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RECURRENCE RELATIONS FOR SOBOLEV
ORTHOGONAL POLYNOMIALS

Abstract. We consider recurrence relations for the polynomials or-
thonormal with respect to the Sobolev-type inner product and gen-
erated by classical orthogonal polynomials, namely: Jacobi poly-
nomials, Legendre polynomials, Chebyshev polynomials of the first
and the second kind, Gegenbauer (ultraspherical) polynomials, Her-
mite polynomials.
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1. Introduction. Sobolev orthogonal polynomials were first consid-
ered in the early 1960’s in relation with problems of approximation theory
(e.g., [3]). In the last three decades, this new theory has been intensively
developing (e.g., [1]—]22]). For more details on this topic, see the sur-
vey [14] and works cited there.

As the name implies, these polynomials are orthogonal with respect
to the so-called Sobolev-type inner products. There are plenty of inner
products of this kind, with various degrees of generalization. However, we
only consider Sobolev-type inner products that can be represented as

1.9 = gy, = Y £9@g @ + [ 00 w0 ()

For this case, the theory of Sobolev orthogonal polynomials has re-
cently been significantly developed and has found important applications
(see 22| and works cited there).
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A distinctive property of inner products of this kind is the existence of
special points, such that the behavior of Sobolev orthogonal functions can
be "controlled" in their neighborhood. Due to this property, it is possible
to construct the Fourier series with respect to the Sobolev orthogonal
polynomials, so that partial sums coincide with the approximated function
at the ends of the orthogonality segment. Such series proved to be a
convenient tool for different applied tasks, such as representing solutions
of the Cauchy problem for differential equations.

Following the established notation, we denote by LP(a,b) the space

b

of functions f(z), measurable on (a,b), for which [|f(z)[Pw(x)dzr < oo,

where w = w(x) is a weight function.
Let {©,}5°, be a system of polynomials, orthonormal in L2 (a,b). In
other words,

b
<%wm%=/%w%ﬁw@ﬁ=%m

a

where 9,, ., is the Kronecker symbol.

By ng(a,b) we denote the Sobolev space, which consists of functions
f = f(x) that are continuously differentiable (r — 1)-times on |[a, b], while
fr=1(x) is absolutely continuous on [a,b] and f € L2(a,b). The inner
product in Wia (0 1 defined by the equality (1).

Sharapudinov 1. I. proposed a new method for construction of poly-
nomials orthogonal with respect to the inner product (1). For any given
orthogonal system {p,(z)}, we can generate Sobolev orthogonal system
using the following equations:

gor,n(a:):u, n=0,1,...,r—1, (2)
n!

1 B
forin(®) = 5= [ =0 a0, n=01 @)

a

hereinafter we will consider g ,(x) = ¢, (x). More precisely, the following
statement has been proven in [18].
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Theorem A Suppose that the functions pn(x) (n =0,1,...) form a com-
plete orthonormal system in L2 (a,b). Then the system {¢..(x)}, gen-
erated by the system {pn(x)} by means of the equalities (2) and (3), is
complete in WEi(a,b) and orthonormal with respect to the inner product (1).

Remark. Note that Theorem A is valid not only for the case when p,,(z)
are polynomials, but for more general case of orthogonal functions.

One of the key properties of orthogonal polynomials is the three-term
recurrence relation, which establishes the relation between n-th polyno-
mial and two previous (n — 1)-th and (n — 2)-th (for example, see § 3.2,
Theorem 3.2.1 in [24]):

¢n(2) = (Ap + Bp)on_1(2) + Cppna(x), n=2,3,....  (4)

This formula is not only used for calculation of polynomial value in any
given point x for any degree n, but also for investigation of further prop-
erties of polynomial system.

As it was mentioned in [14], one of the main difficulties in the de-
velopment of the Sobolev orthogonal polynomials theory is absence of
three-terms recurrence relation for these polynomials in the general case.
However, we managed to establish recurrence relations for the case of
Sobolev-type inner products, which can be represented as (1).

In this article, we also consider specific Sobolev orthonormal polynomi-
als generated by the classic orthonormal polynomials and establish recur-
rence relations for these polynomials (namely, for polynomials generated
by: Jacobi polynomials, Legendre polynomials, Chebyshev polynomials of
the first and second kind, Gegenbauer (ultraspherical) polynomials, Her-
mite polynomials). Recurrence relations for the Sobolev—Laguerre poly-
nomials were established in [6], we only give them in the last section to
cover this topic in more details.

2. Recurrence relations for Sobolev orthogonal polynomials.
In the current section, we establish recurrence relations for Sobolev or-
thonormal polynomials {¢, ,} in the general case.

First, for the case when n < r it is obvious that

(r—a)® x—a
(IOT,O(I) = 17 @T,n(x) = nl = n Qor,n—1<$)7n = ]-’ sy T = 1. (5>

Next, from (3) with n = 0, we get
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1 r— @ el
o) = 0 /(x — ) podt = — T (z —1)| dt =

(r—a)” x—a

= $o T! = r %07‘—1,7‘—1(1-)7 r= ]-7 27 ey (6)

while poo(z) = @o.
Finally, for the case of ¢, ,+n(z) (n > 1), from (4) and again from (3)

we have
xr

@f%ﬁ/u—w“wAWﬁ:

a

Pror+n (z) =

g @ = 0 (At B (6)+ Cupra(D) =

vfﬂﬂ/@—w“%%A@Wt<”

a

= Bncpr,r—kn—l(x) + Ongpr,r—&—n—Q(x) +

Let us consider the last term separately:

x T

(r fnl)! / (z—t)" 1 (t)dt= (r fnw! / (z=t)" " (t—z+x)pn 1 (t)dt =
_ (TA_’”;)! / (x =) ppa(t)dt — ftﬂ"f / (x =) pn-1(t)dt =

= Anxﬂpr,rJrnfl(x) - AnTSDTJrl,rJrn(x)' (8)
Collecting together equations (5)—(8) we get

Theorem 1. For the Sobolev orthogonal system {¢,,} (r > 1), gener-

ated by the orthonormal system {¢,}, the following recurrence relations
hold:

r —a

oro(@) =1, pra(@) = ——¢raa(z), 1<n<r—1;

n
r—aQa
900,0(17) = o, Sﬁr,r(w) = ’ sﬂr—1,r—1($),
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Anrri1,r4n(7) = (AnZ + Bn)@rryn—1(7)+
+ Cn¢r,r+n—2(x) - SOT,T—HL(ZE): n =2,
where A,,, B,,, and C,, are the coefficients from the three-term recurrent
relation (4) for the original system {p,}.

Remark. Theorem 1 does not cover the case of ¢y ,41(2), 1. e.,

T

O1nt1(T) = /(pn(t)dt, n=12.... 9)

a

It should be considered separately, using special properties of the original
orthogonal system {¢,} (such as integral and differential properties).

3. Some information about the Jacobi polynomials. For ar-
bitrary real o and 3, the Jacobi polynomials P®#(x) can be determined
using the Rodrigues formula:

POa) = G ) @) (10)

where p(x) = p(z; 0, 8) = (1 — 2)*(1 +2)?, o(z) =1 — 22
We will need the following properties of Jacobi polynomials [24], [23]:

PP (—x) = (=1)"P}°(x),

= o (") = (TEY)

n n

d 1
PP (@) = S(ntact B+ NP (), (12)

(7>P3’_l(x) = (n?a> (x;1>lP§’lz(x), 1<i<n, (13)

(1 —z)Pet P (z) + (1 + ) PPt (2) = 2P0 (), (14)
Pt () = PrH(@) = PY(), (15)

(2n +a+ B)P2 7 (2) = (n+ a+ B)P(z) — (n+ B)PF(x), (16)
(2n+ a + )PPV (x) = (n+ a+ B)PYP(x) + (n + &) P™P (x).  (17)
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From (13) we also derive

ity = & =1 pu 18
) = TP (), (18)

Lemma 1. The following equalities for the Jacobi polynomials hold:

15— + A a—pFN\1

pe 1,8—1 _ n Pa,ﬁ . . _Poz,ﬁ _ 1

i ) = g S P — (e - )5 PR = (19)

_ OZ—B n+A—1 a,B (n+a—1)(n+6—1) o,

N (I * 2n+ A — 2) 2n b @) n(2n+ A —2) Fuma(®),
(20)

where A = a + (5.
Proof. Using (14), (15) and (17) we get

2P (a) = (1= ) Pe 7 a) + (1 + 1) P () =
= 2P (@) — [P @) — Pe(w)] — [P (a) — P2 ()] =

B n+a+p . l a—f B o
—Q{%iziﬁﬂﬁw”d(%iziﬁ xﬁ%ﬂ@}

From the other hand, from (16) and (17) we deduce
Pl () = nta+p—1 paufi-1 _

~1
“mta+p-1 ) e P ()

S m+a+ -1 "

n+a+pf—-1|n+a+pf n+«a
= pp P (2)] -
2n+a+6—1Ln+a+5”(@+dn+a+6"*@4

. n+p-1 n+a+p—-1 o (1) n+a—1 PoB ()
m+a+pB—-1|2n+a+p5—-2 "1 n+a+pB—2 "2

:n+a+ﬁ—1[ n+a+ Pod(z) a— 3 Pa’ﬁ(x)]—

2n+a+p [2n+a+5-—1" m+a+p—2 "1

m+a—-1)(n+p-1) O"ﬁ(x)
Cn+a+B-2)2n+a+f—1) "7

Consider the recurrence relation for Jacobi polynomials:

2(n+1)(n+a+B+1)2n+a+ B)P(z) =
=[2n+a+B)2n+a+B+2)z+a® - B (2n+a+ B+ 1)P2F(z)—
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—2(n+a)(n+B)2n+a+ B +2)P2" (),
and rewrite it in the following form:

n+a+p o B
2n+0z+ﬁ—1pnﬁ(x)_[ om 2n(2n + o+ B —2)
B (n—i—a—1)(n+5—1)(2n+a+5)PQ,5( )
n2n+a+pB—-1D2n+a+p—-2) "2 -

2 2 _ 02
n—l—a-l—ﬂ (67 B ]Pg;ﬁi(x)_

Then, returning to the previous equality, we get

S

o +aa_+ﬁﬁ —5 P )] - (2n +(Z 1 Z = ;3 g;fa_j)ﬁ 0 Pyty(a) =

= ZZT;Z_ 51 [<2n Zi = $+2n(2no—i o f; ) "o +O;_+5/3 — >

x Pi() - (2n(j:;+aﬁ_—;§gniﬁoﬂ_rﬁl>—l) - - Z T+ 1] i) =
BESSET Y ARV P

C(nta-1Dn+B-1) 45 .
n2n+a+ 8 —2) Fuma(@).

The proof is complete. [
If a, 8 > —1, then the Jacobi polynomials form a complete orthogonal
system in L%(—l, 1), 1i.e.,
1
[ PP @tt)dt = 15, (21)
1

where
pas L(n+a+1)I(n+ B+ 1)20H5+ (22)
" nlTn+a+B+D)2n+a+B+1)

Let p&f(x) = [h2P)~Y/2P(x) be the orthonormal Jacobi polynomi-

als.
The following recurrence relation holds:
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\/ An+1)n+a+)n+B+Dn+a+f+1) .4 (z) =

@n+a+6+U@n+a+ﬁ+m%%+a+ﬂ+3ﬁ%1
a2_62

- [x+(2n+oz+5+2)(2n+oz+ﬂ)

B dn(n+a)(n+ B)(n + a + f)
Cn+a+p)22n+a+p—-1)2n+a+5+1)

PP (z)—

2P (x),n > 1. (23)

4. The Sobolev—-Jacobi polynomials. Consider the polynomials
pl(x) (r=1,2,...;n=0,1,2,...) defined on [—1,1] by the equalities

1 n
pﬁf(x):%’ n=01,...,r—1, (24)
(&3 1 r r—1, «
i) = o [@= OO =01 (25)

-1

We will restrict the parameters «, (3 to satisfy the inequality o, 5 > —1
since this is the only case when the Jacobi polynomials are orthogonal
and, hence, the three-term recurrence relation still holds.

For brevity, denote A = a + (.

1. In the case r = 1, we have

xX 1 x
Prm () = /pﬁ’ﬁ(t)dt - - /P,f}ﬁ(t)dt, n=12,....
’ hyy
1 el

From (12), we get

2 d .4 X
TL+)\ @Pn—l-llﬂ 1(%) Pnﬁ(x)’
then
o, Z(h%’ﬁ)ié d a—1,8—1
Py n+1( )_ "+ A qp (t)dt
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10 R
_ (nn_l—))\ [PT(LXJ,-lLB 1(x>+(_1)”<?;if)]7 n:1,2,.... (26)

Note, that we need the parameters «, § to be non-negative to use (26) as
a recurrence relation; otherwise, the polynomial P,(f;ll”g ~!(z) would not be
orthogonal, and, hence, the recurrence relation for it would not hold. For

the case —1 < o, 8 < 0, we can use (19) or (20) from Lemma 1. We get

@8 (2) = (h%ﬂ> 2+ A+1) o5 ()=
Pint1 = Y M+ At 2 n+1

(2~ ﬂ) PoB(x) + (—1)”2(” * 5)} _

[NIES

2n + A+ 2 n+1

_ <hﬁvﬁ) 52(n—|—/\+1) {Pa”g( )—<x— )xx—iroz—B) B (1)

n+A 2n+A+2 | " 2n+A+1)/ "
_pes_py ot g 9

Using the fact that

4(n+1) po-16-1

75 E—
h% - n+)\ n+1 )

we can also rewrite (26) in the following form:

Pyl () = asf it (@) + 0%, (28)
where
1
~ 2 (h>B) "2
Vn+1)(n+A) n+A \n+1

2. Next, we consider the case r > 2. First, let us rewrite the recurrence
relation (23) in the following form:

(@) = (ap e + 007 )00 (@) + e Ppily(a), n=2.3,..,

aaﬁ_1\/(277,—1—)\—1)(2n+)\)2(2n+)\+1)
K n(n+a)(n+ B)(n+ ) ’
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mﬁ_}_Cﬁ—52 Cn+A=1)2n+A+1)
" 2@2n4+A=2)\ n(n+a)(n+B)(n+AN)’

wp _ —2n+A) [(n=1)(n+a—-1)(n+B-1)(n+A - 1)(2n + A+ 1)
T 2n4A—2 n(n+a)(n+8)(n+X)(2n +X — 3) '

From Theorem 1, we have

a8 PP (@) = (7 + )Pl () +
+ D a(@) —pia(e), > ln>2

Dividing both parts of the equation by a®* and performing simple trans-
formations, we get

D) (@) = (@4 AYT) P ()

- Bgflpz;’é-n—Q('r) - Bgﬁpif—kn(‘r)? r Z 1a n 2 27 (29)

where ) )
Aoz,ﬁ = bg,ﬂ = o~ 6
" a?® 2n+A—=2)2n+\)’
s _ 1 e _ 2 n(n+a)(n+ B)(n+ A) '
" ar’ el 24+ 2n+A-1)2n+A+1)

Using (26), (27), and (29) from Theorem 1, we derive the following result.

Theorem 2. For the Sobolev-Jacobi polynomials {p2;f} (r > 1), when
a, B > —1, the following recurrence relations hold:

a (e r+1 a
pr,y(]ﬁ<x) = 17 pr,f('r) = n pr,ynﬁfl(x)’ 1 S n S r— 17

r+1
= p7"7—,81,7"—1<x);

X 2(hef) 2 s
() = 2D pmoti gy pacani]

(ho"ﬁ)_%Q(n+)\+1) e +a—f
=" P (x) — (2 — ) PP ()~
n+A 2n+A+2 {"*1(@ ( 2(n+/\+1)) W (@)
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_n—l—oz—l—lpaﬁ

(=1)1;
Tpffl,r—i—n(x) = (LL' + Agﬁ) pf,ﬁ—n—l(x)_
_Bgflpvoﬂifs—n—2(x) - Bg7ﬁp?,;"ﬁ+n(x>a n Z 27

where A = a + 3,

012—B2

AP =
" 2n+A—=2)2n+ M)’

Bob — 2 \/n(n+a)(n+ﬁ)(n+/\)
" 2n+ A\ 2n+A=1)2n+A+1)

5. The Sobolev—Gegenbauer polynomials. If parameters o and
[ of the Jacobi polynomial are equal, then this polynomial is called ul-
trasphrerical polynomial. The special case of ultrasphrerical polynomials
when o = = v — % are Gegenbauer polynomials. The relation between
Gegenbauer and standartized Jacobi polynomials is established by the

following equality:

F'(v+3) T(n+2y) Ptz
I'2y) T(n+v+3) "

Ca(z) = (). (30)

Consider orthonormal Gegenbauer polynomials

R 1.1 1
Chl(z) =pn 27 2(x), > n=0,1,2,...

We can generate the new Sobolev orthogonal system from C7(z):
_1
Ch(x) = pra®”

with the help of equalities (24) and (25).
Using (26) and (30), we can write the following for these polynomials:

2 (h”‘%”‘%)*

n+2y—1

N

,y,lﬁ,l ,y,§77,§
(@) =131 @) = Pl )
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_8.,.3 — n n! Y1 o

This formula is suitable for the case when ~ > % On the other hand, from
(27) and, once again, (30) we get

1

hv—%n—% 2
" 2(n +27) [PW—%,’Y—%

o - -
Ln-i-l(x) n + 2,7 o 1 2n + 27 + 1 n+1 (33)
1.1 2n+2v+1 (VIS YV | SV YV |
_P'Y 2773 1) — < pl 2 P2 2(_1 )] —
e - S (s () + (-1)

= TP(W) o (o cY (o N—-C7 (-1
B (n+2y—1) 27TF(TZ+2’}/)[ w1 () =2 C(a) = Cgy (1) = Ca(=1)].

From these two equalities and Theorem 2, we conclude

Corollary 1. For the Sobolev-Gegenbauer polynomials {C),.} (r > 1),
when v > —%, the following recurrence relations hold:

1
Clo@) =1, Cl(x) = 22200, \(x), 1<n<r—1
9 9 n b
1 I'v+1 z+1
o) = D o =T )

Clua() =27 T (0= 1) o 5D [t ) - o7t -1) =

2T () VIt e
; (n+2y —1)/2xT (n + 2v) [Cn—H( ) C)(x)

TCZ+1,r+n(x) - xo;iﬂrnfl(‘r) - szflc::r+nf2(x) - BZCZT_;'_n(I), n > 27

where

- n(n+ 2y —1)

”_\/4(n+’y—1)(n+7)'
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6. The Sobolev—Legendre polynomials. In case when parameters
a = f = 0, the Jacobi polynomials become the well-known Legendre
polynomials P,(x). Using the orthonormal Legendre polynomials

P(z) =p"x), n=0,1,2,...,
we generate the Sobolev-Legendre polynomials
Prn() = pin(2).
From (28) for r = 1, we have

Poii (z)  \/2(2n+1)

nt+1(x) = = P L Ne), n=1,2,....
prale) = Dt = VIS R )

Using (18), we rewrite

( ) Vvan +1
n r) = ——
Plntt o2

Then, from this equality and from Theorem 2, we get

(22 —1) PV (z), n=1,2,....

Corollary 2. For the Sobolev-Legendre polynomials p,,(x) (r > 1),
the following recurrence relations hold:

z+1
pro(®) =1, prn(r) = " Pro-1(z), 1<n<r—1;
1 1 r+1
ro\L) = = T = rr\L) = r—1,r—1\T);
p,( ) m \/§ D ( ) r Pr—1 1( )
2n+1
Prati(T) = —(xQ_l)PrlLfl(@» n=12..;

2nv2

1 1
rpr-l-l,r-i-n(x) = xpr,r—&-n—l(x) - Brf—lpr,r+n—2(x) - ngr,r-i-n(x)» n > 2,

where
n

An? —1
7. The Sobolev—Chebyshev polynomials. The next two impor-

tant special cases of the Jacobi polynomials are the Chebyshev polynomi-
als of the first and the second kind.

1
B: =
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1. Orthonormal Chebyshev polynomials of the first kind can be written
in trigonometric form as follows:

. 1 . 2
Ty = ﬁ’ T,(z) = \/;cosnarccos(w), n=12...

These polynomials are orthonormal on [—1,1] with the weight function
Jr 80

. 1
Tu(x) =pn® *(2).
Then Sobolev-Chebyshev polynomials of the first kind will be
(z+1)"

Trn(:c):—, n=0,1,...,r —1; TM(.Q:): —
’ ’ rl\/m

i@ = 5 /(ac O R (dt, n=1,2,..

In the work [18] by Sharapudinov I. I., the asymptotic formula and some
other properties of the modified Sobolev—Chebyshev polynomials of the
first kind were considered (orthonormal with the weight function ﬁ)

In particular, the recurrence relations for the case r = 1 were obtained.
We will use them here, transforming for our case:

A

_ Ton(2)  Toa(w) (=D

Tin = - — > 2:
en@) = o0 T T om—1) o1 "2
. . r+1 - 2 —1
TL(](.CE) = 1, T171($) = TLQ(.Z') = ——

VT
Then, from Theorem 2 we get

Corollary 3. For the Sobolev—Chebyshev polynomials of the first kind
T.n(x) (r > 1) the following recurrence relations hold:

~ ~ 1 4
Too@) =1, Ton(e) = ~Tpp a(x), 1<n<r—1;
n
. . 1 . 1) .
TO 0(1’) TO = ﬁa Trr<x) = <x—: ) Tr—l,r—l<x);
R o z+1 . 2?2 —1
T1 O(I) = 1, T1 1(.T) = TLQ(JI) =
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. Toa(e)  Toa(@  (=1)"
enl®) = 50T T3 o1y o1 "

~ T A 1 ~ ~
Tr+1,r+n(x> = ;Tr,rJrnfl(x) - 2_7’ Tr,r+n72(l§) + Tr,rJrn(x) ) n>2.

2. Classical Chebyshev polynomials of the second kind can be written
in trigonometric form as follows:
sin (n + 1) arccos ©

Up(x) = . , n=012,...

S111 arccos @

It is easy to show that

/Un(x)Um(x)\/ 1 —a2de = génm

-1

Hence, orthonormal Chebyshev polynomials of the second kind are

Sobolev — Chebyshev polynomials of the second kind are of the follow-
ing form:

Urn('r):(x+1) ) nzoulu 7T_17
v/ 2
Ui __T_qr/ O WL, n=0,1,....  (31)

By its definition, we have Uy o(x) = 1; and from (31) we get

Ui (z) = \/g(x +1), Upale) = \/%(&:2 —1).

Using the following well-known properties of Chebyshev polynomials:

/Un(t)dt _ Tl gy oy

n-+1

from (31) we also deduce

Vi) = =1/ 2 [Tu(a) - (~1)"].

n ™
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With the help of these equalities, we derive the next statement from
Theorem 2:

Corollary 4. For the Sobolev—Chebyshev polynomials of the second
kind U, ,(z) (r > 1) the following recurrence relations hold:

1
Up(z)=1, U.,(x)= Tt Upn—1(z), 1<n<r-—1,
n

~ 2 r+1
UO,O(:L‘) = UO = \/;7 Ur,r(x) = , Ur_lﬂn_l({lj');

e

UL()(.T) = 1, Uljl(l‘) = —(l’ -+ 1), ULQ(J]) = \/g (ZE2 — 1) s

1 /2
m¢m=;¢;ﬁmw—@n% =L
T 1
U’r—i—l,r—i—n(x) - ; r,r—&—n—l(x) - 5 [Ur,r—&-n(l‘) + Ur,r+n—2(~r>] ) n Z 2.

8. Some information about the Hermite polynomials. The
standardized Hermite (or Chebyshev—Hermite) polynomials are deter-
mined using the following Rodrigues formula (see [23], [24]):

2 dTL 2
H(w) = (=1)"e” {e—x } n=0,1,2,.... (32)
These polynomials are orthogonal with the even weight function
h(t) = e=*, defined on the whole real axis; namely:

/ H,(t)H,,(£)h(t)dt = 5y 20! /7.

Therefore,

~ H,(t
A =0 o

NN
are orthonormal Hermite polynomials.
The three-term recurrence relation for Hermite polynomials has the

following form:
Hy(z) =1, Hi(z)=_2z,
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Hence for orthonormal polynomials we have

Ho(x) =7~ Hy(z) = avV2r 4,

To(x) = x]:fn_l(x)\/g oy s 3

n

We will also need the following properties of the Hermite polynomi-
als (see [23]):

H () =2nH, (z); (34)
1,(0) = (-1 2 1y, 0) =0 (35)

9. The Sobolev—Hermite polynomials. The following Sobolev—-
Hermite polynomials were considered in the work [19]:

n
hm(x):%, n=0,1,...,r—1,

T

/(93 — )" H,(H)dt, n=0,1,...

0

It has been shown, that these polynomials form the complete system
in the Sobolev space W7, ®) and are orthonormal with respect to the
h
following inner product:

(o) =3 FD(0)g(0) + / FO ()90 (O R(1)dt.

Let us consider recurrence relations for Sobolev—Hermite polynomials.
1. Using (34), we have, for the case r = 1:

hypsr(z) = / H,(t)dt (t)dt =

1 roor
= Hn+1
V2rn! /T ) 2(n+1)
_ Hpn(z) — Hnpa(0)
V22 (n + D) y/7(n + 1)
If n is even (n = 2m), this equation is simplified, with the help of (35), to

_ Hopy1 ()
2m+1(2m + 1)1/ (2m)! /7

h1’2m+1(l’) = 0, ]_, ceey
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while for odd n = 2m + 1 we get

m !
Hamial) + (—1)m 222

T 2m2(m 4 1)/202m 1 )l yn

hi1 om2(2) m=20,1,....

2. For the case r > 2, we use Theorem 1 and deduce:
Anrhr+l,r+n($) = (Anx + Bn)hr,rJrnfl(x)—i_

+C~’nhr,r+n—2(x) - hr,r—l—n(aj)a r Z 1777/ Z 2,

where An, B,, and C,, are given by recurrence relation (33); hence
Th'r—i—l,r—i—n(x) - xhr,r—&—n—l(x)_

—1
- nThr,r+n—2(x) - ghr,r+n<x)> r> 17 n =2

Collecting all the formulas together, we get the following from Theorem 1:

Theorem 3. For the Sobolev-Hermite polynomials h,,(x) (r > 1) the
following recurrence relations hold:

hT,O(x> = ]-a hr,n(x) = %hr,n—l(x)a 1 S n S r— ]-;

. x
hoo(z) = Hy = 7T71/4> hyy(x) = - hy—1p—1(2);

|
hlgm(l') = L Hgm(l‘) - (_1)m@ s m = ]_,27...,
’ 2mtly /m(2m)! /T m!
Hom
h1,2m+1(9€) 2m1(7) m=12...;

T 9m L 2m 4+ 1)/ 2m)l

T n—1 n
Brstrin(®) = “hopin1 (@) =\ S hraa(@) = ) (@), 0 > 2.
r 2r 2r

10. The Sobolev—Laguerre polynomials. The Laguerre polyno-
mials can be defined using the Rodrigues formula (see 23], [24]):

1 dar
Li(w) = —a e

= e {z"tee ). (36)
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When o > —1, these polynomials are orthogonal with respect to the
following inner product:

/Lg(t)Lf‘n(t) to%e~tdt = Sy (” _:L a) (o +1).
0

We denote by [%(x) the orthonormal version of these polynomials.
Now, we can generate (see [19]) the new system

lff,n(a:):m, n=0,1,...,r—1,

a 1 r r—1lja
Lpin(® ):m/(w—t) Hp(t)dt, n=0,1,...,
0

which is complete in the Sobolev space WEQ(O 00) and orthonormal with
P b
respect the Sobolev-type inner product

- if “(0)g"(0) + / FO0g" () pt)at,

where p = p(t) = t%e .

The following recurrence relations were established in [6]:
Theorem B For the Sobolev-Laguerre polynomials I!, (x) (r > 1), when
a > —1, the following recurrence relations hold:

o) =1, I,(a) =12, (2), 1<n<r—L

1

X
Og(z) =18 = ——nu, 1 (2) =212, ,(2);
Sole) =1 = == 7 (@) = 202, (a)

«
ll n+1

n+a+l a( n+a+1 N
N\ —— Iy (@) 1 (2) 4+ | ———— +1 Iy 1(0)=17(0), n>1; (37)

B 1%,
l?r+n( ) + [bnx - an] lr,rJrnfl( ) nl?r+n 2(3’5) n > 27 (38>
where

a a

0 2m+a-1 (n—1(n+a-1)
= :

N Sy T S S
" /nn+a) Vn(n+ ) n(n+ a)
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Remark. FEquations (37) and (38) can also be represented as follows:

3
o o n+a+1, n+a« n+a+1)\2
R () = (x) =/ n—_Hln+1<x> + ( N ) (n——l—l) - 1]

forn >1;
r l?—&—l,r—l—n(l‘) = dzl'(rl,r—l—n(m) + [‘/L‘ - Bg] lzr—i—n—l(l‘) + az—llf’ir—&—n—Q(m)

form > 2, where

ar =+/nn+a), b =2n+aoa—1.
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