where γ = 0.577... is the Euler–Mascheroni constant.
In view of the harmonic mean inequalities (4), (5), Nantomah [5] posed

the following conjecture:
Conjecture 1. For x ∈ (0,∞), the inequality

2β(x)β(1/x)

β(x) + β(1/x)
6 ln 2, (6)

holds, turning into equality at x = 1.
For more detailed information on Nielsen’s β-function, refer to [1]– [9]

and the related references therein.
The aim of this short paper is to prove the Conjecture 1 on Nielsen’s

β-function.



Proof of a Conjecture 107

2. Main Results.

Lemma 1. The inequality

2β
′2(x)− β′′(x)β(x) > 0, (7)

holds for x > 0.

Proof.
In [5] it was shown

β(x) + xβ′(x) < 0, (8)

for x > 0.
This implies that

β2(x) + 2xβ(x)β′(x) + x2β′(x)2 > 0, (9)

is valid for x > 0.
So,

β
′2(x) > − 1

x2
β2(x)− 2

x
β(x)β′(x). (10)

To prove the inequality (7), we need to establish

2

(
− 1

x2
β2(x)− 2

x
β(x)β′(x)

)
− β(x)β′′(x) > 0. (11)

Because of

β(x) =

∞∫
0

e−xt

1 + e−t
> 0,

for x > 0 (see [5]), it is sufficient to prove

− 2

x2
β(x)− 4

x
β′(x)− β′′(x) > 0. (12)

The inequality (12) is equivalent to

2β(x) + 4xβ′(x) + x2β′′(x) < 0, (13)

for x > 0.
The well-known formulas (see [5])

β(x) =
∞∑

m=0

(−1)m

m+ x
, β′(x) =

∞∑
m=0

(−1)m+1

(m+ x)2
, β′′(x) = 2

∞∑
m=0

(−1)m

(m+ x)3
,
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give

2β(x) + 4xβ′(x) + x2β′′(x) =

=
∞∑

m=0

2(−1)m

m+ x
+
∞∑

m=0

4x(−1)m+1

(m+ x)2
+
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m=0

2x2(−1)m

(m+ x)3
=

= Ψ(x) = 2
∞∑

m=0

(−1)mm2

(m+ x)3
.

The following classical Laplace formula

2

(k + x)3
=

∞∫
0

t2e−kte−xtdt, (14)

for x > 0, k ∈ N0 can be found in a table of Laplace transforms (see [3]).
So, Ψ(x) can be rewritten as

Ψ(x) =
∞∑
k=0

(−1)kk2
∞∫
0

t2e−kte−xtdt =

=

∞∫
0

t2e−xt

{
∞∑
k=1

(−1)kk2e−kt

}
dt.

Because of ∣∣(−1)kk2e−kt
∣∣ 6 k2

eka
,

where a > 0 and t > a, the Weierstrass theorem for functional series shows
that the series

g(t) =
∞∑
k=1

(−1)kk2e−kt,

converges uniformly on each (a,∞), where a > 0. We show that g(t) < 0
for t > 0. Put

α(t) =
∞∑
k=1

(−1)ke−kt =
−e−t

1 + e−t
= − 1

1 + et
.

It implies

α′′(t) =
∞∑
k=1

(−1)kk2e−kt = −
(

1

1 + et

)′′
=
et (1− et)
(1 + et)3

< 0.
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The proof of Lemma 1 is complete. �

Theorem 1. Let x ∈ (0,∞). Then the inequality

2β(x)β(1/x)

β(x) + β(1/x)
6 ln 2, (15)

holds, turning to equality if x = 1.

Proof. The equality is obvious. Because of β(1) = ln 2, the inequality
(15) can be rewritten as

β(x) (β(1/x)− β(1)) + β(1/x) (β(x)− β(1)) 6 0. (16)

Some computations show that inequality (16) is equivalent to

β(1)

β(x)
− 1 +

β(1)

β(1/x)
− 1 > 0.

Put

F (t) =
β(1)

β(t)
− 1

for t > 0.
First, we show that F (t) is a convex function on (0,∞).
By repeated differentiation, we obtain

F ′(t) = −β(1)β′(t)

β2(t)

and

F ′′(t) =
β(1)

β4(t)

(
2β

′2(t)− β(t)β′′(t)
)
β(t).

So, it is sufficient to show that

2β
′2(t)− β(t)β′′(t) > 0.

But this follows from Lemma (1).
Using the Jensen inequality for F (x), we obtain

F

(
x+ 1

x

2

)
6

1

2

(
F (x) + F

(
1

x

))
,
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which is, in our case,

1

2

(
β(1)

β(x)
− 1 +

β(1)

β
(
1
x

) − 1

)
>

β(1)

β
(

x+ 1
x

2

) − 1 =
β(1)

β
(
x2+1
2x

) − 1.

The proof of the Theorem 1 will be complete, if we show that

β(1)

β
(
x2+1
2x

) − 1 > 0.

But, this follows from (x2 + 1)/(2x) > 1 and β′(t) < 0 for t > 0 and thus
completes the proof of Theorem 1. �
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