Probl. Anal. Issues Anal. Vol.9(27), No2, 2020, pp. 87-96 87
DOI: 10.15393/j3.art.2020.7330

UDC 517.98
MOHSEN SHAH HOSSEINI, BAHARAK MOOSAVI

INEQUALITIES FOR THE NORM AND NUMERICAL
RADIUS FOR HILBERT C*-MODULE OPERATORS

Abstract. In this paper, we introduce some inequalities between
the operator norm and the numerical radius of adjointable oper-
ators on Hilbert C*-module spaces. Moreover, we establish some
new refinements of numerical radius inequalities for Hilbert space
operators. More precisely, we prove that if 7' € B(H) and

T + T 2 T —T* 2
min(” + Tl ,H | ) < rnax( inf || Tz|?, inf HT*wH2),
2 2 llel=1 llel=1

then

IT|< V2w(T);

this is a considerable improvement of the classical inequality
IT< 2w(T).
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1. Introduction and preliminaries. Let B(H) denote the
C*-algebra of all bounded linear operators on a complex Hilbert space
H with the inner product (-,-). If dim H = n, we identify B(H) with
the space M, of all n X n matrices with entries in the complex field. For
T € B(H), let | T|| denote the usual operator norm and

w(T) = sup{[(Tz, ) |- [lx]= 1}

denote the numerical radius of T'. It is well known that w(-) is a norm on

B(H) and that
I

2
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<w(T) < |7} (1)
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for all T € B(H). The first inequality becomes an equality if T? = 0
(use the first Kittaneh inequality below). The second inequality becomes
an equality if 7" is normal. Recently, the authors of [13] tried to show
that ||T'||< v2w(T) holds, whenever T is an invertible operator. However,
Cain [1] constructed some counterexamples. Several numerical radius in-
equalities improving those in (1) have been recently given in [2-5], [11],
and [14]. For instance, Dragomir proved that

1
W (T) < Sw(T?) + I T1P)
for any 7' € B(H). And Kittaneh proved that, for any 7' € B(H),

w(T) < (|IT)+IT?)|7)

DN | —

and 7T +1T1T*T T +1T1TT
T LTy ¢ WD 47T

Theese inequalities can be found in [9], [10], respectively. Furthermore,
Holbrook in [7| showed that, for any R, S € B(H),

w(RS) < 4dw(R)w(S), (2)

and
w(RS) < 2w(R)w(S), (3)

when RS = SR.

See [6] for other results and historical comments on the numerical
radius. Now, here is a reminder of the definition of a Hilbert module,
according to [12].

Let A be a C*-algebra (not necessarily unital or commutative). An
inner-product A-module is a linear space E, which is a right A-module
(with a compatible scalar multiplication: A(za) = z(Aa) = (Az)a for all
x € E,a€ Aand A € C), together with a map (-,-) : E x E — A, such
that



Norm and Numerical radius inequalities 89

(iv) (z,9) = (y,2)",
for all z,y,2 € E,a e A, \ € C.

For z € E, we write ||lz|= ||(z,z)||z. An inner-product .A-module
that is complete with respect to its norm is called a Hilbert A-module,
or a Hilbert C*-module, over the C*-algebra .A. We denote, by L(FE), the
C*-algebra of all adjointable operators on F (i.e., of allmaps T : E — FE,
such that there exists a 7% : F — FE with the property (T'(x),y) =
= (z,T*(y)), forall z,y € E) and let L™!(E) denote the set of all invertible
operators in L(FE).

Definition 1. For T € L(E), let
o(T) =supf{|[(Tz, z)|| = [[=]|= 1},
IT[|=sup{[|Tz| - [[«[|= 1},
respectively, denote the numerical radius and operator norm of T.

Recently, in [15], we have shown that
IT)|< 25(T), (4)
and
(TS) < 46(T)o(95). (5)

We are able to improve the inequalities (4) and (5). The results in this
paper considerably improve inequalities (1) and (2).

2. Main results. Let T € L(E). For the sake of convenience, we
prepare the following notation:

T_T*Q T T*Q
() = min (T =TI 1T+ 1Py

and
M(T) :max(iﬂlf ||, inf HT*:CH?).
z||=1 z||=1
In order to derive our main results, we need the following lemmas.

Lemma 1. IfT € L(F) is self-adjoint, then
o(T) = [Tl (6)

Proof. First, we show that the result holds for positive operators.



90 Mohsen Shah Hosseini, Baharak Moosavi

Let G € L(FE) be positive. Since L(E) is a C*—algebra, we know that
|G*G||= [|GI|*. Then,

|G*Gl[= sup (GG, z).

llzll=1
Replacing G by VG gives
1G|= ”81”1§1||<G96717>||- (7)

Now, let T' € L(FE) be just self-adjoint. By Proposition 1.1 in [12],

o(T) = sup [|(Tz, ) [|< | T]- (8)

llzll=1

On the other hand, being self-adjoint, T’ can be decomposed: T' =T, —T_,
such that 7 and 7 are both positive and T, T = T_T, = 0, and also
IT]|= max([| %], [|7-[]). Note that

sup (T3, x)l|= [ T2]), (by (7));

[[=]|=1
then there exist a sequence {x,} of unit vectors in E, such that

IT2l= Jimn [[(T 30, 2]

Therefore,
T+.Tn T+$n
sup (T, )12 (7 (o). ) =
lz]]=1 | Tyan|l/ " | Tean ||
T+$n T+Q3n
=@ =1 () )=
H< " | Ty xnll /) (| Ty,
KT, )| - (TS, )|
| Tyxn|2 = T2
and = 17 P (T3, 2]
T+ . +xn7xn
sup |[(T'z, z)||> = lim —————— (9)
lzl|=1 |T|> noee T
Similarly,
|7_|°

sup ||[(Tx, z)||> :
lzl|=1 17|
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By (9) and (10),

T2 T2
o) = sup (o) |2 max (Yl B2y —

The result follows from inequalities (8) and (11). O
Lemma 2. IfT € L(FE), then
(a) m(T) < 25%(T).

1
(b) M(T) = T if T is invertible.

Proof. (a) Since T+ T is self-adjoint, from Lemma 1 we have:
| T+ T"||=0(T +T7)

So,
1T+ 77 _ (0T +T7)* _ (6(T) +6(T7))*
2 B 2 - 2
Consequently,

= 26%(T).

* |2
w < 26%(T). (12)
17+ 77|

2
(b) See [8, p. 41]. O

Lemma 3. Let E be a Hilbert C*— module. Then

Since m(T') < , the result follows from (12).

@, @) + (b, b)[| < %(||a+b||2+l|a—bll2)7 (13)

for any a,b € E.
Proof. Suppose that a,b € F; then

(a+b,a+0b) = (a,a)+ (a,b) + (b,a) + (b,b),

(a —b,a—b) = {(a,a) — (a,b) — (b,a) + (b,b).

Thus,
(a+b,a+0b)+ (a—0b,a—>b)=2({a,a) + (b,b)).

Therefore,
2[[{a, a) + (b, 0)[|< [la + b]*+[la — b]|*.
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This completes the proof. [
Theorem 1. IfT € L(FE) be such that

it [Tal[*+T"|< (T, Tx) + (T2, T)|
z||=1

and

inf |72+ T < [[(Tir, Ta) 4+ (T2, T)|

for all x € FE with ||z||= 1; then
ITI*+M(T) = m(T) < 26*(T). (14)
Proof. Suppose that v € E with ||ul]|= 1. Choose a = Tu,b = T*u in
(13) to give
(T, Tu) + (T u, T*u)|| < (HTu4—T%41+HTu T*ul®).  (15)

By the assumption, ”irlllf | Tz || 4+ T*u||?*< [[{Tu, Tu) + (T*u, T*u)|| gives
z||=1

it [ Tol Tl 5 (1T =T+ T Tul). (by (15))

Taking the supremum over u € E with [Ju||= 1 gives
it [ TalP TIPS S (=TT E). (sinee 7)< 7))
Since (T + T*) is self-adjoint, (6) yields

1T+ T7[< 26(T).
Therefore,

T — T2
inf [T+ 2020r) + T

Similarly, by the assumption,

(16)

nf 72|+ Tal*< (T, Ta) + (7. T0)]|

gives

T — T* 2
inf [Tl 202r) + TS0
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and, so,

T =T

IT[*+M(T) < 20%(T). (by (16)).

Replacing T by T in the last inequality gives

|T||>+M(T) — | < 26%(T).

7+ 7?
2
Thus,

T—T*? |T+T*|?

which is exactly the desired result. [
The following particular case is of interest.

Corollary 1. Let T be as in Theorem 1. If, in addition, T € L™'(E),
then

7%+ —m(T) < 26%(T). (17)

1
=4
Proof. Result follows immediately from Theorem 1 and Lemma 2(b),
since 7' is invertible. [

Our next corollary includes a refinement of the inequality (5).

Corollary. Let R, S be as in Theorem 1. Then

J(RS) < /(26*(R) — M(R) +m(R)) (26%(S) — M(S) +m(S)) <
< 46(R)4(S).

Proof. By Lemma 2(a),
m(R) < 26*(R)

and so

IRII< v/262(R) — M(R) +m(R) < 20(R). (by (14))

Similarly,

ISI< /282(S) — M(S) +m(S) < 26(S).
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Therefore,

o(RS) < [IR[[[|IS]I<
< V/(20%(R) — M(R) +m(R)) (262(S) — M(S) +m(S5)) <
< 46(R)8(S).

0

The following applications of Theorem 1 improve inequality (4) for
some invertible operators.

Corollary. Let R,S € L™Y(FE) and satisfy the condition of Theorem 1.
If m(R) < ||R7Y||72 and m(S) < ||S7Y|72, then
IR]< V25(R), (18)

5(RS) < 28(R)8(S). (19)

Proof. Inequality (18) follows from Lemma 2(b) and corollary 1. Simi-
larly,

1S]1< v26(5). (20)
For inequality (19), observe, using §(RS) < ||[RS|| in the first inequality
and (18) and (20) in the third, that
6(RS) < [|RS||< [IR]][S]I< 26(R)6(S).

This completes the proof. [

3. New inequalities for Hilbert operators. Since a Hilbert space
is a Hilbert C*-module, the results in section 2 of this paper hold in B(H).

Theorem 2. IfT € B(H) and 0 < ||T||*4+M(T) — m(T), then

BE J 1+M(%§ — ()

Proof. According to Definition 1, we have 6(7") = w(T').
Replacing T' by II_;H in (14) gives

I (121 (o) — () ) < 2)

w(T). (21)
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Since || T||*4+M(T) — m(T) > 0,

2
IT|*<

- 1+M(ﬁ)—m(ﬁ)

w(T),

which is exactly the desired result. [

In the next result, we provide some conditions for the inequality
IT|I< V2 w(T) to be true.

Corollary. If T € B(H) and M(T) > m(T), then
ITI< V2 w(T).
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