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Abstract. In this paper, we introduce orthonormal and Riesz bases
for g-fusion frames and show that the weights have basic roles.
Next, we prove an effective theorem between frames and g-fusion
frames by using an operator. Finally, perturbations of g-fusion
frames will be presented.
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1. Introduction and preliminaries. Bases play a prominent role
in discrete frames and their studying can extract interesting properties
from the frames. One of the most important types of bases are orthonor-
mal bases and also, as their special case, the Riesz basis. The Riesz
basis has been defined in [6] by the image of orthonormal bases with a
bounded bijective operator, but for fusion and generalized frames, there
are different strategies [4], [14]. In this paper, we transfer some common
properties of g-frames to g-fusion frames, which have been defined by au-
thors. Afterwards, orthonormal bases have been equalized in a property
with complete sequences and inequalities for the synthesis operator. Sun
in [15] introduced a Riesz basis for g-frames by using that property and
we will continue his method in section 1 for g-fusion frames. In section 2,
we present a useful operator for characterization of these frames. Finally,
in section 3, a perturbation of these frames is studied.

Throughout this paper, H and K are separable Hilbert spaces and
B(H,K) is the collection of all bounded linear operators of H into K. If
K = H, then B(H,H) is denoted by B(H). Also, my is the orthogonal
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projection from H onto a closed subspace V' C H and {H;}jcy is a se-
quence of Hilbert spaces, where J is a subset of Z. It is easy to check that
if u e B(H) and V C H is a closed subspace, then [11]

7Tvu*7TW = Wvu*.

We define the space % = (Z @Hj)e by
2

jel

A= {{fi}ier + fi € Hy, Y ISP < o0}, (1)

Jjel

with the inner product defined by

L Aah =D (g,

JjeJ
It is clear that 73 is a Hilbert space with pointwise operations.

Definition 1. Let W = {W,};c; be a collection of closed subspaces of
H, {v;}jer be a family of weights, i.e., v; > 0 and A; € B(H, H;) for
each j € J. We say A := (W;,Aj,v;) ey is a generalized fusion frame (or
g-fusion frame) for H if there exists 0 < A < B < oo such that for each
feH

AIFIP <Y oA mw, £117 < B (2)
jel
We call A a Parseval g-fusion frame if A = B = 1. When the right-hand
side of (2) holds, A is called a g-fusion Bessel sequence for H with bound
B. Throughout this paper, A is a triple (W}, A;,v;);ey unless otherwise
noted.
When A is a g-fusion Bessel sequence, then the synthesis and analysis
operators in the g-fusion frames are defined by

Ty : 75 — H, Ty : H— 96,
Ta({fi}jer) = Zvﬂwj/\ﬁfj, Ti(f) = {viNjmw, f}jer-
jel

Thus, the g-fusion frame operator is given by

Saf =TaTif =) vimw, A Nmw, f

Jjel
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and

(Safs £ =D 3 lINmw, £11%. (3)

j€J

Therefore,
Aldy < Sy < Bldy.

This means that S, is a bounded, positive, and invertible operator. So,
we have the reconstruction formula for any f € H:

F = vmw NsAmw, Sy =Y vy b, A Ay mw, - (4)
jel jel
With the same method as in Theorem 3.1.3 and 5.4.1 in [6], we can prove
the following results.

Theorem 1. A is a g-fusion Bessel sequence for H with bound B if
and only if the operator T is a well-defined and bounded operator with

I < VB.
Theorem 2. A is a g-fusion frame for H if and only if
Ty : 96— H,
Ta({fi}jer) = ZUJWW ASf;

jel

is well-defined, bounded, and surjective.

Definition 2. A g-fusion frame A= (SXIWj,AjWWjSXI,Uj)jGJ with
g-fusion frame operator S; = T3T% is called the (canonical) dual g-fusion

frame of A.
It is easy to check that for each f € H,

TXf =Ti(Sx'f).

Hence, TAT% = Idy and also Sj = Sy'. Now, we can obtain, by (?7),

f= Zv?ﬂWjA’;K;ﬂij = ZU?W@E*A]‘WWJ-JC, (5)

Jjel Jjel

where VIA/; = SX1W]- and /(j = Aj’]Tstxl.
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Definition 3. Let A; € B(H, H;) for each j € J. A = (W;,A;,v;)jer is
called a g-f-complete, if

span{mw,\jH;} = H.
It is easy to check that A is g-f-complete if and only if

{f . Aj?Tij = 0, ] S J} - {O}

Theorem 3. If A = (W;,A;,v;)jey is a g-fusion frame for H, then A is
a g-f-complete.

Proof. Let f € (span{my,A;H;})* C H. For each j € J and g; € H;, we
have

<Aj7Tij7 g]> = <fa WWJA;kgj> = 07
so, Ajmw, f = 0 for all j € J. Since A is a g-fusion frame for H, then
|fIl = 0. Thus, f =0, and we get (span{my, A5H;})* = {0}. O

2. G-f-Riesz and orthonormal bases. In this section, we aim
to introduce Riesz and orthonormal bases for g-fusion frames, which are
extension cases of g-frames, and present some results about them.

Definition 4. Let W = {W,};c; be a collection of closed subspaces of H
and j € J. We say that (W;, A;) ey is a g-f-orthonormal bases for H with
respect to {v;}jey, if

<Ui7TW¢A;gia'Uj7TWjA;gj> = 0i;(9i,95) , ,J€T, g€ H;, g;€H; (6)

Sl Amw fI2 =112, feH. (7)
jel
Definition 5. A = (W}, A;,v;),ey is called a g-f-Riesz basis for H if
1) A is g-f-complete,

2) There exist 0 < A < B < 00, such that for each finite subset I C J
and g; € Hj, jel,

AN g 12 < 1S vmw, Ng I < BY sl 8)

j€el jel Jel
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It is easy to check that if A is a g-f-Riesz basis for H, then the operator
Ty defined by

TA : % — H,
Ta({g}ies) = Y vimw, Ajg;,
7l

is injective.
Theorem 4. Let A = (W, Aj,v;);ey5 be a g-fusion frame for H and sup-
pose that (6) holds. Then A is a g-f-orthonormal basis for H.

Proof. Assume that S, is the g-fusion frame operator of A and

M:={feH : Sy\f=1/f}

It is clear that M is a non-empty closed subspace of H. Let f € H and
k € J. Since

Ujvkﬂ-WjA;Ajﬂ-Wjﬂ'WkA]:Akﬂ-Wkf = j,kﬂ-WkAzAkﬂ-kaa
then mw, AjAymw, f € M. So, for any h € M+ and g € M we have, for all
jel
(mw, AjAjmw; b, g) = (b, mw, AjAjmw, g) = 0.

Thus, mw,AjAjmw,h = 0 for each j € J, and so [|Ajmw,h| = 0. By
definition of g-fusion frame, we obtain h = 0. Therefore, M+ = {0}, and
we conclude H = M. So, Sy = Idy, and the proof is completed. [

Theorem 5. A is a g-f~orthonormal basis for H if and only if
(I) vymw, A} is isometric for any j € J;
(II) ®j€J ’Uj’ﬂ'WjAj(Hj) =H.
Proof. Suppose that A is a g-f-orthonormal basis for H. If j € J and
g € H;, we have
(vjmw; Ajg, vymw,; Ajg) = 65,3(9.9) = (9,9)-

Then, v;jmw, A} is isometric for any j € J. So, vymw,Aj(H;) is a closed
subspace of H. Therefore, for each j € J and f € H, we have from (7):

(f, 1) =D i (A\jmw, f, Ny, f) =

Jjel
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= > vinw, N Nmw, f, ).

jel
Thus, for each f € H,

f = Z U??TWiA;Ajﬂ'Wi f

By letting g; := v;Ajmw, f, we obtain f =3, ;v;mw,;Ajg; and

> villmw Ngl® =D llgil® = willAsmw, f1IF = 1 £

Jjel Jjel Jjel

So, @,y vjmw,; Aj(H;) = H. Conversely, if (I), (II) are satisfied, then (6)
v

is clear. Indeed, for each i # j, v;mw, A (H;)

jWWjA;f(Hj) and Uj’/TWj A;

)
are isometric. Let f € H; we get from (II), for any 7 € J and some

f = ZUjﬂ'WjA;gj
jeJ
and
AP = oflmw, Agil” = llgslI*.
JjeJ JjeJ

Now, let ¢ € J; then, for each f,h € Hj,

(03N, £ h) = (O vf N, A g, h) =
jel
= ZU32<7TWJA;QJ77TW,A:}1> =
jel
= <UZ7TWZA:<9“UZ7TW1A;%> =

Hence, g; = v;\jmw, f for each i € J. So, f =)
f € H, and (7) is proved. O

3 Uj

27rW], A; Ay, f for all

Corollary 1. Every g-f-orthonormal basis for H is a g-f-Riesz basis for

H with the bounds A = B = 1.

Theorem 6. Let © = (W;,0;)c; be a g-f-orthonormal basis with re-
spect to {v;}ey and A = (W, A;,v,);ey be a g-fusion frame for H with
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the same weights. Then there exists a surjective operator V € B(H), such
that Ajmy, = ©mw, V™ for all j € J.

Proof. Let
V:H— H,
V=Y vimw,A;0mw, f.
jel

Then V' is well-defined and bounded. Indeed, for each finite subset 1 C J
and f € H,

HVf” sup |<ZU Tw; A;@jﬂ'wjf, h>‘ <

I Ii jel
<VB(Y_ o0mw, 1) = VB £,
§€J
where B is an upper g-fusion frame bound for A. Therefore, the series is
weakly unconditionally Cauchy, and so is unconditionally convergent in
H (see [7], page 58), and also ||V|| < v/B. Since © is a g-f-orthonormal

basis, then
01w, mw, 059 = (viv;)'0i 59

and
Vi, 0ig = Y vimy, A0 mw, mw,0]g = mw,Alg,
jel
for all g € Hj and i € J. Thus, Ajmy, = ©;my, V*. Now, we show that V'
is surjective. Assume that f € H. By Theorem 2, there is {g;};e; € 74,

such that >y vmw,;Ajg; = f. Let g := T@({g]}]ej) thus

Vg= Z Vumw, ©7g; = Z viTw, N g5 =

Jjel jel
and V' is surjective. []
Corollary 1. IfA is a Parseval g-fusion frame for H, then V* is isometric.
Corollary 2. If A is a g-f-Riesz basis for H, then V is invertible.
Proof. Let Vf =0 and f € H. Since T}y is injective and
V=Y vlmw N;Omw, f = ThT5f,

Jjel
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therefore, T f = 0. So, || f]|* = |[Tef||* = 0, hence, f = 0. O
Corollary 3. If (W}, A;);ey is a g-f-orthonormal basis for H with respect
to {v;}jey, then V is unitary.

Proof. By Corollaries 1 and 2, the operator V' is invertible. Let f € H.
We obtain

AP = wrllAgmw, £IIP =D 1€;mw, VI = [V £I1%.
j€T j€T
Thus, VV* = idg; this means that V is unitary. [

3. Characterizations of g-fusion frames, g-f-Riesz and
g-f-orthonormal bases. Sun in [15] showed that each g-frame for H
induces a sequence in H, dependent on the g-frame; he also proved a use-
ful theorem about them. In this section, we are going to extend Sun’s
method for g-fusion frames.

Let W = {W,};ey be a family of closed subspaces of H, {v;};e; be
a family of weights, A; € B(H, H;) for each j € J and {e; }rex, be an
orthonormal basis for H;, where K; C Z and j € J. Suppose that

¢:h—C,
o(f) = <UjAj7TW]-f> ej,k>-

We have
[ Il < v IAGILAI

therefore, ¢ is a bounded linear functional on H. Now, we can write

(iNjmw, frejr) = (f,vimw, Ajej k).
So, if
ujp = vimw,Njej, J€J, k€K 9)
then (f,u;x) = (V;Ajmw, f,e;x) for all f e H.
Remark 1. Using (9), we get for each f € H:
vilimw f =Y (fuiu)ejn (10)

k‘GKj

But
D 1w P < OIIA P

kGKj
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Thus, {u;x}rek; is a Bessel sequence for H. It follows that for each f € H
and g € Hj:

<f7 Uﬂwj/\;@ = <UjAj7TW]~f7 g> = Z <Uj7TW]'Ajf7 6j,k><€j,k,9> =

kGKj
= (fouje)lejr g) = <f, > g, 6j,k>uj,k;>~
keK; keK;
Therefore,
UjWWjA;Q = Z<g;€j,k>uj,k (11)

keK;

for all g € H;.
We call {u; ; : j €J, k € K;} the sequence induced by A.

Theorem 7. Let A = (W;,A;,v;)je; and u; y be defined by (9). Then
we get the following:

(I) A is a g-fusion frame (resp. g-fusion Bessel sequence, Parseval g-
fusion frame, g-f-Riesz basis, g-f-orthonormal basis) for H if and
only if {u;, : j € I, k € K;} is a frame (resp. Bessel sequence,
Parseval frame, Riesz basis, orthonormal basis) for H.

(IT) The g-fusion operator for A coincides with the frame operator for
{uj,k j S J, ke K]}

Proof. (I). By (10), A is a g-fusion frame (resp. g-fusion Bessel sequence,
Parseval g-fusion frame) for H if and only if {u;, : j € J, k € K;} isa
frame (resp. Bessel sequence, Parseval frame) for H.

Assume that A is a g-f-Riesz basis for H and g; € H;. Thus,

g; = E Cj, k€5, ks

kGK]‘

where ¢; 1, € ((K;). Note that, by (10),

{f:Ajﬂ—ij:Oa jeﬂ]]}:{f:<fauj,k>:07 jEJ7 kEKj}

and

AN gl < 1D vimw, Alg|IF < B g2

jel jel jel
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is equivalent to
2 2 2
AN D el <UD D cmuinlT < BY Y leiul
jel kekK; jel keK; jel keK;

for any finite I C J. Thus, A is a g-f-Riesz basis if and only if
{ujr:j€ J, kekK;} is a Riesz basis.
Now, let (W;, A;) ey be a g-f-orthonormal basis for H with respect to
{v;};e5. We get, for any ji,j2 € I, k1 € K;, and ks € K,
<uj17k1a ujz,k2> = <Uj17er1 A;kl Cj1k1s Vg2 TW;, A;26j27k2> = 5j1,k1 5j2,/€2'
So, {u; k7 €, k €K} is an orthonormal sequence. Moreover
AP = ot llmw, £ =D D 1w

j€T j€J keK;

for any f € H. Hence, {u; : j € J, k € K} is an orthonormal basis. For
the opposite implication, we need to prove only that (6) holds. We have,
by (11), for each j; # js € J: ¢;, € Hj, and g;, € H;,,

(i mwy, NS 91, VT, A, 95) =

= (> (G k)W Y (Gias Cioka)Ujp k) = 0

k1€K;, k2€Kjy

and for all g1, 9, € Hj:

<Uj7er A;91 » Ui TTw; A;92> =

= < Z <gl7€j7k1>uj7k17 Z <927€]}/€2>uj,k2> = (91, 92)-

k1 EKj ko EKj

(IT). By (10) and (11), we have, for any f € H:

ZUJZ-WWjA;AjWij = Z Z <UjAj7TWj f, e]-,k)ujyk =

J€l jel keK;
=SS e uss = 30 S i
J€) kel KEK; j€l kek,
0

Corollary 1. Let A = (W;,A;,v;);e5 be a g-fusion frame for H. Then
the following are equivalent:
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(I) A is a g-f-Riesz basis for H.
(IT) For any finite subset T C J, if >
7, then g; =0 for all j € J.
Proof. (I) = (II). Let T C J be finite. So, by (8), we get > llg;/* =
Thus, g; = 0 for all j € T and so it is true for all j € J.

(II) = (I). Let j € J and {ej r}rex, be an orthonormal basis for H;
where K; C Z. Assume that {g;};e1 € 74, such that Zjeﬂ v, Arg; =0

je1 Vimw,; A g = 0 for some {g;}je1 €

Therefore,
9= > (g€ nein
kG]Kj
Hence,
0= E viTw, N g5 = E E (95> €5, 1) Vi TW, Ale; k-
Jel j€I keK;

Now, if u;y, 1= vjmw, Aje; x, then (g;, e; ) = 0 by item (II) for every j € J
and k € K;. So, by Theorem 5.2.2 in [6], we state that {u;}jerex, is a
Riesz basis; so, by Theorem 7, A is a g-f-Riesz basis. [J

4. Perturbation of g-fusion frames In this section, we present
some perturbations of g-fusion frames and review some results about them.
First, we need the following result proved in [3].

Lemma 1. Let U be a Linear operator on a Banach space X and assume
that there exist A1, \y € [0,1), such that

[l = Us]| < Mlf]| + Aof|Uz]|
for all x € X. Then U is bounded and invertible. Moreover,
1 + A1

)| < U] <

— 2ol

and

- ol < 122
1+)\

for all x € X.

Theorem 8. Let A := (W;,A;,v;);e; be a g-fusion frame for H with
bounds A, B and {©; € B(H, H;)};c; be a sequence of operators, such
that for any finite subset I C J and for each f € H
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1> 02 (rw, Ay Ajmw, | — 7w, ©50,mw, £) || < M| D vfmw, A A m, f|+

Jel jel
| D o, €050 mw, f1| + (Y v [ Agmw, )2,
jel jel

where 0 < max{\ +7/vA4,u} < 1. Then © := (W;,0;,v;) is a g-fusion
frame for H with bounds

Proof. Assume that I C J is a finite subset and f € H. We have

|’ZUJ2'7TWj@;@j7Tij“ HZ mw, Aj Ay, f — mw, 050 mw, f) ||+

jel jel
+HZU mw; MG A mw f < 1+)‘)HZU32'7TWJA;AJ7TWJH+
jel jel
+ ol Y P, 050w, £ + (O VRl A mw, £])2
jel jel
Then
1 + A

1> vlmw, ©;0,mw, f|| < T > oimw A A, f]|+

jJ€el jel
+ (3 2 A, 7).
H J€el

Let Sy be the g-fusion frame operator of A; then

1> wimw, A Ay, £ < 1Sa£]| < BIIF]:

jel
and also
||Zv mw, N Ajmw, fl| = sup KZU mw, N;Njmw, fog >|
jel lgll=1" ey

= sup |<Z’U]A mw, f,A; ijgﬂ

lol=1 " “g
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S (ZUJZHAﬂijfHQV(vaHAﬂersz)% <

Jel Jel
1
VB( Y e2lagmw, f12)
jel

Therefore, for all f € H

{ ZUJZWWJ‘@;QJWWJH S
Jel
1+A 1
< (1, VB 1) (O dimn 1) < oo

jel

So, %UJZ-TI'W]. O©7;0;mw, f is unconditionally convergent. Let
j

S@ H— H
So(f) =Y _vimw,0;60;mw, f.
Jed

Se is a well defined and bounded operator with

1+A VB
ISell < —=B+ X2
— [ 1 —p

and for each f € H. We have

Y villemw, fIIF = (Sef, ) < ISelllfI*

j€J

It follows that © := (W;,0,,v;);ey is a g-fusion Bessel sequence for H.
Thus, we obtain, by the hypothesis,

150f = So fIl < AlSafll + ullSe fIl + (D vl Asma, £1)?) 2.
jel
Therefore, by (3),
I = SeSx" fIl < AU+ wllSeSx fll +( D w3l Asmw, 53 FI7)

Jjel
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< (A )11+l S S5 1

N
VA
Since 0 < max{\ + 7/V4, u} < 1, then, by Lemma 1, SgS;" and conse-
quently Sg is invertible, and we get

I+ p
A=+ )

156" < 1S5 111SaSe || <

So, the proof is completed. [

Corollary 1. The optimal lower and upper bounds of © defined in The-
orem 8 are ||Sg'||~! and ||Se||, respectively.

Corollary 2. Let A be a g-fusion frame for H with bounds A, B and
{©; € B(H, H;)}jecy be a sequence of operators. If there exists a constant
0 < R < A such that

> O llmw, AjAymw, | — mw, 050,mw, f1| < R S|
JeJ

for all f € H, then © := (W;,0,,v;),ey is a g-fusion frame for H with
bounds

/B
A—R and min{B+R Z,}H\/E}.

Proof. It is easy to check that Z;vawwj@j@jwwj f converges for any
je

f € H. Thus, we obtain, for each f € H,

> Ol A A, f = mw, 050w, £l < R fI| <

el
< (S Rl 112)
VCZ 2
and also
> 02l 050 mw, £l < RIFI 4D w3 lmw, A Aymw, f1| <
Jjel 7€l

< (R+VB)|IfIl

By using Theorem 8 with A = = 0and v = \%, the proof is completed. [
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The following is another version of perturbation of g-fusion frames.

Theorem 9. Let A be a g-fusion frame for H with bounds A,B and
{©; € B(H, H;)}jer be a sequence of operators, such that for any finite
subset I C J and for each {f;},e5 € 76,

|2 v (rw, A5 =y O3 ) || < A 3w, A5 )|+

jel jel
1
ol Do w5 D+ (DA77
jel jgel

where 0 < max{\ + 7/v4, u} < 1. Then © := (W;,0,,v;),ey Is a g-fusion
frame for H with bounds

ACREAL) s (MY

Proof. Let {f;}je; € 76; then

1Y " omw, € 650 < | v (rw, A f5 =, O3 £5) |+ D wymw, A3 5] <

Jel jel jel
1
< (1+)\>HZU]7T jfjH +M}|ZUJ7TW @]fJH —1—7 Z Hfj” 2.
Jel jel jel
Hence,
1 +)\ 1
| 2 vimw @58l < T IS o Al + 1 (4P
Jel jel jel

(”Aﬁ—)(znf]u)

Let
To : H — %,
To{fi}ier = > vimw, 03 ;.
jJel

Therefore, Tg is well-defined and bounded. Then, by Theorem 1, © is a
g-fusion Bessel sequence. Suppose that G := T@T;S,;l. Then we get, by
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the hypothesis and (4) for f; := Ajmw, Sy f,

15 = GAL < M+ G+ (X e, i A1F) <

Jjel

<<A+j%MUW+MmﬂL

Since 0 < max{\ + \/iz, p} < 1, by Lemma 1, G and, consequently, ToTx

are invertible and
1+p

1 — ()\ + L)
Now, let f € H, and we have

IIE = (GG f, 1P = (S o, O Aym, Sy NG 1), £

JjeJ

<Y IAmw, SYGET IR D o 105w, 117 <

Jjel JjeI

ATNGTIR Y v l0ymw, fIIP.

§€T
This completes the proof. [

Theorem 10. Let A be a g-fusion frame for H with bounds A,B and
{©; € B(H, H;)}jey be a sequence of operators. If there exists a constant
0 < R < A such that

> AT, f = Omw, )17 < R fI?

Jjed
for all f € H, then © := (W,,0;,v;)je; Is a g-fusion frame for H with
bounds

(VA—+VR)? and (VR+VB).

Proof. Let f € H. We can write

[{v;0mw; f}iesllz < [{v;O5mw, f — viAjmw, f}jenlla+
+ [{vAmw, f el < (VR + VB)?| £

and also

{v;O;mw, f}eslle = [H{viAjmw, f}ieslla—{v;O5mw, f—viAjmw, f erll2 =
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> (VA- VRIS
This complete the proof. [
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