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PERIODIC BOUNDARY VALUE PROBLEMS FOR
FRACTIONAL IMPLICIT DIFFERENTIAL EQUATIONS
INVOLVING HILFER FRACTIONAL DERIVATIVE

Abstract. In this paper, a new class of the periodic boundary
value problem for nonlinear implicit fractional differential equations
involving Hilfer fractional derivative is considered in the weighted
space of functions. We establish sufficient conditions for existence,
uniqueness, Ulam-Hyers and Ulam-Hyers-Rassias stability of the
given problem. The main results are based upon the technique
of the Schaefer fixed point theorem, the Banach fixed point the-
orem, generalized Gronwall inequality, and with the help of some
properties of Mittag-Leffler functions. An example is presented to
illustrate our main results.
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1. Introduction.  Fractional differential equations (FDEs) have
recently confirmed to be significant tools in modeling many phenomena
in various fields of engineering and science. Their non-local property is
suitable for description memory phenomena, such as non-local elastici-
ty, polymers, propagation in complex media, biological, electrochemistry,
porous media, viscoelasticity, electromagnetics, etc. (see [11,19] and refe-
rences therein). In the recent years, there has been considerable growth in
ordinary and partial differential equations, involving Riemann-Liouville,
Caputo, and Hilfer fractional derivatives. For details, we refer the reader
to monographs of Kilbas et al. [25], Miller and Ross [26], Samko et al. [30],
Hilfer [22], Podlubny [28]. The implicit fractional differential equations
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(IFDEs) represent a very important class of FDEs. This article is moti-
vated by the importance of implicit ordinary differential equation (IODE)
of the form

Fty(@),y' (@), .,y V(1) = 0. (1)
under different initial and boundary conditions. This kind of equation
is important in many disciplines in different fields, such as engineering,
physics, chemistry, acrodynamics, polymer rheology, acoustic control, vis-
coelasticity, and so on. The pair order (a, ) of a fractional derivative
= Dg‘f ( [22]) grants one to interpolate between the Caputo and the Rie-
mann — Liouville derivatives described in [25,28,30]. These parameters
produce more types of steady states and provide an additional degree
of freedom on the initial and boundary conditions. Systems that rely
on these derivatives are considered in [1-5,7,9,16,17,20-23, 31, 35| and
references cited therein. IFDEs have been studied by many researchers,
see [2,6,12-15,32,33]. The stability analysis is very important and it
has many applications, such as numerical analysis, optimization, etc. The
Ulam-type stability problems have been considered by a large number of
mathematicians, for more details see [5,8,10,24,27,29|. Recently, Gao et
al., in [18] established existence and uniqueness of solutions to the Hil-
fer non-local boundary-value problem. He used some properties of Hilfer
fractional derivative, Mittag-Leffler functions, and fixed-point methods to
obtain the existence and uniqueness results. On the other hand, Vivek et
al. [34] investigated existence, uniqueness, and stability results for IFDE

DYPx(t)y = f(t,2(t), D5l x(t), teJ:=10,T)
[S;Vx(O) = zm:cix(n),

where Dgﬁﬁ is the Hilfer fractional derivative of order 0 < o < 1 and type
of 0 < B <1, 7, € [0,T]. The obtained results is based on the fixed-point
theorems of Schaefer and Banach, and the Gronwall inequality.

The aim of this paper is to study existence, uniqueness, and different
types of stabilities of solutions for the following problem:

TDGy() = My(t) = f(ty(0)," DR y(t), te (08, (2)
I,y (0) = 1577 y(b), (3)

where Dgﬁﬁ denotes the Hilfer fractional derivative of order o € (0, 1)
and type S € [0,1], ISI 7 is the Reimann-Liouville fractional integral of
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order 1l —y,v=a+ (1l —a), A <0,and f: (0,b] x RxR — Risa
given function that satisfies some assumptions specified later.

This paper is organized as follows. In Section 2, we recall the basic
definitions and lemmas used throughout this paper. In Section 3, we study
existence, uniqueness, and stability results of the Hilfer fractional implicit
differential equation by using some fixed-point theorems of Schaefer and
Banach and the generalized Gronwall inequality. In the last Section, we
give an example to illustrate our results.

2. Preliminaries. Let C ([0,b],R) be the Banach space of all contin-
uous function on [0, ] into R with the norm ||y|| = max {|y(¢)| : ¢ € [0, b]}.
We define the weighted spaces Cy—, ([0,0],R), and CF__ ([0,b],R) by

Crosy (0,5, R) = {y: [0.8] — Ryt 7y (t) € C ([0,5] . R)} .
and
Cr, ([0,0],R) = {y € C"7" ([0,0] ,R) : y'™ € C1 ([0,0],R)},

Obviously, €1, ([0,6],R) and C}__ ([0, 5], R) are Banach spaces with the
norms

lolle,_, = maz [#77(0)]

and -
llep = > Nv®lle +ls"(l, ,.neN
k=0

respectively. Here we have C7_ ([0,0],R) = Cy_, ([0,0] ,R). In the forth-
coming analysis, we need the following space:

€7, (10,8, R) = {y € Ci_, (0.8, R), Dy € Crosy (0,01, R)},  (4)

Definition 1. [25] The left-sided Riemann-Liouville fractional integral
of order a > 0 with the zero lower limit for a function y : R™ — R is
defined by

t
1

15:9)(0) = oy / (t— 5 y(s)ds, >0,

provided that the right-hand side is pointwise on R*, where I' is the
gamma function.
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Definition 2. [25| The left-sided Riemann-Liouville fractional derivative
of order 0 < o < 1 with the lower limit zero for a function y : Rt — R
is defined by

t

= ﬁ% /(t —5)* y(s)ds t >0,

provided that the right-hand side is pointwise on R .

D&Ly(t)

Definition 3. [25] The left-sided Caputo fractional derivative of order
0 < o < 1 with the lower limit zero for a differentiable function y :
Rt — R is given by

t

Dislt) = gy [ (=9 ()

0

Definition 4. [22| The left-sided Hilfer fractional derivative of order
0<a<1and type 0 < 8 < 1 with the lower limit zero of a function
y: Rt — R is given by

DPy(t) = 129 DIy 1y,

where D = %. One has

Dyy(t) = IV~ Dy y(t), (5)
where
Dg.y(t) = DI "y(t), v = a+ (1 - ).
Lemma 1. [17, Lemma 20| Let « > 0, 5 > 0, and v = a+  — af. If
y € C7_, (0.8 R), then
[.D.y =130y,  DlIg.y=D) "y, S Iyy(t) = Iy (t).

Theorem 1. [25| Let y € C1_,([0,0],R), @ > 0, and 0 < § < 1. Then,
we have
MDD I y(t) = y(t).

Lemma 2. |25, Property 2.1, p. 74| Let a,0 > 0. Then we have
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(o)
I'(a+o0)
Lemma 3. (25| Let 0 < o < 1, 0 < v < 1, and y € C1_,([0,b],R),
I;7% € C1_([0,b],R). Then

ol = teteml Dot =0, ae€(0,1).

o Iéza?/(o) ta—l

3+Dg+y(t) = y(t) F(O[)

Lemma 4. [16, Lemma 13| Let y € C1_,([0,b],R), 0 < aw < 1. Then
o+ y(0) = tﬁi’éfﬁﬂ(ﬂ =0,0<y<a

Lemma 5. (25| Let >0, 8> 0,y >0, and A\ € R. Then
IV E, 5(M7) = 7B, s(W0).

Lemma 6. [36, Lemma 2| Let « € (0,2], and 5 > 0 be arbitrary. The
function E,(-), E4, o(-), and E, g(-) are non-negative, and for all z <0

1 1
E.(2) =E,1(2) <1, Euya(2) < =, Eup(2) < ==
C(a)” ~7 = T(B)
Moreover, for any ¢ < 0 and t1,t € [0, 1],
Eo a+(cty) — Eo arp(cty) asty — to. (6)

Lemma 7. [18] Let « > 0, 8 > 0, k > 0, A € R, z € R and
f S Cl—’y([oal]vR)? then

z

[ (2= 00 Bl — ) (00t =

0
z

= [ = 0" B A — 1) ()

Lemma 8. [37] The generalized Gronwall inequality. Let v, w :
[0,0] — [0, +00) be continuous functions. If w is non-decreasing and there
are constants k > 0 and 0 < a < 1, such that

v(t) <w(t) + k:/ (t —s)* " w(s)ds, telo,b],
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then

v(t) < w(t) +/ (Z %(t — s)"alw(s)>ds, t €[0,b].

Remark 1. In particular, if w(t) is a non-decreasing function on [0, b],
then

u(t) < w(t)Ea (kT (a)(t)").

3. Main Results. Here we present the existence, uniqueness, and
stability theorems for solutions to Hilfer equation (2) with the periodic
condition (3).

The following lemma establishes existence of a solution to the problem
(2) - (3).

Lemma 9. Leta € (0,1), 8 €10,1] and g : (0,b] — R be a continuous
function. Then the problem

HDg y(t) = My(t) = g(t), € (0,0],
Iy y(0) = I, y(b), a<y=a+f-ap (7)

is equivalent to the integral equation

o(t) = Tt / (b= )" B o (A (b — 5)) g(s)ds-+

t

+ /(t —8)* B, oA (t = 5)*) g(s)ds,

0
where E, 1(A\b%) # 1.
Proof. By [23], the solution of the following problem

HD0+ y(t) = Ay(t) = g(t), te€ (0,0,
Doy0) =y, a<y=a+f-af<1

is given by

y(t) = B, ()1, y(0 +/ (t —8)* By oMt —5)%) g(s)ds. (8)
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Next, by multiplying both sides of (8) by the operator [3: 7 and using
Lemmas 5, 7, we get
t
000 = Eas 6L (004 [ (4= 5)° 7 B (Mt =5 )g(s)ds. 9
0

Taking the limit as ¢ — b in both sides of (9), we get

b

_ L77y(b)

1 + «

17900 = 2280~ i 0= 9 B (M0 = ()
0

Since ]élvy(O) = Ié;wy(b), we obtain

b
15790 = 15— / (b= )" B ra(A (b — $)7) g(s)ds. (10)

From (8) and (10), it follows that

b
o) = T / (b= 5 o g1 (A (b — )7 g(s)ds +

t

+ /(t —8)* B, (A (t —5)*) g(s)ds.  (11)
0
Conversely, applying Ig; 7 to both sides of (9), using Lemmas 5 and 7, we
have
b

_ a (At*)
1) i [0 9 Bt b= 5 g(s)ds +
1—F al )\b
0
t
b [T B A 9 gl (12)

0
By Lemma 4, and passing to the limit as ¢ — 0,

b
1790 = Ty | 0= et = ) gl (13)

1—F
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Similarly, passing to the limit as ¢ — b of (12), we have

b
al)\b

1 «
]0+7y(b) 1 — a 1 )\bo‘ o, 0= 7+1(/\ (b - S) )g<8)d‘9 +

b — 3 a E
+ / (b= 8)* 7 Ea i1 (A (b — 5)7) g(s)ds =
0
b

—1_ 1= Eo1(A*) / (b= 5)"""Ea,art1(A(b—5)") g(s)ds. (14)

From (13) and (14) the relation I); "y(0) = I, "y(b) follows.
On the other hand, apply D, to both sides of (11), use Lemma 1 and

Iﬁ(l_a)

Theorem 1, then apply I; on the result to get

T D5 y(t) — My(t) = (1)
from Lemma 3 and equation (5). OJ

For our analysis, the following assumptions must hold.

(Hy) Let f:(0,b) x R x R — R be a continuous function and let there
exist positive constants M > 0 and 0 < L < 1, such that

|f(t,ur,v1) — f(t,ug,v9)| < M |ug — us| + L vy — vg,

for any u;,v; € R,i=1,2 and t € (0, b].
(H3) There exist m,q,p € C ([0,b],R) such that

|[F(tu,0)] < m(t) +q(t) ul +p(t) [v],

with p* = sup p(t) < 1, ¢* = sup q(t), and m* = sup m(t), for all
t€[0,b] t€[0,b] t€[0,b]
€ (0,b], and for each u,v € R.

(Hs) The following inequality holds:

a o 1—v+ao
o .= A+ M < Eq (A%)  T'(y)b B(a, )b ) 1

1—L \1— E, (\*)T(a + 1) [(a)
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3.1. Existence Result Via Schaefer’s Fixed Point Theorem.
We begin with an existence result via Schaefer’s fixed point theorem:

Theorem 2. Assume that f:(0,b] x R xR — R is continuous, and the
condition (Hs) holds. If

. ( Ea (M%) T() . Bl 7)) Ao

' 1 —Ey 1 (A T'(a+1) I'(«) (1—p*) ’

then the Hilfer problem (2) —(3) has at least one solution in Cy_.([0, 0], R).

Proof. According to Lemma 9, the solution of the Hilfer problem (2) —(3)
can be expressed by the integral equation

(15)

[0 B 9% Ko (s)ds +

0

T E, L (M%)

y(t) = 1 — Eout(\b%)

t

b= B A ) K e)s,

where K, is the solution of the functional integral equation

b
K,(t) = )\( Ea, / (b—5)"""Ey a—yt1(A(b—5)%) Ky(s)ds+

t

+ /(t — 8)* By oA (t — 5)%) K, (s)ds, Ky(t)> +

0

b
+f (t, 07 Py / Eo, a—nt1(A(b—8)*) Ky(s)ds+
0

t

+ /(t — 8)* By oA (t — 5)*) K, (s)ds, Ky(t)>. (16)

0

Here K, (t) :== Ay(t) + f(t,y(t), Ky(t)).
Consider the operator A : Cy_, [0,b] — C;_, [0, b]

y(t) — Ay(t) =
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b
L, o
= T/b_s Eo, a1 (A (b= 5)%) Ky(s)ds +
+ / (t— 5)* B a(\ (= 5)°) K, (s)ds. (17)

0

It is obvious that the operator A is well defined. Define a bounded closed
convex set B, = {y € C1_,[0,] : HyHCl_7 <r}C C—[0,b] with r > %=
o< 1and

( Eq o (At%) 1 N 1 )m*ba”VJrl
W= .
1—E, (A T (a—=~v+2) T(a+1)/) (1—-p*)

Claim(1). The operator A is continuous. Consider a sequence {y,} -,
such that y, — vy in B,. In view of Lemmas 6, 7, and for ¢ € (0,b] it
follows that

[t A () — Ay()]| <

B (M)

b
1= E, 1 (A%) /b_s ) By a—rt1(A (b= 8)%) | Ky, (s) — Ky(s)| ds+
0

87 (= ) Eaa M (= 9)°) 1K, (5) — Ky (5] ds <

b
E, 7()\t‘“) /
(b—s)*"7|K,, d

- li(oj) /(t —8)" 7 Ky, (s) — Ky(s)|ds = [y + I, (18)
where
_ B,y 1 L
DR W) Tla =+ 1) O/“’— 97Ky, () = Kyls)] ds <

Eo (A% 1
X
T 1—-Ey 1 (M) (e —v+1)
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b
x/(b—s)a_v[)\ [Yn(8)—y(s)|+[f(5,yn(s), Ky, (5)) = f(5,4(s), Ky(s))[] ds <

EugO0) (TN

= 1—FE, (M) \T'(a+1) [9n = ylle,, +

b gy M OB () = Fy( KOl ), (19)
and
per ot
b:m@!@‘ﬁ K, (s) = K, (s)| ds <
< £ [ =9 D)~ o)+
L5, un5), Ko ) = F(5,5(5), Koy 5)) s <
L(y)Ab*
<oty 19n = 4llc,_, +
b i ) K () = £ 0L KOl (20)

In (19) and (20), the function f is continuous and y,, — y as n — o0;
it follows that Iy — 0 and I, — 0, as n — co. Hence,

Ay — Ayanl_W — 0 asn — oo.

Thus, the operator A is continuous.
Claim(2). A maps bounded sets into bounded sets in Cy_,([0, 8] , R).
By using Lemma 6, and for ¢t € (0,b], we get

b

B0 < TR [ b= 9 B (=) (5) it
0

t

87 [ (= )T EaalM (¢ = 9)%) [y ()] ds <
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b

Eq o (At?) /

’ (b—8)* 7V |Ky(s)|d

T 1—-Ey 1 (AN (o —y+1 s) [Ky(s)| ds+
0

t
v

t a—1
+ mo/(t —8) | Ky(s)|ds. (21)

In view of (H,), we have

K, ()] < Ay@)] + [£(Ey(t), Ky(#))] <
<Ay +m(t) +q@) [y@)| + pt) [K,(t)] <
< Ay +m™ +¢" |y(t)| + p" [ K, (t)].

Since p* < 1, it follows that

m*+ (A4 ¢*) |y(t
1 (0] < R (22)
Relations (22) and (21) together give
B E ()\ta) ba—'y—l—l
7 Ay( L
[#77 Ayt |— 1—Ea1()\ba)1“(a—'y+2)+
a,’Y()\ta) ()\+Q) F(V)ba || ||
1—Ey1(A) (1 —p*) [(a+1) Cr—
mieH (A +¢") Bla, )t
+ y 23
T T+ 0-p) D) Mo &)
For any y € B,, the last inequality leads to
. B - (Ab) 1 1 m* e+
HAy(t ]
(0] < (1 " Ea () T(@—712) Tt 1)) T
Eay(A0*)  T(y) | Bla,7)\(A+4q7)0°
’ <
* (1 B ) T(at D) | T ) @_p) ¥

which implies
Ay, <

Thus, A : B, — B,, that is AB, is uniformly bounded.
Claim(3). A maps bounded sets into equicontinuous sets of C;_,([0, 0], R).
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Choose any y € B, and t1,ty € (0,b], such that t; < t5. Using Lem-
mas 6, 7, we have

[ty " Ay(t2) — T Ay(t)| =

b
= 'E kaf%;l%blw” / (b= )" Ea,ari1(A (b = 5)°) Ky (s)ds+
—I—té 7/(t $)* B, oA (ta — 8)%) K,(s)ds—
e / (b = 8)* B o(\ (11 — 5)) K, (s)ds| <

X O/(b —5)*77 [371% ||Z/||leV + a T;*)}ds +

t2

LR [ G e, + s s

0

B t i . - (A +qH) m* s
NG /(tl " [ (1-p) IWle., + (1 —p*)]d :
Eo(AS) — Eo (M) [ T(7)0* (XA +q*) potl m*
_' 1—E, 1(\b%) Mla+1) (1 p)T+F(a—v+2)(1—p*)H+
rts A+q) 577w
i {rm Ni—p) Ta+D( —p*>]

T+

t? v+1 m*
Fla+1)(1 —p*)} ’ B

‘Ea,’yO\tg — LB, 7()\150‘){ C(y)b* (A + q*)r po—rtl m* } '+
T 1-Eae) [Dla+D)(1-p) Tla—v+2)(1-p")

} ') ()\+q*)r e 1 m* a—y+1_ ja—y+l

Mo +7) (1-p7) i p)( qamr)) (24)

Now, let h(t) = t°. By the Lagrange Mean-value theorem, there exists
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€ € [t1, s, such that
h(tz) — h(t1)
—=2L W)
Pa— (©)
We get [t — ] = a1 |ty — t1| < ab* !ty — ty], with € <ty < b and
5T =T = (@ =y D)ET  — ] S (a =y + 1)t — 1]

with £ <ty < b. Hence, (24) implies

\té TAy(t2) — 1 Ay(t)] <
o (AS ) Eoqy(A9) [ T(9)0* (A +q") ot m* ”
< r+ +
1-— 1(Ab ) Fla+1)(1-p*) Da—v+2)(1-p)
B<a7 fy) ()\ + q*> T a—1
+ F&) (1—]9*) ab ’tg t1|+
1 *
+ T =y 1) 6 [ty — ]

[ +1) (1 —p*)

From (6) we see that, as t; — 9, the right-hand side of the preceding
inequality is independent of y and tends to zero; hence,

s " Ay(ts) —t "Ay(t)| = 0, V [ta—ti| =0, y€ B,.  (25)

From the above claims, together with the Arzela-Ascoli theorem, we
conclude that the operator A is completely continuous. In the remaining
part of the proof, we only need to prove that the set

A={yeC_,[0,b]:y=0Ay, for some o € (0,1)}

is a bounded set. For each t € (0,b], let y € A, and y = dAy for some
d € (0,1). Then we have

y(t) < Ay(t).

Hence, by virtue of step (2) and definitions of w and p, we obtain

1ylle,_, <lAylle,_, <
Eq 'y()‘ta) 1 1 m*pe—+1
= (1—E 1(A) T =y +2) +F(a+1)> 1-p")
Eory(M®)  T(y)  Bla, )\ (A +q)b° -
<1 - Ea,l()\ba) F(Oé + 1) F(Cv) ) (1 —p ) ||y||01 — w"’QHyHCH —

+
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Since o < 1, inequality

< d <
lylle, ., < [
follows.
Thus, the set A is bounded. Schaefer’s fixed point theorem shows that
A has a fixed point, which is a solution of the problem (2)-(3).
Finally,

K, (t) .= My(t) + f(t,y(t), K,(t)), for each t € (0,],
where
WO = T [ 9 B M b= )% Ky (s)ds +

This implies

Consequently,

D0+ y( ) - )\y(t) = f<t7y< ) D0+ y( ))

The proof is completed. [

3.2. A uniqueness Result Via Banach’s Fixed Point Theorem.
Here we give a uniqueness result via Banach’s fixed point theorem:

Theorem 3. Assume that (H,)-(Hs). Then the Hilfer problem (2)—(3)
has a unique solution in Cy_, ([0,b] ,R) .

Proof. We already know that the operator A, defined by (17), is well-
defined and continuous, see Theorem 2.

Next, we prove that A is a contraction map on C;_, ([0, 1],R) with
respect to the norm ||'||C1_7' For any y,y* € Ci_,([0,0],R) and any
t € (0,b] we prove, using Lemmas 6, 7, that

|t [Ay(t) — Ay*(1)]] <
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b

=9 B (0= ) ) — o (9] s+

0

B, (M)
1= Eq 1 (A%

t

+ 77 /(t — 8)* By oA (t = 8)*) [Ky(s) — Ky(s)] ds| <

Eq (AtY) 1
T 1—-Ey (M) Da—v+1)

(b— )77 |Ky(s) = Ky (s)| ds+

- O Y—

/t—salyK §) = Ky (s) ds. (26)

So,

[Ky(s) — Ky(s)| <
< Aly(s) =y () + 1 (s,9(s), Ky(5)) = f(s5,47(5), Ky (s))] <
< (A+ M) Jy(s) =y ()] + L[Ky(s) — Ky (s)] -
Since 0 < L < 1, it follows that
A+ M

[Ky(s) = Ky (s)| < 77— lu(s) =y (s)]- (27)
Bringing (27) into (26), we obtain
[t [Ay(t) — Ay (1)]] <
b
AN+ M E,,(\°) / o
ST L= B ()T a—7+1 (b—s)*""|y(s) —y"(s)| ds+
0

# A [t — ol as <

A+ M E,, (M) T(y)
? ba X
SIS LT= B () T(a+ 1) ly = 9" lle, o5+
b Bla, ) A+ M .
I'(a) = W= ¥lle o =
<Olly —y*||01_7[o7b}-
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Since © < 1, it follows that A is a contraction map. As a consequence
of the Banach contraction principle, we conclude that the Hilfer problem
(2) - (3) has a unique solution in C;_ ([0,1],R). O

3.3. Ulam-Hyers and Ulam-Hyers-Rassias Stabilities Via the
Generalized Gronwall Inequality. In this part, we discuss different
types of stability results for the Hilfer fractional implicit differential equa-
tion (2). Let € > 0 and assume that a solution z € C;_, ([0, ], R) exists
and satisfies the following inequality:

D Pa(t) = () — f(ta (). DiPa)] e te (0. (28)

Definition 5. The problem (2) — (3) is Ulam-Hyers stable, if there
exists a real number ny > 0, such that for each ¢ > 0 there exists a

solution x € Cy_,, ([0,b],R) of inequality (28) corresponding to a solution
y € C1_, ([0,b] ,R) of the problem (2) — (3) with

|z(t) — y(t)| < mye, € (0,0].

Definition 6. The problem (2) — (3) is generalized Ulam-Hyers stable,
if there exists ¢y € C([0,00) ,[0,00)), ¥¢(0) = 0, such that for each ny > 0
there exists a solution x € Cy_, ([0, ], R) of inequality (28), corresponding
to a solution y € C1_, ([0, 0], R) of the problem (2) — (3) with

[z(t) =y ()| < ¥r(e), t€(0,0].

Definition 7. The problem (2) — (3) is Ulam-Hyers-Rassias stable with
respect to ¢, € C1_,([0,b],R), if there exists a real number n,, > 0,
such that for each ¢ > 0 and for each solution = € Cy_, ([0,b],R) of the
inequality

TDG a(t) = Ax(t) — f(t. (), DgPa(t)| < epalt), t€(0,0], (29)
there exists a solution y € C1_, ([0,b] ,R) of the problem (2) — (3) with

|2(t) = y(D)] < nga€palt), ¢ (0,0].

Definition 8. The problem (2)—(3) is generalized Ulam-Hyers-Rassias
stable with respect to ¢, € C1_, (]0,b],R) if there exists a real number
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Ny, > 0, such that for each e > 0 and for each solution x € C1_, ([0,b] ,R)
of the inequality

H DR () — Nalt) — F(t,2(6), " DR (1))] < pult), € (0,8],
there exists a solution y € C_, ([0,0],R) of the problem (2)—(3) with

[2(t) = y(O)] < Mo palt), < (0,0].

Remark 2. A function x € Ci_, ([0,0],R) is a solution of inequality
(28) if and only if there exists a function z, € Ci_, ([0,b] ,R), such that

(1) |z(t) <€ t€(0,0];
(ii) DS a(t) — Aa(t) = f(t,x(t),F DEPa(t)) + 2(t), t € (0,b].

Lemma 10. Let z € C;_,([0,b],R) satisfy inequality (28). Then x
satisfies the following integral inequality:

4, / VLB, A (E— )%) Ko (s)ds| <

o (EBan0?) o
= \I-E. () T(a—~+2) Ta+1))”

where
- 1Ea /
A, = 7 / (b—8)""Eqy a—yt1(A(b—5)*) Ky(s)ds,
0

and K,(t) :== Az(t) + f(t, (1), K,(1)).
Proof. Indeed, by Remark 2 and Theorem 2, we have

b
T E, L (M%)

x(t) = Tlé)\ba) ( /(b — ) "Ey, a—yt1(A (b — 5)%) K(s)ds+

_l’_
S —

(b= 8)*"EBaarir(A(b—5)%) zx(s)ds) +
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t

+ /(t — 8)* B, oA (t = 5)*) K(s)ds+

0
t

+ /(t — 8)* Ega(A(t — 5)) 2u(s)ds.

0
Thus,

t

() — A, —/(t—s)a B WM (E— 8)°) Ka(s)ds

b
- 1E
/ a a—'y+1()\ (b - S)Q) Zw(s)ds—i—
0

t

+ /(t — s)a_lEma()\ (t —8)%) zz(s)ds

0

b

1 tE

< 0"‘/ b_ a'y - d

“Tla—~r+1)1-F / $)*77 |zx(8)| ds+
0

t

<

1 a—1
o / (6= 5" aa(s)] ds <
E, ,(\tY) b h
= (1 B ) T(a—7+2) Tt 1))6'

The proof is complete. []

Theorem 4. Assume that (Hy) and (H3) are satisfied. Then the prob-
lem (2) — (3) is Ulam-Hyers stable and generalized Ulam-Hyers stable.

Proof. Let ¢ > 0 and =z € C;_, ([0,b],R) satisfy inequality (28) and
y € C1_, ([0,b] ,R) be a unique solution of the implicit fractional differen-
tial equation

Hpefy(t) — My(t) = f(t,y(t)," D3 y(t)), t € (0,8], (30)

with
L7(0) = 17(0), 157w (b) = 17y ). (31)
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In view of Theorem 2, we have

t

W) = Ayt [ 9" EualME = 9 Ey(5)ds.

where
24 1E ’
-
A, = / (b—5)"""Ey a—yt1(A(b—5)%) K,(s)ds
0

and K, (t) = A\y(t)+ f(t,y(t), Ky(t)). By Lemma 6 and Eq. (31), we easily
show that A, = A,. Indeed,

A, — A, <

t— 1Ea ’Y ! oy o
T [0 9 B (0= 9 Ky (5) — K (o) ds <
0

b

< (M) / )™, (s) — Ko(s)| ds <
—P(a—wrl)l— al/\ba g =
0

b
A+ M 1 (\t9)

< b— a'y ds <
ST IT@ - F MW/ 57 y(s) — a(s)| ds <

0
MMy Boy) o
<
e A W) y(b) — a(t)] <

AM o By, (AtY)
< ’71 > Y Ot — .
ST TR e T ) —2) =0

Thus, A, = A,.

Then we have

<

y(t) = A, + /(t — 8)*  Ea oAt — 8)%) K,(s)ds.
We have, from Lemma 10:
x(t) — Ay — /(t —8)* B, oA (t = 5)*) Ku(s)ds| <

0
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B (M%) | | )
- (1—Ea,1(/\ba)l“(oz—'y+2)+F(a+1))b . (32)

Hence, for any ¢ € (0, b]

t

x(t) — Ay — /(t —8)* B, oA (t — 5)*) K,(s)ds

0

() — y(t)] < +

b = B0 = ) o) — Ky )] s <

< E, (At%) b N b o
—\1- anl()\ba)f‘(a —v+2) D(a+1)
>\+M ! / (t —5)* 1 a(s) —y(s)|ds <

0

<

( b b ) o
C(y) (1 - Eaﬁl()\ba)) INa—7v+2) F(a +1)

+ %ﬁ /(t — 9 a(s) — y(s)| ds.

By utilizing Lemma 8 and Remark 1, we get

2(t) — ()] < Ue+ / (i (F(_nji ); (6 5 e s =

0 n=1
00 )\+M no
= U (1 =
‘-t Z ['(na —i— 1) )
/\ —|— M
U Ea< t“) = e, 33
€ 1— L Tr€ ( )
— 1 b b o MM 4o
where U := (F(’y)(lea,l(/\ba)) T(a—v+2) + F(a+1)> and N = UEa( 1tLt )

Moreover, if we set 1(€) = ns €, with ¢(0) = 0 in (33), then problem
(2) is generalized Ulam-Hyers stable. [J

Now, we need to introduce the following assumption:
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(Hy) There exists an increasing function ¢, € Ci_, ([0,0],R) and there
exists d,, > 0, such that for any ¢ € (0, ]

Igvpa(t) < 55%@@4@)'

Remark 3. A functionz € C_, ([0, b] ,R) is a solution of inequality (29)
if and only if there exists a function z, € C1_, ([0,b],R) (where z depends
on the solution x ), such that

(1) |z2(t)| < epa(t) forallt € (0,0,
(i) D5 w(t) — Ax(t) = f(t,2(t)," D5 a(t) + z.(1), e (0,8,

Theorem 5.  Assume that (Hy), (Hs), and (Hy) are satisfied. If
(A + M)éy,, # 1 — L, then the problem (2) — (3) is Ulam-Hyers—Rassias
stable with respect to ¢, as well as generalized Ulam—Hyers—Rassias sta-

ble.
Proof. Let ¢ > 0 and = € C_, ([0, 5] ,R) satisfy the inequality

D5 a(t) = Malt) = F(t,2(0). D (2))] < egalt), t € (0,5 (34)

Using Remark 3 and (H,) in a similar way to Theorem 4, we can find:

t

x(t) — Ay — /(t — 8)* By oA (t — 5)*) K(s)ds

0

Eq(A0Y) 1
< (2R Gy 1) el &

<

where K, (s) = Az(s) + f(t,z(s), Ki(s)).
Let y € C1— ([0, ], R) be a unique solution of the problem (30) - (31).
In view of Lemma 10, in a similar way to Theorem 4, we find:

t

y(t) = A, + / (t = 8 B a(M (£ — 5)°) Ko (5)ds, (36)

0

where

b

— ECY, )\ta a— @

Ao =1 1#<1W))a>/(l?—s) " Eat1— (A (b= 5)") Ky(s)ds.
’ 0
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On the other hand, by utilizing (36) and (35), we can get

t

o) = 50 <o) ~ A~ [t =5 BualA (- 9)°) Kalo)ds|+

* / (t = $)° 7 Ea oA (t = 5)7) [Ku(s) — K, (s)] ds <
Eq (Ab%) 1
= (1 — Ea (M) T(2—7) + 1) €00 Pal(t)+

ST [ 9 el — o) ds <

1
< <r<2 T (1= Bar O ) DoapalD)F

)
/\+M 1 Jo-
F—/ as) — y(s)] ds
0

and, applying Lemma 8 and Remark 1, we derive:
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Vi
1 e P
(F(zfy)r(y)(kEa’l()\ba)) + 1) and Nf, oo = 7 )\+M§ - So

(1) — y(t)] < Ny, pacpalt). (37)
Thus, the problem (2) — (3) is Ulam-Hyers Rassias stable.
Moreover, a similar argument, with ¢ = 1 in Remark 3, we get
2(t) — y()] < nf, 0 Pal(t).

This proves that the problem (2)—(3) is generalized Ulam-Hyers Rassias
stable. [

where V :=

4. An example. In this section, we give one example to illustrate
our result. Consider the following Hilfer fractional differential equation
with an integral condition:

“Dgtu(0) = —3(0) + 55 (1+ o)l +[ DTy 0)]) te 0
[0§+3/(0) I+y(1)
Here oo = 1 6:%,7:(1—1—5—&5:— )\:—l and
H

(38)

10(1+\y( )+ Dy (0.

Clearly, the function f is continuous on (0,1]. For all ¢ € (0,b] and
u,v,u,v € R, we have

£t u,v) = f(t3,9)] < 45

Hence, the first hypothesis (H;) is satisfied with M = L = --. For A = —
a = %,7 = %, b=1land M =L = % by direct calculations we conclude
that © < 1. It follows from Theorem 3, that the problem (38) has a unique
solution on (0, 1].

Moreover, for u,v € R and ¢ € (0, 1] we find that

[lu =2l + o =]

Pt v)] < = (14 Ju(t)] + Jo()]).

10
Thus, the assumption (H,) is satisfied with m(t) = ¢(t) = p(t) = &.
Clearly, the functions m, q and p are continuous on [0, 1] and m* = ¢* =
= p* = sup {5 = ;5 < 1. Now, by simple calculations, we get
te[0,1]

— Ea o (At7) I'(v) Bla, 7)\ (A + ¢*) b
0= (1 — Eoé71()\bo‘) F(CE+ 1) + F(Oz) ) (1 _p*) < 1.
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Using Theorem 2, we can conclude that the problem (38) has at least one
solution on (0, 1].
For ¢ € (0,1], let o € C1 ([0,1],R) be such that ¢, (t) = t. We have

t

holt) = gy [ (¢ =) Hsds < () = 8,000,

where d,, = % On the other hand, as shown in Theorem (5), for e=1,
if v € Cy ([0,1] ,R) satisfies
HD0+ LC()—)\x(t)—f(t,x() D0+ $( )) <t tE(O,l],

there exists a unique solution y(t) € C1 ([0,1],R) such that

ol

[2(t) = y(t)] <y pat.

Vg R 2ﬁ , V ~ 7 and
-0, 1+

()= (=)

It follows from Theorem (5) that the problem (38) is generalized Ulam-—
Hyers—Rassias stable.

5. Concluding remarks. In this paper, we have successfully
established the existence and uniqueness results of fractional implicit dif-
ferential equations with a periodic condition, involving Hilfer derivative.
Moreover, we have discussed the different types of stability of solutions
to such equations in the weighted space C;_, ([0,5] ,R). In addition, an
example is presented to illustrate the results. In the future, we plan to
extend the results to other fractional derivatives and boundary-value prob-
lems, especially, we discuss the global attractivity for the boundary-value
problem using the generalized fractional derivative. This topic will be the
subject of a forthcoming paper.

Acknowledgment. The authors are grateful to the reviewers for
her/his comments and remarks.
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