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APPROXIMATION PROPERTIES OF SOME DISCRETE
FOURIER SUMS FOR PIECEWISE SMOOTH
DISCONTINUOUS FUNCTIONS

Abstract. Denote by L, n(f,z) a trigonometric polynomial of
order at most n possessing the least quadratic deviation from f
with respect to the system {tk =u+ QL]\/“};V:_;, where v € R and
n < N/2. Let D! be the space of 2m-periodic piecewise continu-
ously differentiable functions f with a finite number of jump dis-
continuity points —m = & < ... < &, = 7 and with absolutely
continuous derivatives on each interval (&;,&;+1). In the present ar-
ticle, we consider the problem of approximation of functions f € D!
by the trigonometric polynomials L, n(f,z). We have found the
exact order estimate |f(x) — L, n(f,2)| < c(f,e)/n, v —&| > e.
The proofs of these estimations are based on comparing of approx-
imating properties of discrete and continuous finite Fourier series.
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1. Introduction. Let D! be the space of 2r-periodic functions f,
each of which has a finite number of jump discontinuity points Q(f) =
= {&}ity, where —1 = § < & < ... < & =7, f(&) = (f(,fi - 0) +
+ f(& +0))/2 and has an absolutely continuous derivative f on each
interval (&;,&;41) (0 < i < m) (here we say that a function f is absolutely
continuous on an interval (a,b) if the function f is absolutely continuous
on the segment [a,b], where f(z) = f(z) for € (a,b), f(a) = f(a + 0),
and f(b) = f(b— 0)). One of such functions is f(x) = sign(sinx).

Denote by L, n(f,x) (1 < n < [N/2]) the trigonometric polynomial
of order at most n that possesses the least quadratic deviation from the
function f with respect to the system {ti}, ', where t; = u + 27k/N
(u € R). In other words, the minimum of the sums Ziv:—(; |f(te) = Tn(te)]?
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on the set of trigonometric polynomials 7, of order n is attained when
T = Ln n(f). In particular, Linso), n(f,te) = f(tr). It is easy to show
(see [13]) that for n < N/2 the polynomial L, n(f,x) can be represented
as follows:

3
2

f(tk)e—iutk :

0

Loa(fr) = 30 dV (e, () =+ 3

N
|
|
3
e
I

and for n = N/2:

N
LN/Q,N(fa x) = LN/2—1,N(f; r) + a%é(f) Cos §(x —u), (1)
where
N—
a®(f) = a%\g Z (t) cos — tk —u). (2)

k;:

By S, (f,z) we denote the partial Fourier sum of order n of f:
a a :
Su(f,x) = EO + ; (ay cos kx + by sin kx) ,

where

- -
ap = —/f(t) cos ktdt, by = —/f(t) sin ktdt.
m m

To read more about approximation of functions by trigonometric polyno-
mials, see [4-7], [9-12], [14].
Also, later we will need the function

cosz, p=20,
hp(x) = { .

sinx, p=1

and the well-known inequalities

. sinkz s
> <y (3)
k=1
a 1
> hy(kx) g},zv x4 2w, i=0,4+1,+2, ..., (4)
1 Sin 5
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It is easy to show, that the Fourier series converges pointwise for any
function f € D! and, therefore, the function can be represented as follows:

flx :@—l— ay cos kx + b sin kx) .
2
k=1

In the previous works, the author found estimates for the value
|f(z) = Ly, n(f, )| for 2m-periodic piecewise-linear and piecewise-smooth
continuous functions (see [1], [2]). Also, two particular cases of such func-
tions — 2m-periodic functions f(x) = |z| and f(z) = sign x,
x € [—m, 7] — were considered in [3]. The goal of this work is to esti-
mate |f(z) — L, n(f, )| for f € D' as n,N — oo. We obtained the
following result:

Theorem 1. For a function f € D!, the following estimate holds:

C(f,e
£@) - Lon(ho) < LD rcn< N2l le-glse ©)
where i = 0,1,...,m. The order of this estimate cannot be improved.

To prove this theorem, we use a lemma from [13]:

Lemma 1. [13| If the Fourier series of f converges at the points
ty = u+ 2kmw /N, then the representation

Ln,N(fa l’) - Sn(fa 1’) + Rn,N(fa l')a

where

R Z / F(#) Dol — t) cos N (u — £)dt, (1)

holds true when 2n < N.

From this lemma, we have the following estimate:

[f (@) = Lo n(f, 2)| < [f(2) = Sulf, @) + | Ro, n (f, 2)], < NJ2.(9)
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In the case 2n = N, from (1) and (9) we have

|f(x)_'Ln,N(fax)|<
<f(@) = Soa(f2) + [Ruca v (£ 2)| + [0l (H], n = N/2. (10)
The estimate for |f(z) — S, (f, )|, where f € D', were obtained in [8]:

@) =S <« 8D gz (1)

n

Now we have to estimate the values |R, n(f,x)| and 1a™ (f)|, which is

done in the following sections.
2. The estimate for |R, n(f,z)|. From (7) and (8), we can get
the representation

Ron(foz) = %Z / F(#) cos pN (u — £)di+

+%i/f(t)zn:cosk(:c—t) cos uN (u — t)dt =
u:l_7r k=1

::lgiJV(falﬁ +_}%iJV(f>x>'

Lemma 2. For a € (0, %], the following inequality holds:

i sin kx o
k(1- %)

<ec
k=1 k2

Proof. Performing the Abel transformation (summation by parts), we get

i sin kx _i o 1 isinjx_
Fl-%) S\1-% 1-ghp i

k2 T (k+1 j=1

_Ooi o (2+ 1) 1 " sinjz
ZkQ( 1 _)(1_ a2 >k]21 j .

(k+1)2
Using (5) and the inequalities
2 2 1
o® (2+¢) < 16

1+ (1-2) (1- =) 15
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we have
io: sin kx <
k=1 k (1 - ‘;’;“—5)
i i o? (2 + %)
k2 a? a?
) (1 w)

+3(1-%) (1- 5350

This completes the proof. [
Lemma 3. For f € D!, the following holds:

™

/f(t)hp(k(t — &) hg(uN (t — u))dt =

—T

) mz (F(& = 0) = (& +0)) Ap(k(& —2))n_o (1N (& — )~
# / (Ot — )Nt — w)di+

o mz (6= 0) = F(& +0)) Iy (& — )y (6 — )~

—(M—k / F (1 (bt — 2)hy (N (t = u))dt. (12)

Proof. Perform integration by parts:

™

/f(t)hp(k(t — 1)) ho(uN(t — u))dt =

= (f(& = 0) = (& +0)) hp(k(& — 2))h1—g(uN (& — u))—

MN /f k(t — ))hi—q(uN(t — u))dt+
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+ﬂ/f Vo p((t — )by (uN (£ — u))dt. (13)

Repeat integration by parts for the last integral in (13):

/ F(E)hp(k(t — )y (1N ( — u))dt =

- ;}V)q m (F(6 = 0) = F(E + 0) Ay(k(& — ) (AN (€& — )~
MN / £ ()b (k(t = @) g (N (¢ — )b+
L mZ (6= 0) = 16+ 0) ha_y (& — 1)y (BN (& — )~
- <(—’“ / F (s (t = 2))hy (N (¢ — w))dt+

. ﬁ / POk (E = )y (uN(E — )t

By movmg the last integral to the left-hand side and dividing both sides

by (”&V)Qk , we get (12). O

Lemma 4. The value |R) y(f,z)|, where f € D, can be estimated as
follows:
1 c(f)
< —2.
‘Rn,N<f’x)| ~ N

Proof. Performing integration by parts twice, we get

R’}l,N(f?’aj) =
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3
L

(f(&—0) = f(& +0))sin uN (& — u)+

ﬁ||
2|~
WE

[
==

1]

3
L

+ ]1\[222i [ (f/(fi—O)—f/(frf—O)) cos N (& — u)—

@
Il
=)

/f"(t)cosuN(tu)dt].

Applying some simple transformations and using (3), we have

1= =~ sin puN (& — u)
Ry n(f,2)] < -~ 2 |f(& —0) = f(&+0) p +
1 > ]. mil / / 7 " f
+7TNQZE ;‘f(fi—())—f(fi—i-())‘—i-/‘f (t)’dt] g%.

p=1

This completes the proof. [

Lemma 5. The value |R2 \(f, x)
follows:

, where f € D', can be estimated as

c(f,e)
N

‘R’?Z,N(f7$)‘< —&|>E

Proof. Using Lemma 3, we have

R N(f, ) ZZ/f )cos k(t — x) cos uN(t — u)dt =

p=1 k=1"

= 2N (e - 0) - i oy Y eV m ) s coshlG o)
=0 =1 K k=1 1— <%)

1 /
-y — / f(t)cosk(t — z)sin uN(t — u)dt+
pu=1 g (ﬁv) 2

T 7-‘-_]\32 Z (f(&—0)— f(&+0)) Z COSN]\L(QQ —u) Z k;jin k;((g. >§)+
=0 — (&
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2 1
+ N2Z_2 —/f )sink(t — x) cos uN(t — u)dt =

:REL;IN(.ﬂ >+ ﬁ,N(f?x)—i_ n.,N(f7x>+ n.,N(f7x>‘

Here we estimate only the values |R2(f, z)| and |R2%(f, )|, because
|RZ3(f,2)| and |RZ%(f,z)| can be estimated in the similar way. Begin
with |R%Y(f,2)|. Consider the expression

A= Z cos k(& ) f; :iEfN(f;)% |

Applying the Abel transformation, we get

n

A_i sin uN (& — ) Zcosj(@—x)Jr

L (1 - (MN)2> =t
smuN & —u) 1 B i cos j(€i— )
g2 BN

Using (4), Lemma 2 and the fact that

1 B 1 _ K 2+ 1
() () Y- (- ()
we get .
A< e

From this, we get the estimate for ’R N (f, )|

‘Ri.,lN<f7 Q?)| g
& =0) = f(&+0)
N sin &= N’

=0 2
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In the similar way, we get the estimate

|Rn (foa)| < % z—&| > e (15)

Now we estimate |R22;(f,z)|. Consider the integral
= /f/(t) cosk(t — x)sin uN(t — u)dt.

Using Lemma 3, we estimate the value |B| as follows:

,(&—0)—f’(£¢+0)’+j‘f"(t)‘dt gi—N.

2 Rl B c(f)
2.2
= - < 1
‘RnN( 7‘,1:)‘ WN;Mk_11_<L>2 N ( 6)
- - i
The value }R fs )’ can be estimated in the similar way:
2.4 c(f)
< —. 1
‘Rn,N<f7x){ N ( 7)
From (14)-(17) we have
c(f,e
7o) < 2 e glse
Lemma is proved. [J
Finally, from Lemmas 4 and 5, we have
c(f,e
Bon(f)l < D g (13)

3. The estimate for |a'?"(f)|. From (2), using that t; =u+2nk/N,
we have

>_A

2n—1 n—

1
ay; =N Z =N (f(t2k) = f(tor41))

0

£
Il
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and

< 3 2 () — Stz

Denote by G the subset of indexes {k};—, such that for k € G the segment

[tok, tors1] does not contain any point &;, 0 <i<m. Denote G= {k}iz, \G.
Now write

2 ()] < %ZV@%) — fltars)| + Z\f tor) — f(tar+1)| - (19)

keG keG

For each k € G, the segment [tor, tor11] lies entirely inside some interval
(&, &i41) and, therefore, the function f is differentiable on it, which allows
us to use the mean-value theorem and get the following inequality:

| f(tar) — f(tars1)| < c(f) [tar — torsa| < % (20)

For a k € G, there are s(k) points iy < o < oo < &y Inside
the segment [tok, tar+1]. Now we estimate the value |f(tor) — f(toxs1)| for
k € G. First, we need the following lemma:

Lemma 6. For f € D! and the segment [a, b], where [a,b] C [—7, 7], the
following holds:

[f(a) = f(b)| < c(f)(s+[a—0b]),

where s is the number of jump discontinuity points xi,x1,...,xs of the
function f on the segment [a, b)].

Proof. Here we consider only the case a < x; < ... < xs < b. The proof
for the cases a = 1 or b = x is similar. Consider the following inequality:

f(a) = f(O)] < |f(a) — f(z1 —0) |+Z\f — fla; +0)|+

#5710 40) — Fas ~ 0]+ 1+ 0) ~ )

Function f is differentiable on each of the intervals (a, 1), (21, 22), ...,
(xs-1,2s), (x5,b). Using the mean-value theorem, we can write
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f(a) = FO)] < |a—b|+z|f — flai+0)] <
< elPla— bl +5M < dPlamb + (s

where M = max |f (z; — 0) — f (z; +0)]. O

1<i<s

From this lemma

ST 1f(t) = Fltar)] <

<X (st0+ 5 ) <en st + L

keG keG keG

Each point &;,&,...,&,-1 may be included in one or two segments

[tor, tors1], k € G, therefore, 3" s(k) < 2m. Using this and the fact that
keG
]G‘| < m, we have

Z | f(tar) — f(tars1)] < e(f). (21)

keG

From (19), (20), and (21) inequality

N c(f)
0¥ ()] < 52 (22)

/

follows.

4. The proof of Theorem 1. The proof of estimate (6) from Theo-
rem 1 immediately follows from inequalities (9), (10), (11), (18), (22), and
n < N/2. To prove that the order of this estimate cannot be improved,
consider the value |f1(3) — Luy, n(f1,3)|, where 4n < N/2 and fi(z) =
= sign(sinz). From Lemma 1, get the inequality

|f(ZE) - Ln,N(f7x)| = |f(ZE) - Sn(f,l')| - |Rn,N(f7m)| :

It is easy to show that the following representation takes place:

2 o= (1= (=1)F)sinkz 4 = sin(2k — 1)«
:_§ == = 23
fil®) s k i 2k—1 ’ (23)
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4 SN sin(2k — Dz
Snlhor) = 1 32

k=1

Using this, we can estimate the value |f1 (%) — Sin (fl, %) ‘ from below:

A (3)-sm(n3)]=

4] & (D 4 & 1 1\
R 2 2k — 1 %Z(4k—3_4k—1>
k=2n+1 k=n+1
8 i 1 1/4
k=n+1 k? (4 - %) (4 - 3) dn

From this and (23) we have

0 (3) -t (1 5)] 5 2 s (.3)]

In the previous sections we showed that ‘R4n N ( f1, g) } <¢/N. Denote by

N (n) anumber such that for each N > N(n) inequality | Ran, v (f1, 3)| < 14/5
holds. Now, we have

1 (5) = v ()| > 57 = 4

From this we see that the order of estimate (6) cannot be improved. Theo-
rem 1 is proved.
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