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Abstract. The Ahlfors–Beurling transform has been well studied
on classical Lebesgue, Morrey, Sobolev, Besov, Campanato, etc.
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this paper, we study the properties of the discrete Ahlfors–Beurling
transform on discrete Lebesgue spaces.
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1. Introduction. The Ahlfors–Beurling transform of a function
𝑓 ∈ 𝐿𝑝(𝐶), 1 ≤ 𝑝 < ∞, is defined as the following singular integral:

(𝐵𝑓)(𝑧) = − 1

𝜋
lim
𝜀→0

∫︁
{𝑤∈𝐶 : |𝑧−𝑤|>𝜀}

𝑓(𝑤)

(𝑧 − 𝑤)2
𝑑𝑚(𝑤).

The Ahlfors–Beurling transform is one of the important operators in
complex analysis. It has been shown in [1], [5], [8], [13], [20] that this trans-
form plays an essential role in applications to the theory of quasiconformal
mappings and to the Beltrami equation with discontinuous coefficients.

From the theory of singular integrals (see [7], [16]), it is known that
the Ahlfors–Beurling transform is a bounded operator in the space 𝐿𝑝,
1 < 𝑝 < ∞; that is, if 𝑓 ∈ 𝐿𝑝, then 𝐵𝑓 ∈ 𝐿𝑝 and the inequality

‖𝐵𝑓‖𝐿𝑝≤ 𝐶𝑝‖𝑓‖𝐿𝑝 (1)

holds. In the case 𝑓 ∈ 𝐿1, only the weak inequality holds:

𝑚{𝑧 ∈ 𝐶 : |(𝐵𝑓)(𝑧)|> 𝜆} ≤ 𝐶1

𝜆
‖𝑓‖𝐿1 , 𝜆 > 0, (2)
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where 𝑚 stands for the Lebesgue measure, 𝐶𝑝, 𝐶1 are constants indepen-
dent of 𝑓 .

Note that the Ahlfors–Beurling transform of a function 𝑓 ∈ 𝐿1 is not
Lebesgue integrable. In [4], the authors considered a modified version of
the Ahlfors–Beurling transform and, using the notion of 𝐴-integrability,
proved an analogue of the Riesz equality.

In [6], [9], [10], [11], [12], [14], [18], [19], the boundedness of the oper-
ator 𝐵 in other function spaces (in the spaces of Sobolev, Besov, Cam-
panato, Morrey, etc.) was studied. But the discrete version of the Ahlfors–
Beurling transform has not been studied. In this paper, we study the
properties of the discrete Ahlfors–Beurling transform on discrete Lebesgue
spaces.

2. Discrete Ahlfors–Beurling transform and its boundedness
on discrete Lebesgue spaces.

Denote by 𝑙𝑝 := 𝑙𝑝(𝑍𝐶), 𝑝 ≥ 1, the class of sequences ℎ = {ℎ𝑛}𝑛∈𝑍𝐶

satisfying the condition

‖ℎ‖𝑙𝑝 := (
∑︁
𝑛∈𝑍𝐶

|ℎ𝑛|𝑝)1/𝑝 < ∞,

where 𝑍𝐶 := {𝑚+ 𝑖𝑛 ∈ 𝐶 : 𝑚,𝑛 ∈ 𝑍} and 𝑍 is the set of integers.
Let ℎ = {ℎ𝑛}𝑛∈𝑍𝐶

∈ 𝑙𝑝, 𝑝 ≥ 1. Namely, the sequence
�̃�(ℎ) = {(�̃�ℎ)𝑛}𝑛∈𝑍𝐶

is called the Ahlfors–Beurling transform of the se-
quence ℎ, where

(�̃�ℎ)𝑛 =
∑︁

𝑚∈𝑍𝐶 , 𝑚 ̸=𝑛

ℎ𝑚

(𝑛−𝑚)2
, 𝑛 ∈ 𝑍𝐶 .

Note that if ℎ ∈ 𝑙𝑝, 1 ≤ 𝑝 < ∞, then from the Holder inequality

it follows that the series
∑︀

𝑚∈𝑍𝐶 , 𝑚 ̸=𝑛

ℎ𝑚

(𝑛−𝑚)2
absolutely converges, and,

therefore, the Ahlfors-Beurling transform of the sequence ℎ exists. In [7],
A.P. Calderon and A. Zygmund noted that the discrete Ahlfors–Beurling
transform is of special interest among discrete analogues of singular inte-
grals. In this work, it was also noted (without proof) that the discrete
analogues of singular integrals, including the discrete Ahlfors–Beurling
transform, is bounded in 𝐿𝑝. For 𝑛 = 1, this remark is due to M. Riesz [15]
(see also [17]), and the proof in the case of general 𝑛 follows a similar pat-
tern. For the sake of readability of the article, we first give a proof of this
fact.
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Theorem 1. Let 1 < 𝑝 < ∞. For any ℎ ∈ 𝑙𝑝, we have �̃�ℎ ∈ 𝑙𝑝, and
there exists 𝑐𝑝 > 0 such that

‖�̃�ℎ‖𝑙𝑝≤ 𝑐𝑝 · ‖ℎ‖𝑙𝑝 (3)

holds for all ℎ ∈ 𝑙𝑝.

Proof. Define the function 𝑓(𝑧) to be (−4𝜋ℎ𝑛) for 𝑧 ∈ 𝑃 (𝑛, 1/4), 𝑛 ∈ 𝑍𝐶 ,
and 0 elsewhere, where

𝑃 (𝑛, 𝛿) := {𝑤 ∈ 𝐶 : −𝛿 ≤ ℜ(𝑤 − 𝑛) < 𝛿, −𝛿 ≤ ℑ(𝑤 − 𝑛) < 𝛿}.

It follows from ℎ ∈ 𝑙𝑝, that 𝑓 ∈ 𝐿𝑝 and

‖𝑓‖𝐿𝑝=
(︁ ∑︁

𝑛∈𝑍𝐶

∫︁
𝑃 (𝑛, 1/4)

|4𝜋ℎ𝑛|𝑝𝑑𝑚(𝑧)
)︁1/𝑝

= 41−1/𝑝𝜋‖ℎ‖𝑙𝑝 .

Then, from inequality (1) it follows that 𝐵𝑓 ∈ 𝐿𝑝, and

‖𝐵𝑓‖𝐿𝑝≤ 𝐶𝑝4
1−1/𝑝𝜋‖ℎ‖𝑙𝑝 .

Define the function 𝐹 (𝑧) to be (�̃�ℎ)𝑛 for 𝑧 ∈ 𝑃 (𝑛, 1/2), 𝑛 ∈ 𝑍𝐶 and

𝐺(𝑧) = (𝐵𝑓)(𝑧)− 𝐹 (𝑧).

We first prove that 𝐺(𝑧) ∈ 𝐿𝑝.
For every 𝑧 ∈ 𝑃 (𝑛, 1/2), |ℜ(𝑧− 𝑛)|≠ 1/4, |ℑ(𝑧− 𝑛)|≠ 1/4, 𝑛 ∈ 𝑍𝐶 , we

have

𝐺(𝑧) =
∑︁
𝑚∈𝑍𝐶

4ℎ𝑚

∫︁
𝑃 (𝑚,1/4)

𝑑𝑚(𝑤)

(𝑧 − 𝑤)2
−

∑︁
𝑚∈𝑍𝐶 , 𝑚 ̸=𝑛

ℎ𝑚

(𝑛−𝑚)2
=

=
∑︁

𝑚∈𝑍𝐶 , 𝑚 ̸=𝑛

4ℎ𝑚

∫︁
𝑃 (𝑚,1/4)

(︁ 1

(𝑧 − 𝑤)2
− 1

(𝑛−𝑚)2

)︁
𝑑𝑚(𝑤)+

+ 4ℎ𝑛

∫︁
𝑃 (𝑛,1/4)

𝑑𝑚(𝑤)

(𝑧 − 𝑤)2
= 𝐺1(𝑧) +𝐺2(𝑧), (4)

where ∫︁
𝑃 (𝑛,1/4)

𝑑𝑚(𝑤)

(𝑧 − 𝑤)2
:= lim

𝜀→0+

∫︁
{𝑤∈𝑃 (𝑛,1/4): |𝑤−𝑧|≥𝜀}

𝑑𝑚(𝑤)

(𝑧 − 𝑤)2
.
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Let 𝑚 ̸= 𝑛. Since for every 𝑧 ∈ 𝑃 (𝑛, 1/2) and 𝑤 ∈ 𝑃 (𝑚, 1/4)

|𝑛−𝑚|−3/4 ≤ |𝑧 − 𝑤|≤ |𝑛−𝑚|+3/4,

then we get⃒⃒⃒ 1

(𝑧 − 𝑤)2
− 1

(𝑛−𝑚)2

⃒⃒⃒
=

|𝑛−𝑚− 𝑧 + 𝑤|·|𝑛−𝑚+ 𝑧 − 𝑤|
|𝑧 − 𝑤|2·|𝑛−𝑚|2

≤

≤ 3/4(2|𝑛−𝑚|+3/4)

|𝑛−𝑚|2·(|𝑛−𝑚|−3/4)2
≤ 33

|𝑛−𝑚|3
.

Therefore, for every 𝑧 ∈ 𝑃 (𝑛, 1/2)

|𝐺1(𝑧)|≤
∑︁

𝑚∈𝑍𝐶 , 𝑚 ̸=𝑛

4|ℎ𝑚|
∫︁

𝑃 (𝑚,1/4)

⃒⃒⃒ 1

(𝑧 − 𝑤)2
− 1

(𝑛−𝑚)2

⃒⃒⃒
𝑑𝑚(𝑤) ≤

≤
∑︁

𝑚∈𝑍𝐶 , 𝑚 ̸=𝑛

33|ℎ𝑚|
|𝑛−𝑚|3

. (5)

From this and from the Holder inequality, it follows that

‖𝐺1‖𝐿𝑝≤ 33
(︁ ∑︁

𝑛∈𝑍𝐶

[︁ ∑︁
𝑚∈𝑍𝐶 , 𝑚 ̸=𝑛

|ℎ𝑚|
|𝑛−𝑚|3

]︁𝑝)︁1/𝑝

≤

≤ 33
(︁ ∑︁

𝑛∈𝑍𝐶

[︁ ∑︁
𝑚∈𝑍𝐶 , 𝑚 ̸=𝑛

|ℎ𝑚|𝑝

|𝑛−𝑚|3
]︁
·
[︁ ∑︁
𝑚∈𝑍𝐶 , 𝑚 ̸=𝑛

1

|𝑛−𝑚|3
]︁𝑝−1)︁1/𝑝

=

= 33𝑑
1−1/𝑝
0

(︁ ∑︁
𝑛∈𝑍𝐶

∑︁
𝑚∈𝑍𝐶 , 𝑚 ̸=𝑛

|ℎ𝑚|𝑝

|𝑛−𝑚|3
)︁1/𝑝

=

= 33𝑑
1−1/𝑝
0

(︁ ∑︁
𝑚∈𝑍𝐶

|ℎ𝑚|𝑝
∑︁

𝑛∈𝑍𝐶 , 𝑛 ̸=𝑚

1

|𝑛−𝑚|3
)︁1/𝑝

= 33𝑑0‖ℎ‖𝑙𝑝 , (6)

where 𝑑0 =
∑︀

𝑛∈𝑍𝐶 , 𝑛 ̸=0

1
|𝑛|3 .

Let us show that𝐺2 ∈ 𝐿𝑝. If 𝑧 ∈ 𝑃 (𝑛, 1/2), |ℜ(𝑧−𝑛)|≠ 1/4, |ℑ(𝑧−𝑛)|≠
1/4, 𝑛 ∈ 𝑍𝐶 , then

|𝐺2(𝑧)|≤ 4|ℎ𝑛|
∫︁

𝑈(𝑛,2)∖𝑈(𝑛,𝜌(𝑧))

𝑑𝑚(𝑤)

|𝑧 − 𝑤|2
= 8𝜋|ℎ𝑛|· ln

2

𝜌(𝑧)
, (7)
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where 𝜌(𝑧) :=𝜌(𝑧;𝑃 (𝑛, 1/4)) = min{|𝑧 − 𝑤|: 𝑤 ∈ 𝑃 (𝑛, 1/4)} is the dis-
tance
from the point 𝑧 to the set 𝑃 (𝑛, 1/4) and 𝑈(𝑧, 𝜀) ={𝑤 ∈ 𝐶 : |𝑤 − 𝑧|< 𝜀}.
Therefore, for every 𝑛 ∈ 𝑍𝐶 ,∫︁

𝑃 (𝑛, 1/2)

|𝐺2(𝑧)|𝑝𝑑𝑚(𝑧) ≤ (8𝜋)𝑝|ℎ𝑛|𝑝·
∫︁

𝑃 (𝑛, 1/2)

(︁
ln

2

𝜌(𝑧)

)︁𝑝

𝑑𝑚(𝑧) =

= (8𝜋)𝑝|ℎ𝑛|𝑝·8
1/2∫︁
0

𝑑𝑥

1/2∫︁
𝑥

(︁
ln

2

1/2− 𝑦

)︁𝑝

𝑑𝑦 ≤ (8𝜋)𝑝|ℎ𝑛|𝑝·4𝑑1,

where 𝑑1 :=

1/2∫︁
0

(︁
ln

2

1/2− 𝑦

)︁𝑝

𝑑𝑦.

From this, we have

‖𝐺2‖𝐿𝑝=
(︁ ∑︁

𝑛∈𝑍𝐶

∫︁
𝑃 (𝑛, 1/2)

|𝐺1(𝑧)|𝑝𝑑𝑚(𝑧)
)︁1/𝑝

≤ 8𝜋 · (4𝑑1)1/𝑝‖ℎ‖𝑙𝑝 (8)

It follows from (4), (6), (8), that 𝐺 ∈ 𝐿𝑝.
Since 𝐹 (𝑧) = (𝐵𝑓)(𝑧)−𝐺(𝑧), then we have from 𝐵𝑓 ∈ 𝐿𝑝 and 𝐺 ∈ 𝐿𝑝

that 𝐹 ∈ 𝐿𝑝,

‖𝐹‖𝐿𝑝≤ (𝐶𝑝4
1−1/𝑝𝜋 + 33𝑑0 + 8𝜋 · (4𝑑1)1/𝑝)‖𝑏‖𝑙𝑝 .

Therefore,

‖�̃�ℎ‖𝑙𝑝=
(︁ ∑︁

𝑛∈𝑍𝐶

|(�̃�ℎ)𝑛|𝑝
)︁1/𝑝

=
(︁ ∑︁

𝑛∈𝑍𝐶

∫︁
𝑃 (𝑛, 1/2)

|𝐹 (𝑧)|𝑝𝑑𝑚(𝑧)
)︁1/𝑝

=

= ‖𝐹‖𝐿𝑝≤ (𝐶𝑝4
1−1/𝑝𝜋 + 33𝑑0 + 8𝜋 · (4𝑑1)1/𝑝)‖𝑏‖𝑙𝑝 .

This completes the proof of Theorem. �

Theorem 2. There exists 𝑐1 > 0, such that for any ℎ ∈ 𝑙1 and for any
𝜆 > 0 the distribution function (�̃�ℎ)(𝜆) = |{𝑛 ∈ 𝑍𝐶 : |(�̃�ℎ)𝑛|> 𝜆}|:=∑︀

{𝑛∈𝑍𝐶 : |(�̃�ℎ)𝑛|>𝜆} 1 of the Ahlfors-Beurling transform of the sequence ℎ

satisfies the inequality

|(�̃�ℎ)(𝜆)|≤ 𝑐1
𝜆
‖ℎ‖𝑙1 . (9)
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Proof. We define the functions 𝑓(𝑧), 𝐹 (𝑧), 𝐺(𝑧), 𝐺1(𝑧), 𝐺2(𝑧) as in the
proof of Theorem 1. It follows from ℎ ∈ 𝑙1 that 𝑓 ∈ 𝐿1,

‖𝑓‖𝐿1=
∑︁
𝑛∈𝑍𝐶

∫︁
𝑃 (𝑛, 1/4)

|4𝜋ℎ𝑛|𝑑𝑚(𝑧) = 𝜋‖ℎ‖𝑙1 .

Then, from (2) we have

𝑚{𝑧 ∈ 𝐶 : |(𝐵𝑓)(𝑧)|> 𝜆} ≤ 𝐶1

𝜆
𝜋‖ℎ‖𝑙1 , 𝜆 > 0. (10)

It follows from (5) and (7) that 𝐺1 ∈ 𝐿1 and 𝐺2 ∈ 𝐿1,

‖𝐺1‖𝐿1=
∑︁
𝑛∈𝑍𝐶

∫︁
𝑃 (𝑛, 1/2)

|𝐺1(𝑧)|𝑑𝑚(𝑧) ≤ 33
∑︁
𝑛∈𝑍𝐶

∑︁
𝑚∈𝑍𝐶 , 𝑚 ̸=𝑛

|ℎ𝑚|
|𝑛−𝑚|3

=

= 33
∑︁
𝑚∈𝑍𝐶

|ℎ𝑚|
∑︁

𝑛∈𝑍𝐶 , 𝑛 ̸=𝑚

1

|𝑛−𝑚|3
= 33𝑑0‖ℎ‖𝑙1 , (11)

‖𝐺2‖𝐿1=

∫︁
𝐶

|𝐺2(𝑧)|𝑑𝑚(𝑧) ≤ 8𝜋 ·
∑︁
𝑛∈𝑍𝐶

|ℎ𝑛|
∫︁

𝑃 (𝑛, 1/2)

ln
2

𝜌(𝑧)
𝑑𝑚(𝑧) ≤

≤ 32𝜋

1/2∫︁
0

ln
2

1/2− 𝑦
𝑑𝑦 · ‖ℎ‖𝑙1= 16𝜋[ln 4 + 1] · ‖ℎ‖𝑙1 . (12)

It follows from (4), (11), (12) that 𝐺 ∈ 𝐿1,

‖𝐺‖𝐿1≤ [16𝜋(ln 4 + 1) + 33𝑑0] · ‖ℎ‖𝑙1 .

Therefore, by Chebyshev’s inequality, we have

𝑚{𝑧 ∈ 𝐶 : |𝐺(𝑧)|> 𝜆} ≤ 16𝜋(ln 4 + 1) + 33𝑑0
𝜆

‖ℎ‖𝑙1 . (13)

Since 𝐹 (𝑧) = (𝐵𝑓)(𝑧)−𝐺(𝑧), then it follows from (10) and (13) that

{𝑧 ∈ 𝐶 : |𝐹 (𝑧)|> 𝜆} ≤ 𝑚{𝑧 ∈ 𝐶 : |(𝐵𝑓)(𝑧)|> 𝜆

2
}+

+𝑚{𝑧 ∈ 𝐶 : |𝐺(𝑧)|> 𝜆

2
} ≤ 2𝐶1𝜋 + 32𝜋(ln 4 + 1) + 66𝑑0

𝜆
‖ℎ‖𝑙1 .



Discrete Ahlfors–Beurling transform 9

Therefore,

(�̃�ℎ)(𝜆) = |{𝑛 ∈ 𝑍𝐶 : |(�̃�ℎ)𝑛|> 𝜆}|= 𝑚{𝑧 ∈ 𝐶 : |𝐹 (𝑧)|> 𝜆} ≤

≤ 2𝐶1𝜋 + 32𝜋(ln 4 + 1) + 66𝑑0
𝜆

‖ℎ‖𝑙1 .

This completes the proof. �

3. Asymptotic behavior of the distribution function of the
discrete Ahlfors-Beurling transform.

The following theorem shows the main reason why the discrete Ahlfors-
Beurling transform does not belong to the class 𝑙1.

Theorem 3. Let ℎ ∈ 𝑙1. Then the equation

lim
𝜆→0+

𝜆 · (�̃�ℎ)(𝜆) = 𝜋
⃒⃒⃒ ∑︁
𝑛∈𝑍𝐶

ℎ𝑛

⃒⃒⃒
(14)

holds.

At first, we prove the auxiliary lemma.

Lemma 1. Let ℎ ∈ 𝑙1 and
∑︀

𝑛∈𝑍𝐶
ℎ𝑛 = 0. Then the equation

(�̃�ℎ)(𝜆) = 𝑜(1/𝜆), 𝜆 → 0+ (15)

holds.

Proof. At first, assume that the sequence ℎ ∈ 𝑙1 is concentrated on some
finite ball {𝑤 ∈ 𝐶 : |𝑤|≤ 𝑚}, that is, ℎ𝑛 = 0 for |𝑛|> 𝑚. In this case,
from the equality

(�̃�ℎ)𝑛 =
∑︁
|𝑘|≤𝑚

ℎ𝑘

(𝑛− 𝑘)2
− 1

𝑛2

∑︁
|𝑘|≤𝑚

ℎ𝑘 =
∑︁
|𝑘|≤𝑚

2𝑛− 𝑘

(𝑛− 𝑘)2𝑛2
𝑘ℎ𝑘, |𝑛|> 𝑚

we get that

|(�̃�ℎ)𝑛|≤
8

|𝑛|3
∑︁
|𝑘|≤𝑚

|𝑘ℎ𝑘|

for large values of 𝑛, whence it follows asymptotic equation (15).
Now let us consider the general case. From the condition

∑︀
𝑛∈𝑍𝐶

ℎ𝑛 = 0

it follows that for any 𝜀 > 0 there exist the sequences ℎ′ = {ℎ′
𝑛}𝑛∈𝑍 ∈

𝑙1 and ℎ′′ = {ℎ′′
𝑛}𝑛∈𝑍 ∈ 𝑙1 satisfying the condition: ℎ = ℎ′ + ℎ′′; the
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sequence ℎ′ ∈ 𝑙1 is concentrated on some finite ball {𝑤 ∈ 𝐶 : |𝑤|≤ 𝑚} and∑︀
𝑛∈𝑍𝐶

ℎ′
𝑛 = 0; ℎ′′ ∈ 𝑙1 satisfies the inequality

∑︀
𝑛∈𝑍𝐶

|ℎ′′
𝑛|< 𝜀

4𝑐1
, where 𝑐1 is

the constant in estimation (9). Since the sequence ℎ′ ∈ 𝑙1 is concentrated
on {𝑤 ∈ 𝐶 : |𝑤|≤ 𝑚} and

∑︀
𝑛∈𝑍𝐶

ℎ′
𝑛 = 0, then for the sequence ℎ′ ∈ 𝑙1

equation (15) is satisfied, and, therefore, there exists 𝜆(𝜀) > 0 such that
for 0 < 𝜆 < 𝜆(𝜀) the inequality

𝜆(�̃�ℎ′)(𝜆/2) < 𝜀/2 (16)

holds, where (�̃�ℎ′)(𝜆) =
∑︀

{𝑛∈𝑍𝐶 : |(�̃�ℎ′)𝑛|>𝜆} 1. On the other hand, from
inequality (9) it follows that for any 𝜆 > 0

𝜆(�̃�ℎ′′)(𝜆/2) < 2𝑐1‖ℎ′′‖𝑙1< 𝜀/2 (17)

where (�̃�ℎ′′)(𝜆) =
∑︀

{𝑛∈𝑍𝐶 : |(�̃�ℎ′′)𝑛|>𝜆} 1. From inequalities (16), (17) and
from the inclusion

{𝑛 ∈ 𝑍𝐶 : |(�̃�ℎ)𝑛|> 𝜆} ⊂
⊂ {𝑛 ∈ 𝑍𝐶 : |(�̃�ℎ′)𝑛|> 𝜆/2} ∪ {𝑛 ∈ 𝑍𝐶 : |(�̃�ℎ′′)𝑛|> 𝜆/2}

we get
𝜆 · (�̃�ℎ)(𝜆) ≤ 𝜆(�̃�ℎ′)(𝜆/2) + 𝜆(�̃�ℎ′′)(𝜆/2) < 𝜀

for 0 < 𝜆 < 𝜆(𝜀). This shows that equality (15) was satisfied for all ℎ ∈ 𝑙1
satisfying a condition

∑︀
𝑛∈𝑍𝐶

ℎ𝑛 = 0. This completes the proof of the
lemma. �

Proof of theorem 3. In the case
∑︀

𝑛∈𝑍𝐶

ℎ𝑛 = 0 the assertion of the

theorem follows from Lemma 1. Let us consider the case
∑︀

𝑛∈𝑍𝐶

ℎ𝑛 = 𝛼 ̸= 0.

Denote by ℎ′
𝑛 = ℎ𝑛 for 𝑛 ̸= 0, ℎ′

0 = ℎ0 − 𝛼 and ℎ′′
𝑛 = 0 for 𝑛 ̸= 0, ℎ′′

0 = 𝛼.
Then ℎ = ℎ′ + ℎ′′, where ℎ′ = {ℎ′

𝑛}𝑛∈𝑍 ∈ 𝑙1 and ℎ′′ = {ℎ′′
𝑛}𝑛∈𝑍 ∈ 𝑙1. Since∑︀

𝑛∈𝑍𝐶

ℎ′
𝑛 = 0, then from Lemma 1 we get

(�̃�ℎ′)(𝜆) = 𝑜(1/𝜆), 𝜆 → 0 + . (18)

Since (�̃�ℎ′′)𝑛 = 𝛼
𝑛2 for 𝑛 ̸= 0, (�̃�ℎ′′)0 = 0, then

(�̃�ℎ′′)(𝜆) ∼ 𝜋|𝛼|
𝜆

, 𝜆 → 0 + . (19)
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For any 0 < 𝜀 < 1, by the inclusions

{𝑛 ∈ 𝑍𝐶 : |(�̃�ℎ′′)𝑛|> (1 + 𝜀)𝜆}∖{𝑛 ∈ 𝑍𝐶 : |(�̃�ℎ′)𝑛|> 𝜀𝜆} ⊂
⊂ {𝑛 ∈ 𝑍𝐶 : |(�̃�ℎ)𝑛|> 𝜆} ⊂

⊂ {𝑛 ∈ 𝑍𝐶 : |(�̃�ℎ′)𝑛|> 𝜀𝜆} ∪ {𝑛 ∈ 𝑍𝐶 : |(�̃�ℎ′′)𝑛|> (1− 𝜀)𝜆}

and from (18), (19) we have

𝜋|𝛼|
1 + 𝜀

≤ lim inf
𝜆→0+

𝜆 · (�̃�ℎ)(𝜆) ≤ lim sup
𝜆→0+

𝜆 · (�̃�ℎ)(𝜆) ≤ 𝜋|𝛼|
1− 𝜀

.

This implies the equation (14) and completes the proof of Theorem 3.
Note that for the discrete Hilbert transform an analogue of this theo-

rem was proved in [2].
4. A necessary condition and a sufficient condition for the

summability of the discrete Ahlfors-Beurling transform.

Theorem 4. Let ℎ ∈ 𝑙1. Then, to include �̃�ℎ ∈ 𝑙1, it is necessary that
the equation ∑︁

𝑛∈𝑍𝐶

ℎ𝑛 = 0 (20)

holds.

Proof. First, we prove that if the sequence 𝑏 = {𝑏𝑛}𝑛∈𝑍 ∈ 𝑙1, then the
distribution function 𝑏(𝜆) = |{𝑛 ∈ 𝑍𝐶 : |𝑏𝑛|> 𝜆}| of the sequence 𝑏
satisfies the condition

𝑏(𝜆) = 𝑜(1/𝜆), 𝜆 → 0 + . (21)

It follows, from the inequality

∑︁
𝑛∈𝑍

|𝑏𝑛|=
∑︁

{𝑛∈𝑍𝐶 : |𝑏𝑛|>1}

|𝑏𝑛|+
∞∑︁
𝑘=0

[
∑︁

{𝑛∈𝑍𝐶 :|𝑏𝑛|∈(2−𝑘−1;2−𝑘]}

|𝑏𝑛|] ≥

≥ |{𝑛 ∈ 𝑍𝐶 : |𝑏𝑛|> 1}|+
∞∑︁
𝑘=0

[2−𝑘−1 · |{𝑛 ∈ 𝑍𝐶 : |𝑏𝑛|∈ (2−𝑘−1; 2−𝑘]}|] =

= 𝑏(1) +
∞∑︁
𝑘=0

[2−𝑘−1 · (𝑏(2−𝑘−1)− 𝑏(2−𝑘))] =
∞∑︁
𝑘=0

[2−𝑘−1 · 𝑏(2−𝑘)]
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that
lim
𝑘→∞

2−𝑘 · 𝑏(2−𝑘) = 0.

Taking into account that the function 𝑏(𝜆) is decreasing, we obtain (21).
It follows from (21) that, if �̃�ℎ ∈ 𝑙1, then

(�̃�ℎ)(𝜆) = 𝑜(1/𝜆), 𝜆 → 0+,

and, therefore, by Theorem 3, we obtain that equation (20) holds. The
proof of the theorem is complete. �

Theorem 5. If the sequence ℎ ∈ 𝑙1 satisfies the conditions

i)
∑︀

𝑛∈𝑍𝐶

ℎ𝑛 = 0;

ii)
∑︀

𝑚∈𝑍𝐶

|ℎ𝑚|ln(𝑒+ |𝑚|) < ∞,

then �̃�ℎ ∈ 𝑙1 and the inequality

‖�̃�ℎ‖𝑙1≤ 150
∑︁
𝑚∈𝑍𝐶

|ℎ𝑚|ln(𝑒+ |𝑚|) (22)

holds.

Proof. From the definition of the discrete Ahlfors-Beurling transform, it
follows that

|(�̃�ℎ)0|=
⃒⃒⃒∑︁
𝑚 ̸=0

ℎ𝑚

𝑚2

⃒⃒⃒
≤ ‖ℎ‖𝑙1 . (23)

From condition i) for 𝑛 ̸= 0, we have

|(�̃�ℎ)𝑛|=
⃒⃒⃒ ∑︁
𝑚∈𝑍𝐶 , 𝑚 ̸=𝑛

ℎ𝑚

(𝑛−𝑚)2
−

∑︁
𝑚∈𝑍𝐶

ℎ𝑚

𝑛2

⃒⃒⃒
≤

≤
⃒⃒⃒ℎ𝑛

𝑛2

⃒⃒⃒
+

∑︁
𝑚∈𝑍𝐶 ,𝑚 ̸=𝑛

⃒⃒⃒ ℎ𝑚

(𝑛−𝑚)2
− ℎ𝑚

𝑛2

⃒⃒⃒
. (24)

It follows from inequalities (23) and (24) that

‖�̃�ℎ‖𝑙1=
∑︁
𝑛∈𝑍𝐶

|(�̃�ℎ)𝑛|≤ 2‖ℎ‖𝑙1+
∑︁

𝑛∈𝑍𝐶 ,𝑛 ̸=0

∑︁
𝑚∈𝑍𝐶 ,𝑚 ̸=𝑛

⃒⃒⃒ ℎ𝑚

(𝑛−𝑚)2
− ℎ𝑚

𝑛2

⃒⃒⃒
=

= 2‖ℎ‖𝑙1+
∑︁

𝑚∈𝑍𝐶 ,𝑚 ̸=0

|ℎ𝑚|
∑︁

𝑛∈𝑍𝐶 ,𝑛 ̸=0,𝑛 ̸=𝑚

⃒⃒⃒ 1

(𝑛−𝑚)2
− 1

𝑛2

⃒⃒⃒
=
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= 2‖ℎ‖𝑙1+
∑︁

𝑚∈𝑍𝐶 ,𝑚 ̸=0

|ℎ𝑚|·𝐽𝑚, (25)

where

𝐽𝑚 =
∑︁

|𝑛|≤3|𝑚|,�̸�=0,�̸�=𝑚

⃒⃒⃒ 1

(𝑛−𝑚)2
− 1

𝑛2

⃒⃒⃒
+

∑︁
|𝑛|>3|𝑚|

⃒⃒⃒ 1

(𝑛−𝑚)2
− 1

𝑛2

⃒⃒⃒
=

= 𝐽 (1)
𝑚 + 𝐽 (2)

𝑚 , 𝑚 ̸= 0. (26)

Estimate the summands 𝐽 (𝑖)
𝑚 , 𝑚 ̸= 0, 𝑖 = 1, 2. Defining 𝑘=[log2(4|𝑚|)]+ 1,

where [log2(4|𝑚|)] is the integer part of the number log2(4|𝑚|), we have

𝐽 (1)
𝑚 ≤

∑︁
|𝑛|≤3|𝑚|,�̸�=𝑚

1

|𝑛−𝑚|2
+

∑︁
|𝑛|≤3|𝑚|,𝑛 ̸=0

1

|𝑛|2
≤

≤ 2
∑︁

|𝑛|≤4|𝑚|,�̸�=0

1

|𝑛|2
≤ 2

𝑘∑︁
𝑝=1

∑︁
2𝑝−1≤|𝑛|<2𝑝

1

|𝑛|2
≤ 2

𝑘∑︁
𝑝=1

4 · 22𝑝 · 1

22𝑝−2
=

= 32𝑘 ≤ 96 ln(𝑒+ |𝑚|),

𝐽 (2)
𝑚 =

∑︁
|𝑛|>3|𝑚|

|𝑚||2𝑛−𝑚|
|𝑛−𝑚|2|𝑛|2

≤ 6|𝑚|
∑︁

|𝑛|>3|𝑚|

1

|𝑛|3
=

= 6|𝑚|
∞∑︁
𝑝=1

∑︁
3|𝑚|2𝑝−1<|𝑛|≤3|𝑚|2𝑝

1

|𝑛|3
≤

≤ 6|𝑚|
∞∑︁
𝑝=1

4 · (3|𝑚|·2𝑝)2

27|𝑚|3·23𝑝−3
= 64 ≤ 52 ln(𝑒+ |𝑚|).

From this and from (25), (26), we obtain (22). The proof of the theorem
is complete. �

Note that analogues of these theorems were proved for the discrete
Hilbert transform in [3].

Acknowledgments. The authors are very grateful to the referees
for many useful comments and suggestions that improved the original
manuscript.

References
[1] Ahlfors, L. V. Lectures on Quasiconformal Mappings. 2nd ed. - University

Lecture Series, v. 38. AMS, Providence, RI, 2006.



14 Rashid A. Aliev, Aynur N. Ahmadova

[2] Aliev, R. A., Amrahova A. F. Properties of the discrete Hilbert transform.
Complex Analysis and Operator Theory. 2019, vol. 13, pp. 3883 – 3897.
DOI: https://doi.org/10.1007/s11785-019-00936-9

[3] Aliev R. A., Amrahova A. F. On the summability of the discrete Hilbert
transform. Ural Math. J. 2018, vol. 4, no. 2, pp. 6–12.
DOI: https://doi.org/10.15826/umj.2018.2.002

[4] Aliev R. A., Nabiyeva Kh. I. The A-integral and restricted Ahlfors-Beurling
transform. Integral Transforms and Special Functions. 2018, vol. 29, no 10,
pp. 820 – 830. DOI: https://doi.org/10.1080/10652469.2018.1501046

[5] Astala K., Iwaniec T., Martin G. Elliptic partial differential equations and
quasiconformal mappings in the plane. Princeton: University Press, 2009.

[6] Banuelos R., Janakiraman P. 𝐿𝑝-bounds for the Beurling-Ahlfors trans-
form. Trans. Amer. Math. Sos. 2008, vol. 360, no. 7, pp. 3603 – 3612.
DOI: https://doi.org/10.1090/S0002-9947-08-04537-6

[7] Calderon, A. P., Zygmund A. On the existence of certain singular integrals.
Acta Mathematica, 1952, vol. 88, pp. 85 – 139.
DOI: https://doi.org/10.1007/BF02392130

[8] Cruz V., Mateu J., Orobitg J. Beltrami equation with coefficient in Sobolev
and Besov spaces. Canadian J. Math. 2013, vol. 65, no. 6, pp. 1217 – 1235.
DOI: https://doi.org/10.4153/CJM-2013-001-7

[9] Cruz V., Tolsa X. Smoothness of the Beurling transform in Lipschitz do-
mains. J. Func. Anal. 2012, vol. 262, no. 10, pp. 4423 – 4457.
DOI: https://doi.org/10.1016/j.jfa.2012.02.023

[10] Doubtsov E., Vasin A. V. Restricted Beurling transforms on Cam-
panato spaces. Complex Variables and Elliptic Eq. 2017, vol. 62, no. 3,
pp.333 – 346. DOI: https://doi.org/10.1080/17476933.2016.1220000

[11] Dragicevic O. Weighted estimates for powers of the Ahlfors-Beurling oper-
ators. Proc. Amer. Math. Sos. 2011, vol. 139, no. 6, pp. 2113 – 2120.
DOI: https://doi.org/10.1090/S0002-9939-2010-10645-7

[12] Kwok-Pun H. The Ahlfors–Beurling transform on Morrey spaces with vari-
able exponents. Integral Transforms and Special Functions. 2018, vol. 29,
no. 3, pp. 207 – 220.
DOI: https://doi.org/10.1080/10652469.20137.1422498

[13] Mateu J., Orobitg J., Verdera J. Extra cancellation of even Calderon-
Zygmund operators and quasiconformal mappings. J. Math. Pures et Appl.
2009, vol. 91, no. 4, pp. 402 – 431.
DOI: https://doi.org/10.1016/j.matpur.2009.01.010

https://doi.org/10.1007/s11785-019-00936-9
 https://doi.org/10.15826/umj.2018.2.002
 https://doi.org/10.1080/10652469.2018.1501046
 https://doi.org/10.1090/S0002-9947-08-04537-6
https://doi.org/10.1007/BF02392130
https://doi.org/10.4153/CJM-2013-001-7
 https://doi.org/10.1016/j.jfa.2012.02.023
https://doi.org/10.1080/17476933.2016.1220000
https://doi.org/10.1090/S0002-9939-2010-10645-7
https://doi.org/10.1080/10652469.20137.1422498
https://doi.org/10.1016/j.matpur.2009.01.010


Discrete Ahlfors–Beurling transform 15

[14] Prats M. 𝐿𝑝-bounds for the Beurling-Ahlfors transform. Publicacions Mat.
2017, vol. 61, no. 2, pp. 291 – 336.
DOI: https://doi.org/10.5565/PUBLMAT6121701

[15] Riesz M. Sur les fonctions conjuguees. Mathematische Zeitschrift, 1928,
27, pp. 218 – 244. DOI: https://doi.org/10.1007/BF01171098

[16] Stein E.M. Singular Integrals and Differentiability Properties of Functions.
Princeton: University Press, 1970.

[17] Titchmarsh E. C. Reciprocal formulae involving series and integrals. Math.
Z. 1926, vol. 25, pp. 321 – 347.
DOI: https://doi.org/10.1007/BF01283842

[18] Tolsa X. Regularity of 𝐶1 and Lipschitz domains in terms of the Beurling
transform. J. Math. Pures et Appl. 2013, vol. 100, pp. 137 – 165.
DOI: https://doi.org/10.1016/j.matpur.2012.10.014

[19] Vasin A.V. Regularity of the Beurling Transform in Smooth Domains. J.
Math. Sciences. 2016, vol. 215, no. 5, pp. 577 – 584.

[20] Vekua I.N. Generalized analytic functions. - Pergamon Press, 1962.

Received December 06, 2019.
In revised form, April 05, 2020.
Accepted April 06, 2020.
Published online April 13, 2020.

Rashid A. Aliev
Baku State University, Baku, AZ 1148, Azerbaijan
Institute of Mathematics and Mechanics, NAS of Azerbaijan, Baku, AZ 1141,
Azerbaijan
E-mail: aliyevrashid@mail.ru

Aynur N. Ahmadova
Sumgait State University, Sumgait, AZ 5008, Azerbaijan
E-mail: dissertant.aynur@gmail.com

https://doi.org/10.5565/PUBLMAT6121701
 https://doi.org/10.1007/BF01171098
https://doi.org/10.1007/BF01283842
https://doi.org/10.1016/j.matpur.2012.10.014

