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THE SUMMARY EQUATION FOR FUNCTIONS
ANALYTICAL OUTSIDE FOUR SQUARES.

APPLICATIONS

Abstract. We consider the lacunary Stieltjes moment problem

∞∫︁
0

𝐹 (𝑥)𝑥4𝑛+1 exp(−𝑥) 𝑑𝑥 = 𝛽𝑛, 𝑛 = 0, 1, 2.

We search for a solution in the class of entire functions of the ex-
ponential type that satisfy the condition 𝐹 (𝑖𝑧) = 𝐹 (𝑧). Their
indicator diagram is a certain octagon. We construct nontrivial so-
lutions to the corresponding homogeneous problem. The problem
reduces studying a linear summary equation in the class of func-
tions holomorphic outside four squares. At infinity, they have a
zero of multiplicity at least three. The boundary values satisfy a
Hölder condition on any compact that does not contain the ver-
tices. At the vertices, we allow at most logarithmic singularities.
We search for a solution in the form of a Cauchy-type integral
with an unknown density over the boundary of those squares. We
suggest a method for the regularization of the summary equation.
An equivalence condition for this regularization is established. Ad-
ditionally, we identify some special cases, in which the obtained
Fredholm equation of the second kind is solvable. For this, we use
the contraction mapping theorem in a Banach space.
Key words: equivalent regularization, Carleman problem, mo-
ments of entire functions
2010 Mathematical Subject Classification: 30D05

1. Introduction and problem statement. Let 𝐷1 be a unit square
with vertices 𝑡1 = 𝛾−𝑖/2, 𝑡2 = 𝛾+1−𝑖/2, 𝑡3 = 𝛾+1+𝑖/2, 𝑡4 = 𝛾+𝑖/2, and
sides ℓ𝑗, 𝑗 = 1, 4, taken in the order in which they occur on the boundary
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Γ1 = 𝜕𝐷1 described positively (𝑡 ∈ ℓ1 ⇒ Im 𝑡 = −0.5). Here 𝛾 ∈ (0.5, 1).
Consider four functions:

𝜎𝑚(𝑧) = 𝑡𝑚 + 𝑡𝑚+1 − 𝑧, 𝑚 = 1, 4 (𝑡5 = 𝑡1). (1)

They induce a Carleman involutive shift 𝛼(𝑡) = {𝜎𝑚(𝑡), 𝑡 ∈ ℓ𝑚}, which
maps each side into itself changing its orientation. Moreover, the middle
point of the sides are fixed points of the shift.

Let us consider another three squares 𝐷𝑗 = 𝑖𝑗−1𝐷1, 𝑗 = 2, 4. The func-
tions 𝜎𝑚(𝑧) are defined by (1) only for 𝑧 ∈ 𝐷1. Assume that
𝜎𝑚(𝑧) = 𝜎𝑚(𝑖1−𝑗𝑧), 𝑗 = 2, 4, for 𝑧 ∈ 𝐷𝑗.

Thus, the shift 𝛼(𝑡) has been defined on the whole set Γ. We will use

the following notation: 𝐷 =
4⋃︀

𝑘=1

𝐷𝑘, Γ𝑘 = 𝜕𝐷𝑘, Γ =
4⋃︀

𝑘=1

Γ𝑘.

Consider the functional equation

(𝑉 𝑓) (𝑧) =
4∑︁

𝑚=1

𝑓 [𝜎𝑚(𝑧)] = 𝑔(𝑧), 𝑧 ∈ 𝐷, (2)

under the following assumptions:
1) The solution 𝑓(𝑧) is holomorphic on 𝐷 and has a zero of multiplicity

at least three at infinity. Moreover,

𝑓(𝑖𝑧) = −𝑖𝑓(𝑧). (3)

Its boundary value 𝑓−(𝑡) satisfies the Hölder condition on any compact
set that does not contain vertices of the squares. At the vertices, we allow
at most logarithmic singularities. We denote this class of solutions by 𝐵.

2) The independent term 𝑔(𝑧) is a piecewise holomorphic function,
i. e., 𝑔(𝑧) = 𝑔𝑗(𝑧), 𝑧 ∈ 𝐷𝑗, 𝑗 = 1, 4, and satisfies the condition given
in (3). Each function 𝑔𝑗(𝑧) is holomorphic on 𝐷𝑗 and its boundary value
𝑔+𝑗 (𝑡) ∈ 𝐻(Γ𝑗).

Note that if 𝑧 ∈ 𝐷, then 𝜎𝑚(𝑧) /∈ 𝐷. Therefore, we will search for
a solution in the class of functions that are holomorphic outside 𝐷. In
the applications, it is convenient to assume that it vanishes at infinity.
In other words, the solution and the independent term are in different
classes of analytical functions. classes of analytical functions. Operator
𝑉 anticommutes with the differentiation operator, so we cannot apply
powerful classical methods (see [1]) to equation (2). On the other hand,
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the equation turns out to be well-suited for some applications (see part 4
below).

Let us describe the problem. Associate a set 𝐻𝑗 =
4⋃︀

𝑘=1

𝜎𝑘(𝐷𝑗) with

each square. If 𝐻𝑗 ∩𝐷𝑘 ̸= ∅ for 𝑘 ̸= 𝑗, the problem becomes meaningless.
Recall that the solution 𝑓(𝑧) is defined only outside 𝐷. Thus, we should
set 𝛾 > 0.5, so that the squares are not “too close” to each other. On
the other hand, it is, henceforth, essential that 𝐻𝑗 ∩𝐻𝑗+1 ̸= ∅, 𝑗 = 1, 4,
𝐻5 = 𝐻1. Therefore, 𝛾 < 1. Note that the disconnectedness of the
sets 𝐶 ∖ 𝐻𝑗, 𝑗 = 1, 4, is what makes the problem given in (2) nontrivial.
Problem (2) in the case of a single arbitrary quadrangle𝐷 was first studied
in [2].

This paper consists of four parts. In the first part, we give the problem
statement. In the second part, we suggest a method for regularization of
problem (2), and establish conditions for its equivalence. In the third part,
we study some special cases of the given equation, when it is possible to
prove that the obtained Fredholm equation of the second kind is unconditi-
onally solvable. In the fourth part, we examine the Stieltjes moment
problem for entire functions of the exponential type, which is associated
with problem (2). For this, we apply the Borel transformation [3, § 1, 1.1].

2. Problem regularization. We look for a solution to problem (2)
in the form of a Cauchy-type integral:

𝑓(𝑧) =
1

2𝜋𝑖

∫︁
Γ

(𝜏 − 𝑧)−1 𝜙(𝜏) 𝑑𝜏, 𝑧 /∈
−
𝐷,

with an unknown density 𝜙(𝜏) that satisfies the conditions

𝜙(𝑖𝑡) = −𝑖𝜙(𝑡) (4)

and ∫︁
Γ

𝜙(𝜏) 𝑑𝜏 = 0 ⇒ ∀𝑗
∫︁
Γ𝑗

𝜙(𝜏) 𝑑𝜏 = 0. (5)

We can assume, without loss of generality, that

𝜙(𝜏) + 𝜙[𝛼(𝜏)] = 0. (6)

Indeed, the density 𝜙(𝜏) is defined on each boundary Γ𝑗 up to a term
𝑎+𝑗 (𝜏), which is the boundary value of a function 𝑎𝑗(𝑧), holomorphic on𝐷𝑗.
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By suitably choosing this function, it is possible to fulfill condition (6).
This condition is considered as a Carleman problem for the unknown func-
tion 𝑎𝑗(𝑧). The solvability of this problem is a consequence of the principle
of locally conformal gluing [4] and condition (5). As a result,

(2) ⇒ (𝐴𝜙) (𝑧) =
1

2𝜋𝑖

∫︁
Γ

𝜙(𝜏)𝐸(𝑧, 𝜏) 𝑑𝜏 = 𝑔(𝑧), 𝑧 ∈ 𝐷, (7)

where

𝐸(𝑧, 𝜏) =
4∑︁

𝑚=1

(𝜏 − 𝜎𝑚(𝑧))−1 ; 𝑧 ∈ 𝐷.

Proceed to the limit in (7) as 𝑧 → 𝑡 ∈ Γ. In view of (6), we obtain a
formula similar to the Sokhotski–Plemelj formula; namely(︀

𝐴+𝜙
)︀

(𝑡) ≡ 2−1𝜙(𝑡) + (𝐴𝜙) (𝑡) = 𝑔+(𝑡), (8)

in which the singular integral (𝐴𝜙)(𝑡) is the result of the formal substitu-
tion of the variable 𝑧 ∈ 𝐷 by 𝑡 ∈ Γ in (7) and must be understood in the
sense of the Cauchy principal value. Substitute in (8) the variable 𝑡 by
𝛼(𝑡) and subtract the obtained equality from the initial one. Taking into
account (6), we have

(𝑇𝜙) (𝑡) ≡ 𝜙(𝑡) +
1

2𝜋𝑖

∫︁
Γ

𝐾(𝑡, 𝜏)𝜙(𝜏) 𝑑𝜏 = 𝑔+(𝑡) − 𝑔+[𝛼(𝑡)], (9)

where
𝐾(𝑡, 𝜏) = 𝐸(𝑡, 𝜏) + 𝐸 [𝛼(𝑡), 𝛼(𝜏)] . (10)

Lemma 1. Integral equation (9) is a Fredholm equation of the second
kind.

Proof. It is enough to verify, by direct enumeration of all the possible
arrangements of the points 𝜏 and 𝑡 on the sides Γ, that the kernel function
(10) is bounded. With no loss of generality, we can assume that, for
instance, 𝑡 ∈ 𝑙1 ⇒ 𝛼(𝑡) = 𝑡1 + 𝑡2 − 𝑡. Then, the restrictions on 𝛾 imply
that kernel (10) may be unbounded only when 𝜏 ∈ Γ1. Let us consider
three different cases. For the sake of brevity, we assume that 𝑢 = 𝜏 + 𝑡.

a) 𝜏 ∈ 𝑙1 ⇒ 𝛼(𝜏) = 𝑡1 + 𝑡2 − 𝜏 . Then 𝐾(𝑡, 𝜏) = (𝑢− 𝑡2 − 𝑡3)
−1 + (𝑢−

−𝑡3 − 𝑡4)
−1 + (𝑢 − 𝑡1 − 𝑡4)

−1 − (𝑢 − 𝑡2 − 2𝑡1 + 𝑡3)
−1 − (𝑢 − 2𝑡1 − 2𝑡2 +
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+𝑡3 + 𝑡4)
−1 − (𝑢 − 𝑡1 − 2𝑡2 + 𝑡4)

−1. The sum (10) does not contain the
term (𝑢− 𝑡1 − 𝑡2)

−1, which might be unbounded for such 𝜏 and 𝑡.
b) 𝜏 ∈ 𝑙3 ⇒ 𝛼(𝜏) = 𝑡4 + 𝑡3 − 𝜏 ⇒ 𝐾(𝑡, 𝜏) = 0.
c) 𝜏 ∈ 𝑙2 ⇒ 𝛼(𝜏) = 𝑡2 + 𝑡3 − 𝜏 . Then 𝐾(𝑡, 𝜏) = (𝑢− 𝑡3 − 𝑡4)

−1 + (𝑢−
−𝑡1 − 𝑡4)

−1 − (𝑢 + 𝑡4 − 𝑡1 − 2𝑡2)
−1 − (𝑢 + 𝑡4 − 2𝑡2 − 𝑡3)

−1. The sum (10)
does not contain the “bad” terms (𝑢− 𝑡2 − 𝑡3)

−1 and (𝑢− 𝑡1 − 𝑡2)
−1.

The fourth case, namely 𝑡 ∈ 𝑙4, is similar to case c). This finishes the
proof. �

Corollary. Integral equation (9) has a finite number of solvability condi-
tions.

Assume that these conditions hold. Make the reverse transition from
integral equation (9) to the initial problem (2). In the same manner, as
it is done in [5], we can show that there exists a solution 𝜙(𝑡) of equa-
tion (9) that satisfies conditions (4) and (6). Then (9) ⇒ (𝐴+𝜙) (𝑡) −
− (𝐴+𝜙) (𝛼(𝑡)) = 𝑔+(𝑡) − 𝑔+ [𝛼(𝑡)], i. e., (𝐴𝜙) (𝑧) = 𝑔(𝑧) + 𝐶𝑧, 𝑧 ∈ 𝐷,
because the solution of the Carleman problem (𝐴+𝜑)(𝑡) = (𝐴+𝜑)(𝛼(𝑡))
can only be a constant. The piecewise constant 𝐶𝑧 is constant on each
square and, moreover, 𝐶𝑖𝑧 = −𝑖𝐶𝑧.

Theorem 1. Problem (2) has only a finite number of solvability condi-
tions; namely, the solvability conditions of integral equation (9) and the
additional condition

(𝐴𝜙) (𝑧0) = 𝑔1(𝑧0), (11)

where 𝑧0 ∈ 𝐷1: it ensures the equivalence of the regularization.

Assume that all conditions hold and problem (2) is solvable. The set

𝐻0 =
4⋂︀

𝑗=1

𝐻𝑗 is a square with vertices at the points (𝛾 − 1)(±1 ± 𝑖). The

signs here do not match. Consider a point 𝑧 ∈ 𝐻0. Using the condition of
problem (2) on 𝐷1, we have

𝑓(𝑧) + 𝑓(𝑧 + 1 − 𝑖) + 𝑓(𝑧 + 1 + 𝑖) + 𝑓(𝑧 + 2) = 𝑔1(𝑡1 + 𝑡4 − 𝑧).

In exactly the same manner, using the condition of problem (2) on 𝐷3, we
obtain that 𝑓(𝑧) + 𝑓(𝑧− 2) + 𝑓(𝑧− 1 + 𝑖) + 𝑓(𝑧− 1− 𝑖) = 𝑔3(−𝑡1− 𝑡4− 𝑧).
Computing the sum of the last two equalities, we have

2𝑓(𝑧) + 𝑓(𝑧 + 1 + 𝑖) + 𝑓(𝑧 − 1 − 𝑖) + 𝑓(𝑧 − 1 + 𝑖) + 𝑓(𝑧 − 1 − 𝑖) +

+ 𝑓(𝑧 + 2) + 𝑓(𝑧 − 2) = 𝑔1(𝑡1 + 𝑡4 − 𝑧) + 𝑔3(−𝑡1 − 𝑡4 − 𝑧), 𝑧 ∈ 𝐻0.
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Next, plugging in the conditions of problem (2) on 𝐷2 and 𝐷4, we obtain:

2𝑓(𝑧) + 𝑓(𝑧 + 1 − 𝑖) + 𝑓(𝑧 − 1 − 𝑖) + 𝑓(𝑧 + 1 + 𝑖) + 𝑓(𝑧 + 1 − 𝑖) +

+ 𝑓(𝑧 − 2𝑖) + 𝑓(𝑧 + 𝑧0) = 𝑔2(𝑖𝑡1 + 𝑖𝑡4 − 𝑧) + 𝑔4(−𝑖𝑡1 − 𝑖𝑡4 − 𝑧), 𝑧 ∈ 𝐻0.

Therefore,

𝑓(𝑧 + 2) + 𝑓(𝑧 − 2) − 𝑓(𝑧 + 2𝑖) − 𝑓(𝑧 − 2𝑖) = 𝑔0(𝑧), 𝑧 ∈ 𝐻0, (12)

where

𝑔0(𝑧)= 𝑔1(𝑡1+𝑡4−𝑧)+𝑔3(−𝑡1−𝑡4−𝑧)−𝑔2(𝑖𝑡1+𝑖𝑡4−𝑧)−𝑔4(−𝑖𝑡1−𝑖𝑡4−𝑧). (13)

3. Study of the Fredholm integral equation in some special
cases.

In what follows, we assume that 𝛾 ≥ 0.9. Let us prove that equation (9)
is solvable. Consider the corresponding homogeneous equation:

𝑇𝜙 = 0. (14)

We assume that the operator 𝑇 is defined in the Banach space ̃︀𝐶(Γ). This
is the set of functions continuous on the closure of each side of the square,
with a norm defined in the natural manner, namely

𝑀 = max |𝜙(𝑡)| , 𝑡 ∈ Γ. (15)

At this, the vertices might be, at most, discontinuities of the first kind.
Since 𝐴(𝑡, 𝜏) = 𝐴(𝜏, 𝑡), we have 𝑇 ′ = 𝑇 . We can construct a fundamental
system of solutions (f.s.s.) for equation (14) in such a way that each
function of the system satisfies either condition (6), or the opposite condi-
tion, i. e., 𝜙(𝑡) = 𝜙 [𝛼(𝑡)] (on this matter, see [4]). The solutions that
agree with the last condition, are automatically orthogonal to the right-
hand side of (9), since (6) ⇒ (5).

Lemma 2. The f.s.s. of equation (14) does not contain functions satisfy-
ing condition (6).

Proof. Assume the opposite and, for definiteness, set 𝛾 = 0.9. By virtue
of (6), we can consider the kernel 𝐾1(𝑡, 𝜏) = 2−1 [𝐾(𝑡, 𝜏) −𝐾(𝑡, 𝛼(𝜏))]
instead of kernel (10). Let us estimate the absolute value of the kernel
from above. Owing to the symmetry of Γ, it is enough to consider only
two cases:
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I. The maximum (15) is achieved at some point 𝑡 ∈ ℓ4. Then

𝐴(𝑡, 𝜏) = (𝑢− 2.8 + 𝑖)−1 + (𝑢− 3.8)−1 + (𝑢− 2.8 − 𝑖)−1 + (𝑢− 1.8)−1 ,

𝑢 = 𝜏 + 𝑡; 𝛼(𝑡) = 1.8 − 𝑡, 𝑡 = 0.9 + 𝑖𝑦, 𝑦 ∈ [−0.5; 0.5].

We need to consider four subcases:
1.1. 𝜏 ∈ ℓ1 ⇒ 𝐾(𝑡, 𝜏)=(𝑢− 2.8 − 𝑖)−1+(𝑢− 3.8)−1−(𝑢− 0.8 + 𝑖)−1−

− (𝑢− 1.8 + 2𝑖)−1 ⇒ |𝐾1| ≤ 0.08;
1.2. 𝜏 ∈ ℓ2 ⇒ 𝐾(𝑡, 𝜏) = 0;
1.3. 𝜏 ∈ ℓ3. By virtue of the symmetry, we can affirm that the estimate

|𝐾1| ≤ 0.08 is valid.
1.4. 𝜏 ∈ ℓ4 ⇒ 𝐾(𝑡, 𝜏)=(𝑢− 2.8 + 𝑖)−1+(𝑢− 3.8)−1+(𝑢− 2.8 − 𝑖)−1−

− (𝑢− 0.8 − 𝑖)−1 − (𝑢 + 0.2)−1 − (𝑢− 0.8 + 𝑖)−1 ⇒ |𝐾1| ≤ 0.13.
For 𝜏 ∈ Γ1, the kernel 𝐸(𝑡, 𝜏) contains terms whose integral must

be understood in the sense of Cauchy principal value. But kernel (10)
is bounded. Therefore, kernel (10) is given explicitly (subcases 1.1–1.4).
There are no such terms, when 𝜏 /∈ Γ1, i.e., there is no need to cancel such
terms.

Assume that 𝜏 ∈ Γ2. Denote the lower, right, upper, and left sides of
the square by ℓ𝑗, 𝑗 = 1, 4, respectively. If 𝜏 ∈ ℓ𝑗, then |𝐾1| ≤ 𝐶𝑗, with
𝐶1 = 0.5, 𝐶2 = 0.32, 𝐶3 = 0.15, and 𝐶4 = 0.18.

Suppose that 𝜏 ∈ Γ3. In this case, we obtain 𝐶1 = 𝐶3 = 0.12,
𝐶2 = 0.19, 𝐶4 = 0.08.

The estimates in the case 𝜏 ∈ Γ4 are the same as in the case 𝜏 ∈ Γ2.
Sum out all the numbers, to see that the sum is less than 2𝜋, i.e., 𝜙 ≡ 0.
Thus, we obtain a contradiction if we suppose that the maximum (15) is
achieved at a point 𝑡 ∈ ℓ1.

II. The maximum (15) is achieved at some point 𝑡 ∈ ℓ𝑗, 𝑗 = 1, 3. All
the estimates above can be obtained for this case also and they are, at
least, not worse, since the point in this case is “not closer” to the squares
𝐷𝑗, 𝑗 = 2, 4, compared to case I.

Finally, assume that 𝛾 > 0.9. Then the squares are farther from each
other than in the case we have just considered, and the estimates can only
get better. This finishes the proof of the lemma. �

Remark 1. From the estimates obtained in the proof of Lemma 2, it
follows that the lemma is also valid for some numbers 𝛾 ∈ (0.5, 0.9). In
this paper, however, we do not investigate how low this number 𝛾 can
possibly be.
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Theorem 2. If 𝛾 ≥ 0.9, then problem (2) has the solvability condi-
tion (11), which is unique.

Remark 2. For each function 𝑔(𝑧), we can find a constant 𝐶, such that
problem (2) is unconditionally solvable for ̃︀𝑔1(𝑧) = 𝑔1(𝑧) + 𝐶, 𝑧 ∈ 𝐷1.

4. Applications to the moment problem Now we consider some
applications of problem (2). Let 𝐹 (𝑧) be an entire function of the exponen-
tial type and assume that 𝐹 (𝑧) is an upper function, Borel-associated with
the lower function 𝑓(𝑧) ∈ 𝐵. Its indicator diagram is an octagon 𝐷0 with
vertices ±𝑡2, ±𝑡3, ±𝑖𝑡2, ±𝑖𝑡3 (the signs do not match). Moreover,

𝐹 (𝑖𝑧) = 𝐹 (𝑧). (16)

Now, use equality (3) to rewrite (12) in the form

2

∞∫︁
0

𝐹 (𝑥) exp(−2𝑥) [sh(𝑥𝑧) + sin(𝑥𝑧)] 𝑑𝜏 = 𝑔0(𝑧), 𝑧 ∈ 𝐻0, (17)

in which the second term is defined by (13). Equate the Maclaurin coeffi-
cients of the first and second terms in (17). As a result, we obtain a
Stieltjes moment problem for an entire function of exponential type with
an exponential weight, namely

𝐿 [𝐹, 𝑛] ≡ 4

∞∫︁
0

𝐹 (𝑥) exp(−2𝑥)𝑥4𝑘+1 𝑑𝑥 = 𝑔
(4𝑘+1)
0 (0), 𝑘 = 0,∞.

Since 𝑔
(4𝑘+1)
0 (0) = 4𝑔

(4𝑘+1)
1 (2𝛾), consider the series

𝑔1(𝑧) = 𝛽0 +
∞∑︁
𝑘=1

𝛽𝑘(𝑧 − 2𝛾)𝑘

𝑘!
. (18)

Assume that its convergence radius 𝑅 >
√︀

𝛾2 + 0.25. Choose the coeffi-
cient 𝛽0 in such a way that problem (2) be solvable.

Theorem 3. The moment problem 𝐿 [𝐹, 𝑛] = 𝛽4𝑛+1, 𝑛 = 0, 1, 2, . . ., un-
der the condition

𝑒
√︀
𝛾2 + 0.25 lim

𝑛→∞

4𝑛+1
√︀
𝛽4𝑛+1

4𝑛 + 1
< 1
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is solvable in the class of entire functions 𝐹 (𝑧) that are of the exponential
type, satisfy condition (16) holds, and are Borel-associated with the lower
function 𝑓(𝑧) ∈ 𝐵.

Proof. Construct nontrivial solutions to the homogeneous problem
𝐿 [𝐹, 𝑛] = 0. It is enough to suppose that 𝛽𝑛 ̸= 0 in (18) for some
𝑛 > 0 and 𝛽4𝑛+1 = 0 for any 𝑛. �

Remark 3. Nontrivial solutions were constructed in [6] for the homoge-
neous lacunary moment problem

∞∫︁
0

𝐹 (𝑥) exp(−𝑥)𝑥4𝑛+3 𝑑𝑥 = 0, 𝑛 = 0, 1, 2, . . . ,

in the class of entire functions 𝐹 (𝑧) of the exponential type that satisfy
condition (16). However, their indicator diagram is a square.

Remark 4. The conjugated indicator diagram may not be the octagon
𝐷0, but some “smaller” convex set 𝐷′

0 ⊂ 𝐷0. However, this case is not
interesting. Then problem (2) is overdetermined. Condition (2) holds not
only for 𝑧 ∈ 𝐷, but also in some neighborhood of infinity. A necessary (but
not sufficient!) condition for this is the possibility of analytical continua-
tion of 𝑔1(𝑧) from 𝐷1 to some neighborhood of infinity, with 𝑔1(∞) = 0.
See [7], [8] for more details on this case.
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