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GENERALIZED KANTOROVICH CONSTANT, A NEW
FORMULATION AND PROPERTIES

Abstract. A hyperbolic formulation has been established for the
generalized Kantorovich constant. This formulation, besides some
new inequalities for hyperbolic functions, allow us to obtain new
properties of generalized Kantorovich constant, as well as to give
short proofs for known properties. A dual generalized Kantorovich
constant has been defined.
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1. Introduction. The Kantorovich inequality is named after Soviet
economist, mathematician, and Nobel Prize winner Leonid Kantorovich
(1912 – 1986) for the inequality he established in 1948 [8].

An equivalent to the Kantorovich inequality was first proved by
P. Schweitzer in 1914 [13].

The Kantorovich inequality has many applications. It is used in conver-
gence analysis, and it bounds the convergence rate of the Cauchy steepest
descent.

A variety of statistical applications of The Kantorovich inequality has
been given by Gulhan Alpargu [1] in her very good survey thesis that
contains historical information.

In 1948 Kantorovich [8] established the following inequality:
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for any 0 < 𝑚 6 𝑥𝑗 6𝑀, 𝑝𝑗 > 0, 𝑗 = 1, 2, . . . , 𝑛 with
𝑛∑︀

𝑗=1

𝑝𝑗 = 1.

This inequality has been generalized in several directions because of
its importance, see [2], [11].

The constant function

𝐻(𝑚,𝑀) =
(𝑚+𝑀)2

4𝑚𝑀
, 0 < 𝑚 < 𝑀

which always appears in those articles, becomes itself an important item
for research and generalizations, see [3], [4], and it is known as the Kan-
torovich constant. The first extension of the Kantorovich constant was
given by Furuta [4] as follows:

𝐾(𝑚,𝑀, 𝑝) =
(𝑝− 1)𝑝−1

𝑝𝑝
· (𝑀𝑝 −𝑚𝑝)𝑝

(𝑀 −𝑚)(𝑚𝑀𝑝 −𝑀𝑚𝑝)𝑝−1
(1)

for 𝑀 > 𝑚 > 0 and 𝑝 > 1. Note that 𝐾(𝑚,𝑀, 2) = 𝐻(𝑚,𝑀). Putting
ℎ = 𝑀/𝑚 in (1), we obtain

𝐾 =
(𝑝− 1)𝑝−1

𝑝𝑝
· (ℎ𝑝 − 1)𝑝

(ℎ− 1)(ℎ𝑝 − ℎ)𝑝−1

for any 𝑝 > 1. The generalized Kantorovich constant is formulated by
Furuta [8] as follows:

𝐾(ℎ, 𝑝) =
ℎ𝑝 − ℎ

(𝑝− 1)(ℎ− 1)
·
(︂
𝑝− 1

𝑝
· ℎ

𝑝 − 1

ℎ𝑝 − ℎ

)︂𝑝

(2)

for ℎ > 1 and any 𝑝 > 1 or 𝑝 < 0. It is not necessary to consider 0 < ℎ < 1,
because 𝐾(ℎ, 𝑝) = 𝐾(1/ℎ, 𝑝).

The generalized Kantorovich constant has been used in many applica-
tions, especially in relative operator entropies, see [5–7], [9].

Also, the Kantorovich constant plays a vital role in various improve-
ments of the Young inequality and its reverse for the scalar case, as well
as for matrix versions, see [10], [12], [14], [15].

In this article, we introduce a new formulation for the generalized
Kantorovich constant. Based on this formulation, we show that most of
the known properties of the Kantorovich constant, see [3], [4], can be
proved easily; also new properties will be obtained.

In the second section, we give several properties of the basic Kan-
torovich constant 𝐻(𝑚,𝑀). In section 3 we give some inequalities for
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hyperbolic functions that are used in this article. In section 4 we intro-
duce the hyperbolic formulation for the Kantorovich constant. A dual
generalized Kantorovich constant will be defined in section 5.

2. Properties of the basic Kantorovich constant. Let us start
with some properties of the basic Kantorovich constant that can be written
as follows:

𝐻(𝑚,𝑀) = 𝐻(1, 𝑥) =
(𝑥+ 1)2

4𝑥
= 𝐻(𝑥), (3)

where 𝑥 = 𝑀/𝑚.

Proposition 1. The following properties of 𝐻(1, 𝑥) (or simply 𝐻(𝑥) de-
fined by (3)) hold:

(i) 𝐻(𝑚+ 1,𝑀 + 1) 6 𝐻(𝑚,𝑀) 6 𝐻(𝑚(𝑚+ 1),𝑀(𝑀 + 1)).
(ii) 𝐻(𝑥+ 𝑦) 6 1

2
[𝐻(2𝑥) +𝐻(2𝑦)] (convexity).

(iii) 𝐻(𝑥𝑦) > 𝐻(𝑥)𝐻(𝑦) (superadditivity).
(iv) 𝐻(𝑚,𝑀) is decreasing with respect to 𝑚 and increasing with respect

to 𝑀 .

Proof. (i) We need the following identities:

𝑢2(𝑢+ 𝑣 + 1)− (𝑢+ 2)2𝑣 = (𝑢2 − 4𝑣)(𝑢+ 1) (4)

and
(𝑢2 + 𝑢− 2𝑣)2 − 𝑢2(𝑢+ 𝑣 + 1) = (𝑢2 − 4𝑣)(𝑢2 + 𝑢− 𝑣), (5)

that hold true for any positive numbers 𝑢 and 𝑣. Note that those identities
are interesting by themselves.

Putting 𝑢 = 𝑚+𝑀 and 𝑣 = 𝑚𝑀, it is not hard to verify that

𝐻(𝑚,𝑀) =
𝑢2

4𝑣
,

𝐻(𝑚+ 1, 𝑀 + 1) =
(𝑢+ 2)2

4(𝑢+ 𝑣 + 1)
,

𝐻(𝑚(𝑚+ 1),𝑀(𝑀 + 1)) =
(𝑢2 + 𝑢− 2𝑣)2

4𝑣(𝑢+ 𝑣 + 1)
.

Therefore, from (4), we derive

𝑢2

4𝑣
− (𝑢+ 2)2

4(𝑢+ 𝑣 + 1)
=

(𝑢2 − 4𝑣)(𝑢+ 1)

4𝑣(𝑢+ 𝑣 + 1)
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and in terms of 𝐻(· , ·), we have

𝐻(𝑚,𝑀)−𝐻(𝑚+ 1,𝑀 + 1) =
(𝑢2 − 4𝑣)(𝑢+ 1)

4𝑣(𝑢+ 𝑣 + 1)
. (6)

Now, using the identity (5), we get

(𝑢2 + 𝑢− 2𝑣)2

4(𝑢+ 𝑣 + 1)
− 𝑢2

4𝑣
=

(𝑢2 − 4𝑣)(𝑢2 + 𝑢− 𝑣)

4𝑣(𝑢+ 𝑣 + 1)
,

and in terms of 𝐻(· , ·), we obtain

𝐻(𝑚(𝑚+ 1),𝑀(𝑀 + 1))−𝐻(𝑚,𝑀) =
(𝑢2 − 4𝑣)(𝑢2 + 𝑢− 𝑣)

4𝑣(𝑢+ 𝑣 + 1)
. (7)

Since 𝑢2 − 4𝑣 > 0 and 𝑢2 + 𝑢− 𝑣 > 0, it follows from (6) and (7) that

𝐻(𝑚(𝑚+ 1),𝑀(𝑀 + 1)) > 𝐻(𝑚,𝑀)

and
𝐻(𝑚,𝑀) > 𝐻(𝑚+ 1,𝑀 + 1).

The proof is complete.
(ii) Here we use the identity

𝑦(𝑥+ 𝑦)(2𝑥+ 1)2 + 𝑥(𝑥+ 𝑦)(2𝑦 + 1)2 − (𝑥− 𝑦)2 = 4𝑥𝑦(𝑥+ 𝑦 + 1)2

that leads to

(𝑥+ 𝑦 + 1)2

(𝑥+ 𝑦)
=

(2𝑥+ 1)2

4𝑥
+

(2𝑦 + 1)2

4𝑦
− (𝑥− 𝑦)2

4𝑥𝑦(𝑥+ 𝑦)

or, equivalently,

2𝐻(𝑥+ 𝑦) = 𝐻(2𝑥) +𝐻(2𝑦)− (𝑥− 𝑦)2

8𝑥𝑦(𝑥+ 𝑦)
.

Therefore,
2𝐻(𝑥+ 𝑦) 6 𝐻(2𝑥) +𝐻(2𝑦).

(iii) The required inequality can be written as follows:

(𝑥𝑦 + 1)2

4𝑥𝑦
>

(𝑥+ 1)2

4𝑥
.
(𝑦 + 1)2

4𝑦
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This inequality is equivalent to

2(𝑥𝑦 + 1) > (𝑥+ 1)(𝑦 + 1)

or
(𝑥− 1)(𝑦 − 1) > 0.

This completes the proof.
Property (iv) is got directly if we notice that

𝑑𝐻

𝑑𝑚
=

𝑚2 −𝑀2

4𝑀𝑚2
< 0 and

𝑑𝐻

𝑑𝑀
=

𝑀2 −𝑚2

4𝑚𝑀2
> 0.

�

Remark 1. Direct computations lead to the following additional prop-
erties:

𝐻(𝑥2) = [2𝐻(𝑥)− 1]2,

𝐻(𝑥) +𝐻(𝑦) = 1 +
√︀

𝐻(𝑥𝑦)𝐻(𝑥/𝑦),

𝐻(𝑥)−𝐻(𝑦) =
√︀

[𝐻(𝑥𝑦)− 1] [𝐻(𝑥/𝑦)− 1],√︀
𝐻(𝑥) +

√︀
𝐻(𝑥)− 1 =

√
𝑥,

where 𝐻(𝑥) = 𝐻(1, 𝑥) = (𝑥+ 1)2/4𝑥.

3. Inequalities for hyperbolic functions. In this section, we
introduce some inequalities for hyperbolic functions that are interesting
by themselves and necessary for the proofs in this article.

Lemma 1. For 𝑥 > 𝑦 > 0, the following inequalities hold:

𝑥

𝑦
exp(𝑦 − 𝑥) 6

sinh 𝑥

sinh 𝑦
6

𝑥

𝑦
exp(𝑥− 𝑦), (8)

cosh 𝑥

cosh 𝑦
6

𝑥

𝑦
exp(𝑥− 𝑦). (9)

Proof. For the proof of the right-hand side of inequality (8), it is sufficient

to show that the function 𝑓(𝑥) =
sinh𝑥

𝑥𝑒𝑥
=

𝑒2𝑥 − 1

2𝑥𝑒2𝑥
is decreasing. In fact,

this is so, because

𝑓
′
(𝑥) =

2𝑥 + 1− 𝑒2𝑥

2𝑥2𝑒2𝑥
< 0 for 𝑥 ∈ 𝑅.
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Note that 𝑓 *(𝑥) =
𝑒𝑥 sinh𝑥

𝑥
=

𝑒2𝑥 − 1

2𝑥
is an increasing function for

𝑥 ∈ 𝑅, because

𝑓
′*(𝑥) =

2𝑥 exp(2𝑥) − exp(2𝑥) + 1

4𝑥2
> 0.

The left-hand side of inequality (8) follows from this immediately.

Similarly, since 𝑔(𝑥) =
cosh𝑥

𝑥𝑒𝑥
=

exp(2𝑥) + 1

2𝑥 exp𝑥
is a decreasing function,

because

𝑔′(𝑥) = −2𝑥 exp(2𝑥) + exp(2𝑥) + 1

2𝑥2𝑒2𝑥
< 0 for 𝑥 ∈ 𝑅,

we conclude the validity of (9). �

Lemma 2. For 𝑥 > 𝑦 > 0, the following inequality holds:

𝑥

𝑦
(coth𝑥− 1) + 1 < coth 𝑦 <

𝑥

𝑦
coth𝑥. (10)

Proof. Since (︂
𝑥 cosh𝑥

sinh𝑥

)︂′

=
sinh(2𝑥)− 2𝑥

2 sinh2 𝑥
> 0,

we obtain for 𝑥 > 𝑦 that

𝑥 cosh𝑥

sinh𝑥
>

𝑦 cosh 𝑦

sinh 𝑦
or coth 𝑦 <

𝑥

𝑦
coth𝑥.

To prove the left-hand side of inequality (10), it is sufficient to prove that

𝑚(𝑥) = 𝑥 coth𝑥− 𝑥 =
2𝑥

exp(2𝑥)− 1

is a decreasing function. We have

𝑚
′
(𝑥) =

(1− 2𝑥) exp(2𝑥)− 1

(exp(2𝑥)− 1)2
=

𝑡(𝑥)

(exp(2𝑥)− 1)2
.

Since 𝑡(0) = 0 and 𝑡′(𝑥) = −(1 + 2𝑥) exp(2𝑥) < 0, it follows that 𝑡(𝑥) < 0
and, consequently, 𝑚′(𝑥) < 0. �
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4. Main results. In this section, we introduce the hyperbolic formu-
lation and some properties for the generalized Kantorovich constant.

Proposition 2. The generalized Kantorovich constant can be written
in the hyperbolic form as follows:

𝐾(ℎ, 𝑝) = 𝐹 (𝜃, 𝑝) =
1

sinh 𝜃
· 𝑢𝑝(𝜃)

𝑢𝑝−1(𝜃)
; 𝑢𝑝(𝜃) =

(︂
sinh 𝑝𝜃

𝑝

)︂𝑝

, (11)

where 𝜃 > 0 and 𝑝 > 1 or 𝑝 < 0.

Proof. Rewrite the generalized Kantorovich constant in the form

𝐾(ℎ, 𝑝) =
1

ℎ− 1

[︁(︁ℎ𝑝 − 1

𝑝

)︁𝑝⧸︁(︁ℎ𝑝 − ℎ

𝑝− 1

)︁𝑝−1]︁
. (12)

Now, putting ℎ = 𝑒2𝜃 in (2) and using the identities

ℎ𝑝 − 1 = 2𝑒𝑝𝜃 sinh 𝑝𝜃, ℎ− 1 = 2𝑒𝜃 sinh 𝜃,

ℎ𝑝 − ℎ = [2𝑒(𝑝−1)𝜃 sinh(𝑝− 1)𝜃] 𝑒2𝜃 = 2𝑒(𝑝+1)𝜃 sinh(𝑝− 1)𝜃,

we obtain the expression (3) by substitution in (12). �

This formulation enables us to obtain new properties and to give simple
proofs for most of the known properties collected in the works of Furuta
and Fujii [3], [4]. In what follows, we need the following Lemma.

Lemma 3. The function 𝑢𝑝(𝜃) satisfies the following properties:

(a) sinh𝑟 𝜃 · exp[−𝑟(𝑝+ 𝑞 − 1)𝜃] 6
𝑢𝑝(𝜃)

𝑢𝑞(𝜃)
6 sinh𝑟 𝜃 · exp[𝑟(𝑝+ 𝑞 − 1)𝜃],

where 𝑟 = 𝑝− 𝑞 and 𝑝 > 𝑞 > 0;
(b) 𝑢𝑝(𝜃)𝑢−𝑝(𝜃) = 1;

(c)
𝑑

𝑑𝑝
𝑢𝑝(𝜃) = 𝑢𝑝(𝜃)ℓ𝑝(𝜃), where ℓ𝑝(𝜃) = ln

sinh 𝑝𝜃

𝑝
+ 𝑝𝜃 coth 𝑝𝜃 − 1.

Proof. It is not hard to check the validity of the properties (b) and (c).
For the right-hand side of (a) we have, for 𝑟 = 𝑝− 𝑞 and 𝑝 > 𝑞 > 0:

𝑢𝑝(𝜃)

𝑢𝑞(𝜃)
=

(sinh 𝑝𝜃)𝑝

𝑝𝑝
·
(︂

𝑞

sinh 𝑞𝜃

)︂𝑞

=

(︂
sinh 𝑝𝜃

𝑝

)︂𝑟 (︂
𝑞

𝑝

)︂𝑞 (︂
sinh 𝑝𝜃

sinh 𝑞𝜃

)︂𝑞

.

Applying inequality (8) (where 𝑥 = 𝑝𝜃, 𝑦 = 𝑞𝜃), we obtain

𝑢𝑝(𝜃)

𝑢𝑞(𝜃)
6

(︂
sinh 𝑝𝜃

𝑝

)︂𝑟 (︂
𝑞

𝑝

)︂𝑞 (︂
𝑝

𝑞

)︂𝑞 (︀
𝑒𝑟𝜃

)︀𝑞
= 𝑒𝑟𝜃𝑞

(︂
sinh 𝑝𝜃

𝑝

)︂𝑟

6
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6 𝑒𝑟𝜃𝑞
(︀
𝑒(𝑝−1)𝜃 sinh 𝜃

)︀𝑟
= sinh𝑟 𝜃 · exp[−𝑟(𝑝+ 𝑞 − 1)].

The left-hand side of (a) can be proved similarly. �

Proposition 3. The generalized Kantorovich constant satisfies the fol-
lowing properties:

(i) 𝐾(ℎ, 𝑝)𝐾(ℎ, 𝑝−1) . . . 𝐾(ℎ, 𝑝−𝑟) =
1

sinh𝑟+1 𝜃

𝑢𝑝(𝜃)

𝑢𝑝−𝑟−1(𝜃)
for 𝑝 > 𝑟+1

and 𝑟 is a positive integer;

(ii) ℎ−( 𝑝+𝑞−2) 6
𝐾(ℎ, 𝑝)

𝐾(ℎ, 𝑞)
6 ℎ(𝑝+𝑞−2), where 𝑟 = 𝑝− 𝑞 and 𝑝 > 𝑞 > 1;

(iii) ℎ−𝑝+1 6 𝐾(ℎ, 𝑝) 6 ℎ𝑝−1;

(iv) 𝐾𝑝(ℎ𝑝,
1

𝑝
) =

1

𝐾(ℎ, 𝑝)
;

(v) 𝐾(ℎ,−𝑝) = 𝐾(ℎ, 𝑝+ 1);

(vi) 𝐾
′
𝑝(ℎ,−𝑝) = −𝐾

′
𝑝(ℎ, 𝑝+ 1);

(vii) 𝐾(ℎ, 1− 𝑝) = 𝐾(ℎ, 𝑝);

(viii) 𝐾(ℎ, 𝑝) = 𝐾(𝑝) is an increasing function for 𝑝 > 1 and decreasing
for 𝑝 < 0;

(ix) 𝐾(ℎ, 𝑝) = 𝐹 (𝜃, 𝑝) = max
−16𝑡61

cosh 𝑝𝜃 + 𝑡 sinh 𝑝𝜃

(cosh 𝜃 + 𝑡 sinh 𝜃)𝑝
for 𝑝 > 1 or 𝑝 < 0

and 𝜃 > 0.

Proof. (i) From (11) we have

𝐾(ℎ, 𝑝)𝐾(ℎ, 𝑝− 1) . . . 𝐾(ℎ, 𝑝− 𝑟) =

=
1

sinh𝑟+1 𝜃

𝑢𝑝(𝜃)

𝑢𝑝 −1(𝜃)

𝑢𝑝−1(𝜃)

𝑢𝑝−2(𝜃)
. . .

𝑢𝑝−𝑟(𝜃)

𝑢𝑝−𝑟−1(𝜃)
=

=
1

sinh𝑟+1 𝜃

𝑢𝑝(𝜃)

𝑢𝑝−𝑟−1(𝜃)
.

(ii) From inequality (a) in Lemma 3 it follows that

sinh 𝜃 · exp[−2(𝑝− 1)𝜃] 6
𝑢𝑝(𝜃)

𝑢𝑝 − 1(𝜃)
6 sinh 𝜃 · exp[2(𝑝− 1)𝜃]. (13)

Therefore,

sinh 𝜃 · 𝑒−2(𝑝−1)𝜃

sinh 𝜃 · 𝑒2(𝑞−1)𝜃
6

𝐾(ℎ, 𝑝)

𝐾(ℎ, 𝑞)
6

sinh 𝜃 · 𝑒2(𝑝−1)𝜃

sinh 𝜃 · 𝑒−2(𝑞−1)𝜃
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or

exp[−2(𝑝+ 𝑞 − 2)𝜃] 6
𝐾(ℎ, 𝑝)

𝐾(ℎ, 𝑞)
6 exp[2(𝑝+ 𝑞 − 2)𝜃].

(iii) This inequality follows directly from (13).
(iv) Applying the hyperbolic formulation for 𝐾(ℎ, 𝑝), we obtain

𝐾
(︀
ℎ𝑝,

1

𝑝

)︀
=

1

sinh 𝑝𝜃
·

(︀
𝑝 sinh 𝜃𝑝

𝑝

)︀ 1
𝑝(︂

sinh
[︀(︀

1
𝑝
− 1

)︀
𝜃𝑝
]︀

(1
𝑝
− 1)

)︂( 1
𝑝
−1)

=

=
1

sinh 𝑝𝜃
·

(︀
𝑝 sinh 𝜃

)︀ 1
𝑝(︁𝑝 sinh[(𝑝− 1)𝜃]

(𝑝− 1)

)︁( 1
𝑝
−1)

,

or

𝐾𝑝
(︀
ℎ𝑝,

1

𝑝

)︀
=

𝑝 sinh 𝜃(︀
sinh 𝑝𝜃

)︀𝑝 ·
(︁𝑝 sinh[(𝑝− 1)𝜃]

(𝑝− 1)

)︁(𝑝−1)

=

=
𝑢𝑝 −1(𝜃)

𝑢𝑝(𝜃)
· sinh 𝜃 =

1

𝐾(ℎ, 𝑝)
.

(v) 𝐾(ℎ,−𝑝) =
1

sinh 𝜃
· 𝑢−𝑝(𝜃)

𝑢−𝑝−1(𝜃)
=

1

sinh 𝜃
· 𝑢𝑝+1(𝜃)

𝑢𝑝(𝜃)
= 𝐾(ℎ, 𝑝+ 1)

(vi) 𝐾 ′
𝑝(ℎ, 𝑝) =

1

sinh 𝜃

𝑑

𝑑𝑝

(︁ 𝑢𝑝(𝜃)

𝑢𝑝−1(𝜃)

)︁ 1

sinh 𝜃

𝑢
′
𝑝𝑢𝑝−1𝑢𝑝𝑢

′
𝑝−1

𝑢2
𝑝−1

.

Applying Lemma 3, we obtain

𝐾
′

𝑝(ℎ, 𝑝) = 𝐾(ℎ, 𝑝)[ℓ𝑝(𝜃)− ℓ𝑝−1(𝜃)], (14)

where
ℓ𝑝(𝜃) = ln

sinh 𝑝𝜃

𝑝
+ 𝑝𝜃 coth 𝑝𝜃 − 1. (15)

Therefore,

𝐾
′

𝑝(ℎ,−𝑝) = 𝐾(ℎ,−𝑝)[ℓ−𝑝(𝜃)− ℓ−𝑝−1(𝜃)] =

= 𝐾(ℎ, 𝑝+ 1)[ℓ𝑝(𝜃)− ℓ𝑝+1(𝜃)] = −𝐾
′

𝑝(ℎ, 𝑝+ 1).
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(vii) 𝐾(ℎ, 1− 𝑝) =
1

sinh 𝜃

𝑢1−𝑝(𝜃)

𝑢1−𝑝−1(𝜃)
=

1

sinh 𝜃
· 𝑢𝑝(𝜃)

𝑢𝑝−1(𝜃)
.

Here we used 𝑢𝑝(𝜃)𝑢−𝑝(𝜃) = 1.
(viii) From equation (14), it is sufficient to show that ℓ𝑝(𝜃) is increasing

for 𝑝 > 1 and decreasing for 𝑝 < 0. For this purpose, we obtain, by
differentiating (15), that

𝑑ℓ𝑝(𝜃)

𝑑𝑝
=

2𝑝𝜃 sinh 𝑝𝜃 cosh 𝑝𝜃 − 𝑝2𝜃2 − sinh2 𝑝𝜃

𝑝 sinh2 𝑝𝜃
.

Consider the function

𝑔(𝑥) = 2𝑥 sinh𝑥 cosh𝑥− 𝑥2 − sinh2 𝑥, (𝑥 = 𝑝𝜃).

Since 𝑔(0) = 0 and 𝑔
′
(𝑥) = 4𝑥 sinh2 𝑥 > 0 for 𝑥 > 0 and 𝑔

′
(𝑥) < 0 for

𝑥 < 0, it follows that 𝑔(𝑥) > 0 for all 𝑥 ̸= 0. Therefore, 𝑑ℓ𝑝(𝜃)

𝑑𝑝
> 0 for

𝑝 > 1 and 𝑑ℓ𝑝(𝜃)

𝑑𝑝
< 0 for 𝑝 < 0.

(ix) Let

𝐹 (𝑡) =
cosh 𝑝𝜃 + 𝑡 sinh 𝑝𝜃

(cosh 𝜃 + 𝑡 sinh 𝜃)𝑝
. (16)

Then 𝐹
′
(𝑡) = 0 whenever

𝑡 (1− 𝑝) sinh 𝜃 sinh 𝑝𝜃 + sinh 𝑝𝜃 cosh 𝜃 − 𝑝 sinh 𝜃 cosh 𝑝𝜃 = 0. (17)

This equation has a unique solution 𝑡 = 𝑡0, where

𝑡0 =
1

𝑝− 1

(︂
cosh 𝜃

sinh 𝜃
− 𝑝

cosh 𝑝𝜃

sinh 𝑝𝜃

)︂
. (18)

For 𝑝 > 1, put 𝑥 = 𝑝𝜃 and 𝑦 = 𝜃 in inequality (10) and obtain

𝑝
cosh 𝜃

sinh 𝜃
+ 1− 𝑝 <

cosh 𝜃

sinh 𝜃
< 𝑝

cosh 𝑝𝜃

sinh 𝑝𝜃
. (19)

From (18) and (19) it follows that −1 < 𝑡0 < 0. Furthermore, we
conclude from (17) that 𝐹

′
(𝑡) > 0 for 𝑡 < 𝑡0 < 0 and 𝐹

′
(𝑡) < 0 for

𝑡 > 𝑡0 > 0. Therefore, a maximum of 𝐹 (𝑡) takes place at 𝑡 = 𝑡0, and
it follows that max

−16𝑡61
𝐹 (𝑡) = 𝐹 (𝑡0). In order to complete the proof, we

show that 𝐹 (𝑡0) = 𝐹 (𝜃, 𝑝). To simplify the calculations, we denote sinh 𝑝𝜃,
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cosh 𝑝𝜃, sinh 𝜃, cosh 𝜃 by 𝑆𝑝, 𝐶𝑝, 𝑆, 𝐶 respectively. Now, the substitution of
𝑡0 =

1
𝑝−1

(𝐶
𝑆
− 𝑝𝐶𝑝

𝑆𝑝
) in (16) gives

𝐶𝑝 +
1

𝑝− 1

(︁𝐶
𝑆

− 𝑝
𝐶𝑝

𝑆𝑝

)︁
𝑆𝑝[︁

𝐶 +
1

𝑝− 1

(︁𝐶
𝑆

− 𝑝
𝐶𝑝

𝑆𝑝

)︁
𝑆
]︁𝑝 =

1

𝑆(𝑝− 1)

(︁
𝐶𝑆𝑝 − 𝑆𝐶𝑝

)︁
(︁ 𝑝

𝑝− 1

)︁𝑝(︁
𝐶 − 𝐶𝑝

𝑆

𝑆𝑝

)︁𝑝
=

=
1

𝑆

1

𝑝− 1

(︁𝑝− 1

𝑝

)︁𝑝

𝑆𝑝
𝑝

𝐶𝑆𝑝 − 𝑆𝐶𝑝(︁
𝐶𝑆𝑝 − 𝑆𝐶𝑝

)︁𝑝 =

=
1

𝑆

(𝑝− 1)𝑝−1

𝑝𝑝
𝑆𝑝
𝑝

1(︁
𝐶𝑆𝑝 − 𝑆𝐶𝑝

)︁𝑝−1 =

=
1

𝑆

(𝑝− 1)𝑝−1

𝑝𝑝
𝑆𝑝
𝑝

1

(𝑆𝑝−1)𝑝−1
=

1

sinh 𝜃
· 𝑢𝑝(𝜃)

𝑢𝑝−1(𝜃)
= 𝐹 (𝜃, 𝑝).

For 𝑝 < 0, put 𝑝 = −𝑝*, where 𝑝* > 0. Then 𝐹
′
(𝑡) = 0 for a unique

value 𝑡 = 𝑡1 defined by

−𝑡(𝑝* + 1) sinh 𝜃 sinh 𝑝*𝜃 − sinh 𝑝*𝜃 cosh 𝜃 + 𝑝* sinh 𝜃 cosh 𝑝*𝜃 = 0

or by

𝑡1 =
1

(𝑝* + 1)

(︂
𝑝*
cosh 𝑝*𝜃

sinh 𝑝*𝜃
− cosh 𝜃

sinh 𝜃

)︂
.

From Lemma 2, as in the case 𝑝 > 1, we conclude that 0 < 𝑡1 < 1 and
max

−16𝑡61
𝐹 (𝑡) = 𝐹 (𝑡0) = 𝐹 (𝜃, 𝑝). �

Remark 2. Properties (v), (vi) and (viii) have been proved by Furuta [4]
using another approach.

Corollary. It is useful to write down some particular expressions that
follow from Propositions 2 and 3.

𝐾(ℎ, 1) = 1, 𝐾(ℎ, 2) = cosh2 𝜃,

𝐾(ℎ, 𝑝)𝐾(ℎ, 𝑝− 1) =
1

sinh2 𝜃

𝑢𝑝

𝑢𝑝−2

,

𝐾(ℎ, 𝑝)𝐾(ℎ, 𝑝− 1) . . . 𝐾(ℎ, 1) =
𝑢𝑝

sinh𝑝−1 𝜃
,

𝐾 ′
𝑝 = 𝐾(ℎ, 𝑝)(ℓ(𝑝)− ℓ(𝑝− 1)).
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5. Dual generalized Kantorovich constant. At the end of this
article, we define a dual Kantorovich constant which might be of interest.

Definition 1. Let 𝑝 > 1. The dual Kantorovich constant is defined by

𝐹 *(𝜃, 𝑝) =
1

cosh 𝜃
· 𝑣𝑝(𝜃)

𝑣𝑝−1(𝜃)
, (20)

where
𝑣𝑝(𝜃) =

(︁cosh 𝑝𝜃
𝑝

)︁𝑝

.

Note that the dual Kantorovich constant can be written as follows:

𝐾* (ℎ, 𝑝) =
ℎ𝑝 + ℎ

(𝑝− 1)(ℎ+ 1)
·
(︁𝑝− 1

𝑝
· ℎ

𝑝 + 1

ℎ𝑝 + ℎ

)︁𝑝

,

where ℎ = 𝑒2𝜃.
One can prove some properties for𝐾*(ℎ, 𝑝), similar to those of𝐾(ℎ, 𝑝).

Furthermore, we raise the following question:
Is there any relation between 𝐹 *(𝜃, 𝑝) and 𝐹 (𝜃, 𝑝) defined by (11)?

The following proposition gives a partial answer.

Proposition 4. For 𝑝 > 𝑟 > 1, we have the following identity:

𝐹 (𝜃, 𝑝− 𝑟 + 1)𝐹 *(𝜃, 𝑝− 𝑟 + 1) =
(𝑝− 𝑟)𝑝−𝑟

(𝑝− 𝑟 + 1)𝑝−𝑟+1
𝐹 (2𝜃, 𝑝− 𝑟 + 1).

Proof. Note that

𝑢𝑛(𝜃)𝑣𝑛(𝜃) =

(︂
sinh𝑛𝜃

𝑛

)︂𝑛 (︂
cosh𝑛𝜃

𝑛

)︂𝑛

=
1

(2𝑛)𝑛
𝑢𝑛(2𝜃);

from (11) and (20), we have

𝐹 (𝜃, 𝑝− 𝑟 + 1)𝐹 *(𝜃, 𝑝− 𝑟 + 1) =

=
1

cosh 𝜃
· 𝑣𝑝−𝑟+1(𝜃)

𝑣𝑝−𝑟(𝜃)

1

sinh 𝜃
·𝑢𝑝−𝑟+1(𝜃)

𝑢𝑝−𝑟(𝜃)
=

1

sinh 2𝜃
· 𝑣𝑝−𝑟+1(𝜃)

𝑣𝑝−𝑟(𝜃)
·𝑢𝑝−𝑟+1(𝜃)

𝑢𝑝−𝑟(𝜃)
=

=
2

sinh 2𝜃
·𝑢𝑝−𝑟+1(2𝜃)

𝑢𝑝−𝑟(2𝜃)
· [2(𝑝− 𝑟)]𝑝−𝑟

[2(𝑝−𝑟 + 1)]𝑝−𝑟+1
=

(𝑝− 𝑟)𝑝−𝑟

(𝑝−𝑟 + 1)𝑝−𝑟+1
𝐹 (2𝜃, 𝑝−𝑟+1).

�
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Remark 3. For the basic Kantorovich constant

𝐻(𝑥) =
(𝑥+ 1)2

4𝑥
, (𝑥 > 1)

and the basic dual Kantorovich constant

𝐾*(𝑥, 2) = 𝐻*(𝑥) =
(𝑥2 + 1)2

4𝑥 (𝑥+ 1)2
, (𝑥 > 1)

we have
𝐻*(𝑥) < 𝐻(𝑥) < 𝐻*(𝑥) + 1.

This follows from the identity

𝐻(𝑥)−𝐻*(𝑥) = 1− 𝑥

(𝑥+ 1)2
.
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