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Abstract. The aim of this article is to estimate an upper bound
of |[H3(1)|, the Zalcman coefficient functional for n = 3 and n = 4,
and also to investigate the fifth, sixth, seventh coeflicients of starlike
and convex functions associated with shell-like curves. Similar type
of outcomes are estimated for the functions f~! and ﬁ
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1. Introduction. Denote by A the class of all normalized holomor-
phic functions f of the form

f(z):z—i-Zanz" Vel (1)

in the unit discY = {z € C : | z |< 1}. Let S be a subclass of A consisting
of univalent functions in . A function f € S is a starlike function iff

Re(zf’(z)/f(z)) >0; VzelU.

A function f € § is a convex function iff

Re(l + (zf”(z)/f’(z))) > 0; V2 e U.

Let P be the family of holomorphic functions p in & with the conditions
Re{p(2)} >0 and p(0) = 1 represented in the form

p(z)=1+ciz+c2® +cz + ... (2)
(©) Petrozavodsk State University, 2020

[G) ev-rc |


http://creativecommons.org/licenses/by/4.0/

120 V. Suman Kumar, R. Bharavi Sharma

For f € S, Lawrence Zalcman conjectured that |a? — ag, 1| < (n — 1)2.
This conjecture was proved by Krushkal [10] for n = 3,4,5,6. It was
also considered by Ma [11] and Ravichandran [14|. Equality holds for the
Koebe function and its rotations. A holomorphic function F'is subordinate
to another holomorphic function h, denoted by F' < h, iff there exists a
Schwarz function w in U4 with the conditions w (0) = 0, and |w(z)|—1 < 0,
such that F'(z) = h(w(z)). The Hadamard product of two holomorphic
functions f(2) =2+ > a,2" and g(2) = 2 + Y. gn,2" in A, is defined as
n=2

n=2

(f*g)(z) =2+ Zangnzn~

In the year 1966, Pommerenke [12] has denoted the Hankel determinant
by H,(n) and defined it as

Ay, Apn+1 L Qptq—1
An+1 Ap+2 An+3 oo Aptq
H,(n)=| ... cee (3)
pt+qg—1 Antq Aptg+1 -0 -- Ap4+29—2

Here n, ¢ € N, (a,) is a sequence of real or complex numbers. For dif-
ferent values of n and ¢, one obtains different Hankel determinants and
also some particular cases of Fekete-Szego coefficient functional. Many
authors [1], [4], [6], [15], [16], [18] have studied the Fekete-Szegd coef-
ficient functional for different subclasses of univalent, multivalent, and
holomorphic functions. For n = ¢ = 2, the relation (3) reduces to
|H3(2)|= |agas — a2|. This is known as the second-order Hankel deter-
minant. Several authors |7], [8], [18] have studied this determinant for
different subclasses of holomorphic functions. For n = 1 and ¢ = 3, from
the determinant H,(n) after applying the triangle inequality, one gets an
upper bound for the third order Hankel determinant, given by

|Hs (1) |< |as||asas — aj|+|aa||as — asas|+|as||as — a3 (4)

This is known as the third Hankel determinant for a; = 1. Babalola [3],
Srivastava [17], Vamshee Krishna and Ram Reddy [18] have studied the
third order Hankel determinant Hjy (1) for different subfamilies of analytic
functions.
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Raina and Sokét [4], [13] have used the function q(z) as the superordi-
nating function. The function q (2) = /1 + 2242 is analytic and univalent
on C\ {i, —i}, which maps the unit disc onto a shell shaped region on the
right half plane. It is symmetric with respect to the real axis from 0.4 to
2.41. Tt is a function with positive real part with q (0) = ¢’ (0) = 1.

Jm

Re
) r=v"§—1
—i
e=+2+1

Figure 1: Shell shaped region

Using q(z), they have defined S*(q) as shown below and studied the
initial coefficients, Fekete-Szego coefficient functional, Hankel determinant
of order two for the function f in S*(q).

Definition 1. f € A is a function of the class S* (q) iff

Zf/(Z) 24,
) <VI+22+z

Definition 2. f,g € A are two functions of the class S; (q) iff

<V1+22+ 2.

Definition 3. f € A is a function of the class C (q) iff

(1+ ZJ{C(S‘)')) <Vit2+2 (5)
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Subordination results of this kind for various subclasses of analytic
functions were obtained by several mathematicians, e.g., [2], [5], [17]. Re-
cently, Srivastava revived the study of Hankel determinants, his pioneering
work on the subject was followed by a huge flood of papers dealing with
coefficient inequalities, Hankel determinants of order two and three of
univalent and holomorphic functions. Different superordinating functions
and their geometrical interpretations have motivated further research of
the subject of geometric function theory. Functions like ¢(2) = 122, %,
V14 z, €, sin z, the Fibonacci sequence are some among them to quote.

Our work was motivated by Babalola [3|, Sharma [15], Vamshee Ki-
ishna [18], Ravichandran et al. [14], Srivastava et al. [16], [17] in general,
and Sokoét [4], [13] in particular, In this paper, we evaluate the bounds
on as, ag, a7, and H3(1) for f € S*(q). For f € S*(q), we estimate
the bounds for Zalcman’s functional for n = 3,4. Also, we define the
class C(q) and make a similar study associated with shell-like curves for a
function f € C(q).

2. Preliminaries.

Lemma 1. [12] Ifp € P is of the form p(z) = 1+ c12 + c22* + ..., then
len| <2 VneN.

Lemma 2. [9] For a Schwarz function w(z) = ¢1z2 + c22® + ..., and for
any p € C we have
o2 — 2] < max {1, lul}.

3. Coefficient estimates for f € S*(q).

Theorem 1. If f € S*(q) is of the form f(z) = z + a1z + a2® + ...,
then
las| <13/24,  lag| <29/30, |as| < 309/288.

Proof. As f € 5*(q), by using subordination we get
Z;/(S) =w(z) +v1+w?(z).
2f'(z) = [ (2w (2) = f(2) V1 +w?(2). (6)

Here w is the Schwarz function with the conditions w (0) = 0 and
|w (2)| < 1 for |z| < 1, which can be represented as

w(z) =Y 2", VneN with [e,] < 1. (7)

n>1
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From relations (6) and (7) we have

2

t 5 3 G G
1+w?(z2) = 1+§z + <C1CQ>Z + <0163+E - g)Z +
3 2 322 3 6
+<C1C4+6203—%>Z5+(%+C1C5+CQC4— lecz—% %>26+...

and

c? ayC?
f (V1 +w?(2) =2+ ag2® + (51 + a3>z3 + <0102 4 21 a4>z4+

2
¢ act 5
+ | ez + 58] + ascico + 5 +as)z” + | c1eq4 + cac3—
ciey  ascs sy a,cs 6

—T—FT—FCLQCng—T—I—(IgClCQ—{—T—Fa )Z +

2 322 ABes 0 asBey  asc? asct oasch
_|_<_3_#_1_3_‘__1_ 212+ 51+ 3%2 _ 31+

2 4 2 16 2 2 2 8
+ 105 + CaCy + agcCiCy + ascacs + agcica + ascics + a7> 20 (8)

Further,

2f'(2) —w(2)f(2) = 2+ (2a2 — ¢1)2* + (3az — agey — c2)2°+
+ (4ay — azcr — agey — c3)2* 4 (5as — ascr — ascy — agcs — c4)2°+
+ (6ag — ascy — sy — ascs — ascy — C5)2°0+

+ (Ta7 — agc1 — ascy — ayc3 — ascy — Ancs — Cg)2" + . .. 9)

From (8) and (9), upon equating the coefficients of the same powers of z,

as = ¢, (10)

as = %(Q + gﬁ), (11)

as = é(gci’ + gclcg + 03>, (12)

as = %(gclcg + %70%02 + gc‘f +ci+ c4>, (13)

1
ag = 60 (270104 + 20coc3 + 190?02 + 200103 + 306%03 + 30? * 1205)7 (14)

1
CT (400c3 10566105 + 840co¢q + T8O + T00C st

a7 =
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+49¢5 4+ 1116¢7cy + 1720c1coc3 + 332¢ ¢y + 24065 + 48006). (15)

Raina and Sokét [13] estimated the bounds of the second, third, and fourth
coefficients as |az|< 1, |as|< 3/4 and |a4|< 1/2. To estimate the bounds
of the fifth, sixth, and seventh coefficients, we establish some properties
of ¢, involved in (7). The function p (z) is given by

14+ w(z)

1_—M:1+p1z+pzz2+..-:p(z)- (16)

The Caratheodory function is defined by the property Re{p(z)} > 0in U,
whose coefficients satisfy the condition

lpel <2 VkeN (17)
Equating the coefficients of the same powers of z in relation (16), we get
1= 2017 (18>

19)
20)
21)

p2=2(+ ),
p3 = 2(c 4 2c1¢5 + ¢3),
pa = 2(ct + 3cicy + 2c103 + 5 + c4),

pe = 2(c+5cicot+4cics+4c 3+ 45+ 3e1cac3+ 3¢5 ea+ 20904+ 201 C54Co

(
(
(

ps = 2(c] + 3c1c3 + 3cies + Acier + 2ca03 + 2¢104 + C5), (22)
+¢o)
(23)

and

pr = 2(cl + 3c1c2 + 6ccy + 6Cica + deics + Bejes + 9cicaes + 3cacs+
+ 4C§C4 + 3610264 + 26364 + 36%05 + 26205 + 26106 + 07). (24)

Apply the condition in (17) to relations (18) to (24) and get

len] <1, (25)

}C% + Cz| <1, (26)

}ci’ + 2c169 + 03} <1, (27)

‘c‘f + 3c%cy + 2105 + 3 + c4| <1, (28)

A& 4 3c1c2 + 3c3es + Acicy + 2coc3 + 2c104 4 5| < 1, (29)
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¥ + 5ciea + 4cies + Acies + ¢ + ¢ + 3cicacs + 3cieat
+20204 + 20165 + C6|§ 1 (30)

and

|cT + 3c1c5 + 6c5cy + 6¢3c3 + ey + betes + 9cieaes + 3caes+
+4cicy + 3cicacy + 2c3cs + 3cies + 2eacs 4+ 2¢1c6 + cr|< 1. (31)

From the relation (13), we have

1
as = 71 {140103 + 603 + 451l + 170?02 + 604} ,

as = o (czlL 4 3ccy + 2c103 + 2 + 04) -
3 2 1 Cy
— 5 (G +e) + 5 (F+c2) — TR (32)

By applying the triangle inequality to relation (32), we get

3
las|< ]cl+3clcg—|—20103—|—02—|—04|+ o

Cq
+ E|02 (c% + 02) | + |ﬂ . (33)

(C% + 02)2 |‘|—

We know that coefficients of the function w(z) satisfy |c,| < 1. By apply-
ing relations (26) and (28) to relation (33), we get

7 3 2 1 13
A 4
sl < ittt T m (34)

Using relation (14), we can estimate the bound on the sixth coefficient.

1
ag = 50 [3 (c1 + 2c1c4 + 36163 + 4C1C2 + 301c2 + 2c9c3 + 05) +
+ Tey(ct + 3cieg + 2cie3 + c3 + ¢4) — Tt () + 2ciea + c3)+
+ 14e3(c + c) + 4eics + ldejey + 905]. (35)

Using the triangle inequality to relation (35), we get

1
lag| < . [3 |§ + 2c1¢q + Bcies + Acies + 31 + 20005 + 5| +
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+ 7|61Hc‘1l +3c%cy + 2105 + 2 + 04\—|—7\cl|2|c:{’ + 2c1¢9 + 3]+
+ 14|cs||c2 + co|4-4|er||eo]*+14 et || ca|+9]cs| |- (36)

We know that coefficients of the function w(z) satisfy |c,| < 1. By apply-
ing relations (26) to (29) to relation (36), it is reduced to

||<29
Qa, —.
61 =30

Using relation (15), we can estimate the bound on the seventh coefficient
ay; = ﬁ 200(cS + 5cjcy + 4cies + Acies + ¢ + 3 + 3eicacs + 3ctes+
+ 2c9¢4 + 2¢105 + ¢6) + 50y (c‘;’ + 30103 + 3cf03 + 402{’02 + 2¢9c3+
+2¢c164 + ¢5) + 40cy(c} + 3ciey + 2cie3 + &5 4 c4) — 2001 (c] + 3cier+
+2¢1¢3 + 5 4 c4) + 200c3(c} + 2¢1¢0 + ¢3) — 50¢ (3 + 2160 + €3)+
+400¢4(c? + ¢3) + 540c1ca¢5 — 90c2cy(? + ¢3) + 50ci(c? + ¢o)—

— 168¢icy + 2165 ¢4 + 280cs + 606¢;cs5 - (37)

By applying the triangle inequality to relation (37) and using relations
(26) to (30), we get

U
4. The coefficient functional for f € S*(q)
Theorem 2. If f € S*(q) is of the form f(z) = z+ajz+ayz*+- -+, then

lasag — ay| < 1. (38)

Proof. If f € S*(q) then, from Theorem 1, upon using the values of
as, ag, as from Equations (10), (11), and (12), obtain

a oo, 1,
CL26L3—(I4:§+§(CI+CQ)—5(014‘261024‘03).

By applying the triangle inequality,

3
a

3 +

1
lasas — ay4] < + '5 (C?+26102+03) )

T (@ +e)
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From relations (25), (26), and (27), obtain

1 1 1
g <i4i4-=1
lasas a4\_3+3+3

U
5. The third Hankel Determinant for f € S*(q).
Theorem 3. If f € S*(q) is of the form f(z) = z+ayz+ay2?+- -, then

265

H; (1) |< —.
Hy (1)|< ~

Proof. Due to Raina and Sokdét [13], |az|< 1, |az|< 3/4, |a4|< 1/2, |asay —
a3]< 39/48 and |az — a3|< 1/2. Substituting these bounds, relations (34)
and (38) in the relation (4), we get

i< (2)+ 5045 (5):

265
Hs(1)| < —.
Hy(1)] < =

W
6. Fekete-Szego6 inequality for different functions.

Theorem 4. Let f~'(z) = z+ > 7, d,2" be the inverse function of f.
For any j € C and f € S*(q) of the form f(2)=z+a,z+asz*+. .., we get

5;@H. (39)

|d3 —ud§| < % max{l,

Proof. By the definition of the inverse function, we have
FUR) =(f(2) =2 (40)
Let f'(2) =2+ i d,z".
n=2
From relations (1) and (40), it can be reduced to

f_l(z+a222+a323+...> = z. (41)
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From (40) and (41) one obtains
z+z2<a2+d2> +z3<a3+2a2d2+d3) +---=2z
Comparing the coefficients of z? and 23 on both sides, one can see that

as + d2 = 0, (42)

and
as + 2a2d2 + dg = 0. (43)

Now, from (12) and (42) we get
d2 = —Cq.

From (12), (13) and (43) we get

Now consider

1 5—4
dg—ud§:§{c2—c§( 1 M)}

5—4p

P
Applying Lemma 2 to relation (44), one gets estimate (39). This estimate
is sharp, the equality is attained on the following functions

1
ds — pds = 5 {es —v1 ), where vy = (44)

1 , 1+ 22

P I A e
‘3—,u2‘— ‘5—4,u " ()_l—l—z
3 ,lpZ—l_z.

O

Theorem 5. For a function f € S*(q) of the form f(z) = z 4+ a1z +
+asz* + ..., for any p € C, and for G (z) = o = 1+diz+doz®+ ...,
we get

1 1— 4y
2
— < — .
|dy — pdf| < 2max{l, ) 1 } (45)
Proof. As f € S*(q) and

G(2) = f(zz) =1+ d2". (46)
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Simplifying, one obtains that
i zl—azz—}—(a%—ag)zQ—i—... (47)
f(2)
From (46) and (47), upon equating the coefficients of the same powers of
z, we have
dl = —ag, (48>
and
dg = CL% — as. (49)
From (10) and (48), we get d; = —c;.
2
From (10), (11) and (49), we get dy = % - %
Assuming that p is a complex parameter, take
1 1—4p
= pdi = { —C?(T)}-
1 1—-4
dQ—ILLd%:§{CQ—/U2 i}, where vy = 1 ay (50)

Applying Lemma 2 to relation (50), one gets (45), with equalities

1 1+ 22
= if p(z) = ——
iy — ] = 2 ST
! ‘1—4u " ()_1+z
cifp(z) =
U
Theorem 6. If f € S*(q) is of the form f(z) = z + a;z + azz* + ...,
then )
1 2 -3
{ag—uag‘g—max {1, ’,ngg—QQQ }
293 295

(51)

Proof. Let f € S*(q); then there exists a Schwarz function w such that

(9 ()
(f *9)(2)
The left-hand side of (52) has the expansion

=w(z) + 1+ w?(z).

(52)
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=1+ asgez + <2a3g3 — a%g§>22+
+ <3a4g4 — 3aa39293 + a%g%) 2. (53)

Substituting the expansion w(z) = ¢z + ¢22® + ... into the right-hand
side of (52), one obtains

c1 Co 30?
Ao = —, Aq = — —_—.
T g ° 7 295 4gs
Consider )
1 2 — 3¢2
as — pas = — {02 — U3 cf} , where v3 = M (54)
293 5
Applying Lemma 2 to relation (54), one gets (51). The equality arises for
1 1+ 22
— if -~
| az — [aq ’: 2
2193 — 395 : 1+z2
st L
49593 1—=2

O
7. Zalcman coefficient functional for f € 5*(q).

Theorem 7. If f € S*(q) is of the form f(z) = z + a1z + a2*> + ...,

then
53

< —.

— 48

Proof. If f € S*(q) then, from Theorem 1, upon using the values of ag,
as from equations (11) and (13) one obtains that

3 o

) 1 3,\° 1/7 17, 2,
CL3—CL5:Z—1 CQ+§Cl _Z 50103+€Clcg+§cl+02+04 .

7
a% —ay = — (C% + 02)2 _ ﬂ <0411 —+ 36502 —+ 20103 + Cg + 04) +

@@+ o) - (@ +e) + 3 -2

* 12

Pp|)—‘00 w
W
o
A
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By applying the triangle inequality, we have

3
a3 —as < ‘é (¢ + ) — (¢} + 3cfco + 2c103 + ¢ + ) )4—

Cq

t
161 71241

1
+)4(61(C1+CQ ‘+’12 (c2 (] 4 2)) ‘4—

From relations (7), (25), (26), and (28) we get

2 }<3+7+1+1+1+1 53
as; —a -+ — — =+ == —.
30l =89 "o T4 T 12716 " 24 48

Thus the result is proved for the case n = 3 of the Zalcman conjecture for

fesS (q).O

Theorem 8. If f € S*(q) is of the form f(z) = z + a1z + a2® + ...,

then
127

96

Proof. If f € S*(q) then, from Theorem 1, upon using the values of ag,
as from equations (12) and (15) one obtains that

|af —ar| < =

, 1/5, 5 2 ,
@ —ar=3 (ch + Seics + 03> - 5o (400c3 +1056¢1¢5 + 840cac4+

+ 7800162 + 7000103 + 49c1 + 11160104 + 1720¢1coc3 + 3320102—1—

+ 24088 + 48Oc6>.

25

0
= Ti ——(c} 4+ 2c1¢0 + c3)(c3)+

— (3 + 2169 + c3)? mcg T

ai—a7

1
* 2880 [5061 (Cl t 36162 + 30103 + 46102 + 2c9¢3 + 2¢104 + C5)+

+200(cS + 5ctey + 4cics + 4Acies + ¢ + c3 + 3eicacs + 3 eyt

+ 2¢o¢4 + 2c105 + cg) + 40cy(cf 4 3By + 2ci103 + €3+ cy)—
—200c7(cf + 3cica + +2c1c3 + ¢ + ¢4) + 200c3(c) + 2¢165 + 3)—
— 503 (e + 2165 + 3) + 400c4(c? + ¢3) + 540c1cac5 — 903 ey (2 +

+ ¢2) +50c] (3 + c3) —168c o +216¢icy + 280cs + 606¢ics|. (55)
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By using the triangle inequality and relations (7) and (25) —(31) to relation
(55), we get the required result. Thus, the result is proved for the case
n = 4 of the Zalecman conjecture for f € S*(q). O

8. Coefficient estimates f € C(q).
Theorem 9. If f € C(q) is of the form f(z) = z+ayz+ay2*+- -, then
o 1/2, ol S 174, Jad S7T/24,  Jas| < 3/40.

Proof. If the function f € C(q), then from relation (5) we have

@) +2f"(2) = [ (D) w (2) = [(2) V14w (2). (56)

From the relations (7) and (56) we have

2
() V1+w?(z) =1+ 2as2 + <3a3 + %)zQ + (4ay + asc; + clc2>z3+

2 2 4
3azcy | ¢ ¢

2 2 8

+ <5a5 + 2a9c1C9 + c103 + >z4 + (6@6 + 2c§a4+

asct  ce
+ c1c4 + 3ascicy + 2apcic3 + axcy + cacz — % — 172)25 +... (57)

Further,

fr2)+2f"(2) = f(2)w(2) =1+ (day — 1)z + (9a3 — 2asc; — c9)2°+
+ (16(1,4 — 3&301 — 2&202 — C3)2’3 + (25(15 — 4&401 — 3&302 — 2&203 — C4)Z4+
+ (36@6 - 561,5C1 - 4@402 - 3@303 - 2(12C4 - 05)25 + ... (58)

From (57) and (58), upon comparing the coefficients of the same powers

of z, we get
C1

a9 = 2, (59)
2 2
_a e 1( %)
a =+ =clet5 ) (60)
5¢3  Beiey  c3 5 4 5c3  c3
=1 -2 == 2 s L 61
=gt poglatiaete) - oo (61)

i 17c3cy  cie3 & oy
as = — — 4 =

T30 0 120 12 20 T2y
1

a5 = m(E)(c‘f 30+ 205+ G+ ) + ()P~ 2 1 ar). (62)
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By applying the triangle inequality to relations (59)—(62), also using re-
lations (26)—(28), we get the required result.

Here the coeflicients as and as have the best bounds for the function
f1(2), which is defined as

L+ G /() =2+ (14228 Az =2+ baa",
then fi(z) + 2f{(z) — 2fi(2) = fi(z) V1 + 2%
After simplification, we get by = 1/2, b3 =1/4. O
9. Coefficient functional for f € C(q).

Theorem 10. If f € C(q) is of the form f(z) =z + a1z + az® + ...,
then
|a2a3 - a4| S 29/48

Proof. If f € C(q), then, from Theorem 9 and upon using the values of
as, ag, aq from equations (59), (60), and (61) one obtains
110‘;’ 7C1

1
agag—a4zﬂ—g(c%+02)+ﬁ(c§’+20102+03).

By applying the triangle inequality, it is reduced to

11} 7c1 ;5
BTl At

From relations (25), (26), and (27) we obtain that

11 7 1 29
< = = =
0205 — aa] < o+ 50+ 5 =

+ ‘11—2 (0?4—20102—1—03) ‘

lasas — aq| < ‘

O
10. Fekete-Szego6 inequality for f € C(q).
Theorem 11. If f € C(q) is of the form f(z) = z + a1z + agz® + ...,
then 5 .
M‘} (63)

2
where p is a complex number and the best bound is obtained.

1
| as — pas |< gmax{l,

Proof. If f € C(q), then, from Theorem 9 and upon using the values of
as, ag, from equations (59) and (60) one obtains that

1
as — pajs = g (02 - Vlc?), (64)
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3(

where v, = (“Tfl)) By applying Lemma 2 to Equation (64), one obtains

the result as in Equation (63). The sharpness is given below:

1+ 22

1/6 if = —

3 2 ILL—l f ()_1—|—Z
T e

O
11. Second Order Hankel Determinant for f € C(q).

Theorem 12. If f € C(q) is of the form f(z) = z + a1z + agz® + ...,
then
|asay — a3|< 31/144.

Proof. If f € C(q), then from Theorem 9 and upon using the values of
as, ag, a4, from equations (59), (60) and (61) one obtains that

c1(c3 + 2109 + ¢3) N —12c3cy + 9cyc3 + 8¢2
96 288 '

‘a2a4 — ag‘ = ‘ (65)

By applying the triangle inequality to relation (65) and also using relations
(25) to (27), we get the required result. [J

12. An upper bound for |H;(1)| for f € C(q).

Theorem 13. If f € C(q) is of the form f(z) =z + a1z +ax2z* + ..., we

have
1277

< =
5760

Proof. Substituting the results of Theorems 9, 10, 11, and 12 in the

relation (4), we get

)< L (A0) 4 T (20) L3 (L) L2
SV =4 \144 24 \ 48 40 \6/) 5760

13. Zalcman coefficient functional for f € C(q).

Theorem 14. If f € C(q) is of the form f(z) = z + a12 + agz® + - -+,
then

| Hs (1)

O

‘ag — a5} < TR
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Proof. If f € C(q), then, from Theorem 9 and upon using the values of
as, as, from equations (60) and (62) one obtains that

1
a3 — as = 750 (20(0? + ¢3)? — 30(c} + 3ciey + 2cie3 + &5 4 c4)+

+20c3(c] + ¢2) — 12¢a(cF + ¢3) — 6y + 1) + 603) (66)
By applying the triangle inequality to relation (66), we have

laz — as| < — (20|c§ + co|*4+30|c] + 3cica + 2e1c3 + €5 + eyl +
+ 201216 + ol +H121eal 6 + 2] +6les | +11]er|*+6caf?).

From relations (7), (25), (26), and (28), we get

WP N (N (NP RS LN C R I
3 =720 "720 "720 " 720 " 720 " 720 " 720 48

O
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