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AND ITS PROPERTIES

Abstract. The Ahlfors—Beurling transform has been well studied
on classical Lebesgue, Morrey, Sobolev, Besov, Campanato, etc.
spaces. However, its discrete version is still not studied well. In
this paper, we study the properties of the discrete Ahlfors—Beurling
transform on discrete Lebesgue spaces.
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1. Introduction. The Ahlfors—Beurling transform of a function
feL,(C),1<p< oo, is defined as the following singular integral:
1
(Bf)(z) = ——lim Mdm(w).

T =0 (z —w)?
{wel: |z—w|>e}

The Ahlfors—Beurling transform is one of the important operators in
complex analysis. It has been shown in [1], [5], [8], [13], [20] that this trans-
form plays an essential role in applications to the theory of quasiconformal
mappings and to the Beltrami equation with discontinuous coefficients.

From the theory of singular integrals (see [7], [16]), it is known that
the Ahlfors-Beurling transform is a bounded operator in the space L,,
1 < p < oo; that is, if f € L, then Bf € L, and the inequality

1Bz, < Coll fllz, (1)

holds. In the case f € L1, only the weak inequality holds:

mize O |BAEI> N < Hfl, A>0, )
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where m stands for the Lebesgue measure, C,, C; are constants indepen-
dent of f.

Note that the Ahlfors-Beurling transform of a function f € L; is not
Lebesgue integrable. In [4], the authors considered a modified version of
the Ahlfors—Beurling transform and, using the notion of A-integrability,
proved an analogue of the Riesz equality.

In [6], [9], [10], [11], [12], [14], [18], [19], the boundedness of the oper-
ator B in other function spaces (in the spaces of Sobolev, Besov, Cam-
panato, Morrey, etc.) was studied. But the discrete version of the Ahlfors—
Beurling transform has not been studied. In this paper, we study the
properties of the discrete Ahlfors—Beurling transform on discrete Lebesgue
spaces.

2. Discrete Ahlfors—Beurling transform and its boundedness
on discrete Lebesgue spaces.

Denote by [, := [,(Z¢), p > 1, the class of sequences h = {hy, }nez,
satisfying the condition

Ill,:= (D 1hal?) < o0,

neZc

where Zg :={m+ine€ C: m,n € Z} and Z is the set of integers.
~Let h = A{hu}neze € Ilp, p > 1. Namely, the sequence
B(h) = {(Bh)n}nez. is called the Ahlfors-Beurling transform of the se-

quence h, where

N B
(Bh)y = > —"—=, né€Zeo

—m)2’
meZc, m#n (n m>
Note that if h € [,, 1 < p < oo, then from the Holder inequality

it follows that the series > i

meZc, m#n (n - m)2
therefore, the Ahlfors-Beurling transform of the sequence h exists. In [7],
A.P. Calderon and A. Zygmund noted that the discrete Ahlfors—Beurling
transform is of special interest among discrete analogues of singular inte-
grals. In this work, it was also noted (without proof) that the discrete
analogues of singular integrals, including the discrete Ahlfors—Beurling
transform, is bounded in L,. For n = 1, this remark is due to M. Riesz [15]
(see also [17]), and the proof in the case of general n follows a similar pat-
tern. For the sake of readability of the article, we first give a proof of this
fact.

absolutely converges, and,
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Theorem 1. Let1 < p < oo. For any h € l,, we have Bh € l,, and
there exists ¢, > 0 such that

1BAlL,< ¢ - IR, (3)

holds for all h € 1,,.

Proof. Define the function f(z) to be (—4wh,) for z € P(n,1/4), n € Z¢,
and 0 elsewhere, where

Pn,d§)={weC: -0 < Rw—-n) <, =) <J(w—n)<d}.
It follows from h € [, that f € L, and
1= (X [ lnhaPin) " = 2],
"€2C P(n,1/4)

Then, from inequality (1) it follows that Bf € L,, and
1BSll, < Cot™ |,

Define the function F(z) to be (Bh), for z € P(n,1/2), n € Z¢ and
G(z) = (Bf)(2) - F(2).

We first prove that G(z) € L,,.
For every z € P(n,1/2), [R(z —n)|# 1/4, |S(z —n)|# 1/4, n € Z¢, we
have

Gz =Y 4h, /%_ 3 mﬁ—mm)f

meZc P(m,1/4) meZc, m#En
1 1
- 4h,, ( . )d
Z / (z—w)> (n—m)? m(w)+
meZc, m#En P(m,1/4)
dm(w)
+ 4h, m = Gl(z) + G2(Z>a (4>
P(n,1/4)

where

J e e S

P(n,1/4) {weP(n,1/4): lw—z|>e}
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Let m # n. Since for every z € P(n,1/2) and w € P(m,1/4)
|In —m|=3/4 < |z —w|< |n— m|+3/4,
then we get

1 1 Cn-m—z4w||n—m+z—wl
(z—wp  (n—m)l |2 — w[*|n —m|?
3/AC2In —m|+3/4)  _ 33
= In=m(jn = m|=3/4)* 7 |n —m[*

Therefore, for every z € P(n,1/2)

G S 4l /

mede mAN - pma)

1 1

G-w? (n—m)

SZ%@

In—m|3
meZc, m#En

dm(w) <

2

From this and from the Holder inequality, it follows that

|G|, < 33< Z [ Z %]zv 1/p -

n€Zc mEZg, m#En

(] ¥ sl Y ool

n€Zc meEZc, m#En meZc, m#En

_ ho P \1/p
— 334} 1/”( Sy —’n‘ v r|n\3> _
n€Zc meZc, m#En
1-1/p p 1 1/p
=33y (Xl 3 =) =Bkl (©)

meZc neZc,n#Em

where dy = > e
n€Zc,n#0

Let us show that Gy € L,. If z € P(n,1/2), |[R(z—n)|# 1/4, |S(2—n)|#
1/4, n € Zg, then

dm(w) 2
< A4l|h, ——— = 87|h,|- In —,
U(n,2)\U(n,p(2))
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where p(z) :=p(z; P(n, 1/4)) = min{|z — w|: w € P(n, 1/4)} is the dis-
tance

from the point z to the set P(n, 1/4) and U(z,¢) ={w € C' : |w — z|< &}.
Therefore, for every n € Z¢,

/ (G (2)Pdm(z) < (8)7 |y P / <ln%)pdm(2):

z)
P(n,1/2) P(n,1/2)
12 1R
2 P
- (87r)p\hn|p-8/d:c/ (m 1/2—y) dy < (87| hn|P-4ds,
0 T
12

2 P
where d; := / <ln 7 —y> dy.

0
From this, we have

Galley= (3 [ IGu@Pm() " < x4 Pnll,  ®)

neZep(n, 1)

It follows from (4), (6), (8), that G € L,.
Since F'(z) = (Bf)(2) —G(z), then we have from Bf € L, and G € L,
that I’ € L,,

Fll, < (CA™"r -+ 33dy + 87 - (4dh) ) o],
Therefore,

||Bh||lp:(2|(éh)n|p>1/p:<Z / |F(Z>|pdm(z)>1/p:

neZo nGZCP(n, 1/2)
= || F||, < (Cpd' " + 33dy + 8 - (4d1)'7) 101,
This completes the proof of Theorem. [J

Theorem 2. There exists ¢; > 0, such that for any h € l; and for any
A > 0 the distribution function (Bh)(A\) = {n € Zc : |(Bh)n|> A}|:=
> (neZe: (Bhya|>ay 1 Of the Ablfors-Beurling transform of the sequence h
satisfies the inequality

(BRI Sl (9)
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Proof. We define the functions f(z), F'(2), G(z), G1(2), G2(z) as in the

proof of Theorem 1. It follows from h € [} that f € Ly,

19le= 32 [ amhaldm() = .

"EZCP(n,1/1)

Then, from (2) we have
i
m{z e C: [(Bf)(2)|> A} < 77r||h||ll,)\ > 0.

It follows from (5) and (7) that G; € Ly and Gy € Ly,

P,
G|, = Z / |G1(2)]dm(z) < 33 Z Z ﬁ —

nEZCP(T17 1/2) neEZc meZc, m#n

1
=33 Z || Z Tn—mp = 33dol| A,

meZc neZc,n#m

2
1G22, = /IGQ Jdm(z) <87+ ) |kl / In ——dm(z) <

zZ
nZe i) p(z)

2
< 327?/111 Ty Vil = 1674+ 1] ],

It follows from (4), (11), (12) that G € Ly,
|Gz, < [16m(In4 + 1) 4 33do] - ||hl]s, -

Therefore, by Chebyshev’s inequality, we have

16m(In4 + 1) + 33d,

m{z € C: |G(z)|> A} < 5

e

(10)

(11)

(12)

(13)

Since F(z) = (Bf)(z) — G(2), then it follows from (10) and (13) that

{zeC:|F)|>A<m{zeC:|(Bf)(2)|> %}+

20 7 + 327(In4 4 1) + 66d,
A

+m{z e C:|G(z)|> %} <

e
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Therefore,

(BR)(A) = [{n € Zc : |(BR)u|> \Y|=mi{z € C: |F(2)|> \} <

< 2017 + 327(In4 + 1) + 66d,
- A

e

This completes the proof. [J

3. Asymptotic behavior of the distribution function of the
discrete Ahlfors-Beurling transform.

The following theorem shows the main reason why the discrete Ahlfors-
Beurling transform does not belong to the class ;.

Theorem 3. Let h € ly. Then the equation

lim A+ (BR)() = n‘ n;g hy (14)
holds.
At first, we prove the auxiliary lemma.
Lemma 1. Let h €l; and ZneZo h,, = 0. Then the equation
(Bh)(\) = o(1/\), A — 0+ (15)

holds.

Proof. At first, assume that the sequence h € [y is concentrated on some
finite ball {w € C : |w|< m}, that is, h, = 0 for |n|> m. In this case,
from the equality

~ hk 1 2n — k
(Bh)n = Z (n—k2 n2 Z i = Z (n — k)Qanhk’ Inf>m

k|<m [k|<m |k|<m

we get that
- 8
[(Bh)a|< EE Z L

[k <m

for large values of n, whence it follows asymptotic equation (15).

Now let us consider the general case. From the condition } -, ., h, =0

it follows that for any € > 0 there exist the sequences h' = {h] },cz €
[y and b = {h!},cz € [; satisfying the condition: h = h' + h”; the
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sequence h’ € [y is concentrated on some finite ball {w € C': |w|< m} and
> neze ln = 03 ' € 1y satisfies the inequality >, |hn|< o=, where ¢; is
the constant in estimation (9). Since the sequence h’ € [; is concentrated
on {w e C: |w<m}and ) ., h;, =0, then for the sequence ' € I
equation (15) is satisfied, and, therefore, there exists A(e) > 0 such that

for 0 < A < A(e) the inequality
NBH)(\2) < /2 (16)

holds, where (Bh)(\) = > (neZe:|(Bhr)a>xy 1 On the other hand, from
inequality (9) it follows that for any A > 0

MBH"(N2) < 21| |1, < /2 (17)
where (B‘h”)()\)‘ = D (neZe:|(Bha|>ay 1+ From inequalities (16), (17) and
from the inclusion

{n € Zc : |(Bh)n|> \} C
C{n € Zo :|(BI),|> A2} U{n € Zo : |(BR"),|> \/2}

we get
A~ (Bh)(\) < A(BKW)(M2) + M(BR")(\)2) < e

for 0 < A < A(e). This shows that equality (15) was satisfied for all h € [;
satisfying a condition ) . 7o I = 0. This completes the proot of the
lemma. [

Proof of theorem 3. In the case Y, h, = 0 the assertion of the
neZc

theorem follows from Lemma 1. Let us consider the case ) h, =a # 0.
neZo

Denote by h!, = h, for n # 0, hyy = hg — a and h!, = 0 for n # 0, hj = a.
Then h = b/ + 1", where b/ = {h! },ez € [y and b = {h]'},c~ € l;. Since
> hl, =0, then from Lemma 1 we get

neZc
(BR))(N) = o(1/\), A — 0 +. (18)
Since (BR"), = & for n # 0, (Bh"), = 0, then

(BR")(X) ~ @ A= 0+, (19)
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For any 0 < £ < 1, by the inclusions

{neZc: |(BW)|> (14 e)A\{n € Zc : |(BW),|> e} C
c{neZs: |(Bh)n|> A} C
c{neZo: |(BN)|> ey U{n e Zo: |(BR),|> (1 —e)A}
and from (18), (19) we have

mlal mlal

< liminf \ - (B <li - (B < :
1+€_l&gé$fA (Bh)()\)_h)r\ri)%lip)\ (Bh)(\) < ¢

This implies the equation (14) and completes the proof of Theorem 3.
Note that for the discrete Hilbert transform an analogue of this theo-
rem was proved in [2].

4. A necessary condition and a sufficient condition for the
summability of the discrete Ahlfors-Beurling transform.

Theorem 4. Let h € l;. Then, to include Bh € Iy, it is necessary that
the equation
Y hy=0 (20)

holds.

Proof. First, we prove that if the sequence b = {b,}ncz € li, then the
distribution function b(A\) = {n € Z¢ : |by|> A}| of the sequence b
satisfies the condition

b(A) = o(1/A), A — 0+ . (21)

It follows, from the inequality

DD SIS S S N ¥ P

nez {n€Zc:|bn|>1} k=0 {neZc:|bp|e(2-F—1;2-F]}

> [{n € Zo: bal> 1+ ) 27" [{n € Zc : [bale (275 27F})) =
k=0

+i2k1 2k1 Zleb ]
k=0

k=0
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that
lim 275 . b(27%) = 0.

k—o0

Taking into account that the function b(A) is decreasing, we obtain (21).
It follows from (21) that, if Bh € [y, then

(BRh)(A) = o(1/\), A = 0+,

and, therefore, by Theorem 3, we obtain that equation (20) holds. The
proof of the theorem is complete. []

Theorem 5. If the sequence h € [ satisfies the conditions

i) S hy=0

neZc

ii) > |hm|In(e + |m|) < oo

meZco
then Bh € I, and the inequality
IBA], < 150 > |hm[In(e + ml) (22)
meZco

holds.

Proof. From the definition of the discrete Ahlfors-Beurling transform, it
follows that

_ h,.
(Bhol=| Y- 2| < (23)
m#0
From condition i) for n # 0, we have
~ h h
Bh),|= ) _m _m‘ <
CONMS RS ) P
meZc, m#n meZc
ha han P
< | _Mm  Bm) gy
<filv X |l e

meZc, m#n

It follows from inequalities (23) and (24) that

hpn hom
IBal= 3 IBaI< 2t D 3 |

neZc n€Zc ,n#0 meZc,m#n

“oflt Y hadY |

(n—m)?2 n?
meZc,m#0 neZc,n#0,n#m
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=20hlla+ D lhwl-Tms (25)

meZg,m#0

1 1
e RS
Z (n—m)? n? ™

In|<3Jml,n70,nm

1 1
|n§m| ) (n —m)? n?

=JO 4 g2 0. (26)

Estimate the summands J5, m # 0, i = 1,2. Defining k= [log,(4|m|)]+ 1,
where [log,(4|m])] is the integer part of the number log,(4|m|), we have

1 1
(1) - _
VAETND DENSILN

In|<3Jm|,nm In|<3|ml,n7£0

1 i 1
<2 Z Hz— Z Z W§224'22p.22p—2:
p=1

|n|<4|m|,n£0 p=1 2r—1<|n|<2P

= 32k < 961n(e + |m)|),

2n
J@ — [ml[2n —m|
W= 2 e SO 2 e

\n\>3\771\

> 1
:6|m|z Z W <

p=1 3|m|2P*1<|n|<3|m|2P

(3|m]-2r)?
\Z TTmp s — 64 < 521In(e + |m)).

From this and from (25), (26), we obtain (22). The proof of the theorem
is complete. [

Note that analogues of these theorems were proved for the discrete
Hilbert transform in [3].
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