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ON THE PROBLEM OF MEAN PERIODIC EXTENSION

Abstract. This paper is devoted to a study of the following version
of the mean periodic extension problem:

(i) Suppose that 𝑇 ∈ ℰ ′(R𝑛), 𝑛 ≥ 2, and 𝐸 is a non-empty
subset of R𝑛. Let 𝑓 ∈ 𝐶(𝐸). What conditions guarantee that
there is an 𝐹 ∈ 𝐶(R𝑛) coinciding with 𝑓 on 𝐸, such that 𝐹 *𝑇 = 0
in R𝑛?

(ii) If such an extension 𝐹 exists, then estimate the growth of
𝐹 at infinity.

In this paper, we present a solution of this problem for a broad
class of distributions 𝑇 in the case when 𝐸 is a segment in R𝑛.
Key words: convolution equation, mean periodicity, continuous
extension, spherical transform
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1. Introduction. Let R𝑛 be the real Euclidean space of dimension
𝑛 with Euclidean norm |·|. By 𝒟′(𝒪) (respectively, ℰ ′(𝒪)), we denote
the space of distributions (respectively, the space of compactly supported
distributions) on a domain 𝒪 ⊂ R𝑛, and by 𝒟(𝒪), the space of compactly
supported infinitely differentiable functions on 𝒪. Given 𝑇 ∈ ℰ ′(R𝑛), we
denote the support of 𝑇 by supp 𝑇 , and put

𝒪𝑇 = {𝑥 ∈ R𝑛 : 𝑥− 𝑦 ∈ 𝒪 for each 𝑦 ∈ supp 𝑇}.

If 𝒪𝑇 ̸= ∅, then, for any 𝑓 ∈ 𝒟′(𝒪), the convolution 𝑓 * 𝑇 is defined on
𝒪𝑇 by the formula

⟨𝑓 * 𝑇, 𝜙⟩ = ⟨𝑓𝑦, ⟨𝑇𝑥, 𝜙(𝑥 + 𝑦)⟩⟩ , 𝜙 ∈ 𝒟(𝒪𝑇 )

(the subscripts of 𝑓 and 𝑇 mean the action with respect to the variable
indicated). We set

𝒟′
𝑇 (𝒪) = {𝑓 ∈ 𝒟′(𝒪) : 𝑓 * 𝑇 = 0 in 𝒪𝑇}
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in the case where 𝒪𝑇 ̸= ∅, and let 𝒟′
𝑇 (𝒪) = 𝒟′(𝒪) if 𝒪𝑇 = ∅.

Distributions from the class 𝒟′
𝑇 (𝒪) are said to be mean periodic in 𝒪

with respect to 𝑇 . If M(𝒪) is a subset of 𝒟′(𝒪), then we denote the inter-
section 𝒟′

𝑇 (𝒪)∩M(𝒪) byM𝑇 (𝒪). For example, 𝐶𝑇 (𝒪) = 𝒟′
𝑇 (𝒪)∩ 𝐶(𝒪).

The general mean periodic extension problem is stated as follows.
Problem 1.

(i) Suppose that 𝑓 ∈ M𝑇 (𝒪) and a domain 𝒪1 contains 𝒪. Under what
conditions does there exist an 𝐹 ∈ M𝑇 (𝒪1) coinciding with 𝑓 on 𝒪?

(ii) If such an extension 𝐹 exists, is it unique?

Even the one-dimensional case of Problem 1 is profound and deeply re-
lated to various branches of analysis. It was studied by J.-P. Kahan,
V. D. Golovin, A. F. Leont’ev, A. M. Sedletskii, and other authors (see
[3], [5] – [10] and the references therein). The answer to Problem 1 (ii) is
positive for every 𝑇 ∈ ℰ ′(R) by Titchmarsh’s support theorem (see [2, The-
orem 4.3.3] as well as [3, Chapter 5, Section 1], [7, Part 3, Chapter 1, The-
orem 1.1]. The answer to Problem 1 (i) depends essentially on properties
of 𝑇 related to the distribution of zeros of its Fourier transform, that is,
the entire function

̂︀𝑇 (𝑧) =
⟨︀
𝑇, 𝑒−𝑖𝑧𝑡

⟩︀
, 𝑧 ∈ C.

The strongest results in this direction for the classes 𝒟′
𝑇 and 𝐶∞

𝑇 were
obtained by the first author ( [7, Part 3]). In particular, the extension
in Problem 1 (i) for these classes was shown to exist under the following
conditions.

(a)

𝑠𝑢𝑝
𝜆∈𝑍(̂︀𝑇 )

|Im𝜆|
ln(2 + |𝜆|)

< +∞,

where 𝒵(̂︀𝑇 ) = {𝑧 ∈ C : ̂︀𝑇 (𝑧) = 0}.
(b) The sequence of multiplicities 𝑚𝜆 of the zeros 𝜆 ∈ 𝒵(̂︀𝑇 ) is bounded.
(c) For every 𝜆 ∈ 𝒵(̂︀𝑇 ) we have

𝑚𝜆−1∑︁
𝑗=0

⃒⃒⃒⃒
⃒⃒ 1

𝑗!

(︃
(𝑧 − 𝜆)𝑚𝜆̂︀𝑇 (𝜆)

)︃(𝑗)
⃒⃒⃒⃒
⃒⃒
𝑧=𝜆

⃒⃒⃒⃒
⃒⃒ ≤ (2 + |𝜆|)𝛾,

where the constant 𝛾 > 0 is independent of 𝜆.
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We point out that the set of distributions 𝑇 ∈ ℰ ′(R𝑛) satisfying condi-
tions (a)–(c) is quite large and contains many of the distributions used in
applications ( [7, Part 3]). On the other hand, there are examples of dis-
tributions 𝑇 ∈ ℰ ′(R) for which any two of the conditions (a) – (c) hold but
the third fails. The question of the necessity and unimprovability of these
conditions in extension theorems was studied in [10]. First, the counter-
examples showing that condition (a) is unimprovable and (c) is necessary,
were constructed (see [10, Theorems 3, 5]). Second, condition (b) can be
weakened as follows:

𝑠𝑢𝑝
𝜆∈𝑍(̂︀𝑇 )

𝑚𝜆

ln(2 + |𝜆|)
< +∞,

and this estimate is already unimprovable even if the extension in not
required to be mean periodic (see [10, Theorems 1, 2, 4]). Finally, the
investigation of the one-dimensional case in [10] contains a result on non-
existence of a continuous extension of a continuous mean periodic function
for which 𝑚𝜆 grows faster than |Im𝜆| (see [10, Theorem 6]).

Some results on the possibility of a mean periodic extension of func-
tions from the classes 𝐶 and 𝐿𝑝 for distributions 𝑇 of the form

⟨𝑇, 𝜙⟩ =

𝑟∫︁
−𝑟

𝜙(𝑡) 𝑑𝜎(𝑡), 𝜙 ∈ 𝒟(R),

where 𝜎 is a function of bounded variation on [−𝑟, 𝑟] with a jump at one
of the points ±𝑟, were obtained in [3, Chapter 5], [5]. The presence of
jumps of 𝜎 at the points ±𝑟 imposes a number of constraints on the zeros
of ̂︀𝑇 . Among them are the following conditions (see [3, Lemma 5.1.1]):

(a) All zeros 𝜆 of the function ̂︀𝑇 are contained in some horizontal strip.
(b) The sequence of multiplicities {𝑚𝜆} of the zeros 𝜆 is bounded.
(c) For any 𝛿 > 0, there exists a constant 𝑐𝛿 > 0, such that

|̂︀𝑇 (𝑧)|≥ 𝑐𝛿𝑒
𝑟|Im 𝑧|

outside disks of radius 𝛿 centered at 𝜆.

The multidimensional case of Problem 1 is more complicated and more
specific. For example, the continuation is not generally unique. This can
be seen from the example of linear hyperbolic differential equations with



On the problem of mean periodic extension 141

constant coefficients. Moreover, when speaking of the existence of an
extension, one must impose additional conditions on 𝑓 (see [10, Propo-
sition 10]). The main results in this direction in dimensions 𝑛 ≥ 2 were
obtained by the authors (see [7] – [10]). This is done using the technique
of transmutation operators related to expansions in eigenfunctions of the
Laplacian (see [8]).

This paper is devoted to a study of the following version of the mean
periodic extension problem.

Problem 2.

(i) Suppose that 𝑇 ∈ ℰ ′(R𝑛), 𝑛 ≥ 2 and 𝐸 is a non-empty subset
of R𝑛. Let 𝑓 ∈ 𝐶(𝐸). What conditions guarantee that there exists
an 𝐹 ∈ 𝐶𝑇 (R𝑛) coinciding with 𝑓 on 𝐸?

(ii) If such an extension 𝐹 does exist, then estimate the growth of 𝐹 at
infinity.

In this paper, we present a solution of Problem 2 for a broad class of
distributions 𝑇 in the case when 𝐸 is a segment in R𝑛 (see Theorem 1
below). The precise statement of the main result is given in the next
section. In Section 3, we prove some auxiliary lemmas. The proof of
Theorem 1 is contained in Section 4.

2. The main results. Throughout, we assume that 𝑛 ≥ 2 and

𝐸 = {𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 : −𝐿 ≤ 𝑥1 ≤ 𝐿, 𝑥2 = . . . = 𝑥𝑛 = 0}

for some 𝐿 > 0. Let 𝑆𝑂(𝑛) be the group of rotations of R𝑛. A distribution
𝑇 ∈ 𝒟′(R𝑛) is said to be radial if

⟨𝑇, 𝜙(𝑥)⟩ = ⟨𝑇, 𝜙(𝜏𝑥)⟩ , 𝜙 ∈ 𝒟(R𝑛)

for all 𝜏 ∈ 𝑆𝑂(𝑛). We write ℰ ′
♮(R𝑛) for the set of all radial distribu-

tions from the class ℰ ′(R𝑛). Given 𝑇 ∈ ℰ ′
♮(R𝑛), we denote the spherical

transform of 𝑇 by ̃︀𝑇 , that is,
̃︀𝑇 (𝑧) = 2

𝑛
2
−1Γ

(︁𝑛
2

)︁⟨
𝑇𝑥,

𝐽𝑛
2
−1(𝑧|𝑥|)

(𝑧|𝑥|)𝑛
2
−1

⟩
, 𝑧 ∈ C

(here, Γ is the gamma-function and 𝐽𝑛
2
−1 is the Bessel function of the first

kind). We set
𝒵(𝑇 ) = {𝑧 ∈ C : ̃︀𝑇 (𝑧) = 0}.
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Let 𝑎 > 0. We say that a distribution 𝑇 from ℰ ′
♮(R𝑛) belongs to 𝒵𝑎 if

there is a sequence {𝜆𝑚}∞𝑚=1 of points in 𝒵(𝑇 ) such that

𝜆𝑚 = 𝑎𝑚 + 𝜀𝑚, 𝑚 = 1, 2, . . . , (1)

where
∞∑︁

𝑚=1

|𝜀𝑚|2< +∞. (2)

We emphasize that for each 𝑎 > 0 the class 𝒵𝑎 is fairly large. It is
often quite easy to verify whether a given distribution 𝑇 belongs to 𝒵𝑎,
using asymptotic expansions of ̃︀𝑇 , which are known under very general
assumptions on 𝑇 (see [4, Chapter 2, Theorem 10.2]). We note also that
if 𝑇 ∈ 𝒵𝑎, then 𝑇 * 𝑈 ∈ 𝒵𝑎 for each 𝑈 ∈ ℰ ′

♮(R𝑛).
For 𝑓 ∈𝐶(𝐸), 𝑇 ∈ℰ ′

♮(R𝑛), let 𝐶𝑇, 𝑓 (R𝑛) denote the set of all 𝐹 ∈𝐶𝑇 (R𝑛)
coinciding with 𝑓 on 𝐸.

Theorem 1. The following assertions are valid.

(i) Let 𝑎 > 0, 𝑇 ∈ 𝒵𝑎, and 𝑓 ∈ 𝐶(𝐸). Then, for each 𝜀 > 0 there is
𝐹 ∈ 𝐶𝑇, 𝑓 (R𝑛), such that

𝐹 (𝑥) = 𝑂
(︀
𝑒𝜀|𝑥2|

)︀
, 𝑥 ∈ R𝑛. (3)

(ii) For each 𝑎 > 0, there is a 𝑇 ∈ 𝒵𝑎 with the following property: if
𝑓 ∈ 𝐶(𝐸), 𝑓 ̸= 0, then for each 𝐹 ∈ 𝐶𝑇, 𝑓 (R𝑛) there is an 𝜀 > 0,
such that

𝑙𝑖𝑚
𝑥→∞

|𝐹 (𝑥)|𝑒−𝜀|𝑥| > 0. (4)

Several remarks are in order here. The proof of assertion (i) shows
(see Section 4) that the function 𝐹 in (i) depends only on 𝑥1 and 𝑥2. It
is unclear whether the condition for 𝑇 in (i) can be relaxed, but it is easy
to see that this condition cannot be removed. For example, if 𝑇 ∈ ℰ ′

♮(R𝑛),
supp 𝑇 = {0}, and 𝒵(𝑇 ) ̸= ∅, then the equation 𝐹 * 𝑇 = 0 is an elliptic
differential equation with constant coefficients. Hence, each solution 𝐹
must be real-analytic in R𝑛, and we see that 𝐶𝑇, 𝑓 (R𝑛) = ∅ if 𝑓 ∈ 𝐶(𝐸) is
not real-analytic in 𝐸. If, in addition, ̃︀𝑇 (𝜆) = ̃︀𝑇 ′(𝜆) = 0 for some 𝜆 ∈ C
and

𝑓(𝑥) = 𝑥1𝑒
𝑖𝜆𝑥1 , 𝑥 ∈ 𝐸,

then the assumption 𝐹 ∈ 𝐶𝑇, 𝑓 (R𝑛) implies that

𝐹 (𝑥1, 0, . . . , 0) = 𝑥1𝑒
𝑖𝜆𝑥1 , 𝑥1 ∈ R.
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In this case, 𝐶𝑇, 𝑓 (R𝑛) ̸= ∅, but condition (3) is not met.
Assertion (ii) shows, in particular, that condition (3) cannot be streng-

then in the general case. However, if all the numbers 𝜆𝑚 in (1) are real,
then (3) can be replaced by

𝐹 (𝑥) = 𝑂(1 + 𝜀|𝑥2|), 𝑥 ∈ R𝑛

(see the proof of (i) in Section 4). This means, in particular, that asser-
tion (ii) is not generally true for each 𝑇 ∈ 𝒵𝑎.

3. Auxiliary results. The following lemmas are needed in the proof
of Theorem 1.

Lemma 1. Let 𝑧1, . . . , 𝑧𝑚 be pairwise different complex numbers. Then,
for all 𝑎 ∈ R, 𝑏 > 𝑎, 𝑐𝑗 ∈ C (𝑗 = 1, . . . ,𝑚), there is a function 𝑔 ∈ 𝐶∞(R)
with a support on [𝑎, 𝑏], such that

̂︀𝑔(𝑧𝑗) =

∞∫︁
−∞

𝑔(𝑡)𝑒−𝑖𝑧𝑗𝑡𝑑𝑡 = 𝑐𝑗, 𝑗 = 1, . . . ,𝑚. (5)

Proof. For brevity, we set

𝜉 =
𝑎 + 𝑏

2
, 𝜂 =

𝑏− 𝑎

2
. (6)

Suppose that 𝑢 ∈ 𝐶∞(R), 𝑢 ̸= 0 and supp𝑢 ⊂ [−𝜂, 𝜂]. Then, for each
𝑁 ∈ Z+, there exists a positive constant 𝛾𝑁 , such that

|̂︀𝑢(𝑧)| ≤ 𝛾𝑁
𝑒𝜂|Im 𝑧|

(1 + |𝑧|)𝑁
for all 𝑧 ∈ C.

Consider the function

𝑣(𝑧) = ̂︀𝑢(𝑧)
𝑚∏︁
𝑗=1

(𝑧 − 𝑧𝑗), 𝑧 ∈ C.

Let {𝑘𝑗}𝑚𝑗=1 be the sequence of multiplicities of the zeros {𝑧𝑗}𝑚𝑗=1 of 𝑣.
Then the function

𝑤(𝑧) =
𝑚∑︁
𝑗=1

𝑐𝑗𝑒
𝑖𝑧𝑗𝜉

𝑘𝑗! 𝑣(𝑧)

(𝑧 − 𝑧𝑗)𝑘𝑗𝑣(𝑘𝑗)(𝑧𝑗)
(7)
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is entire and
𝑤(𝑧𝑗) = 𝑐𝑗𝑒

𝑖𝑧𝑗𝜉, 𝑗 = 1, . . . ,𝑚. (8)

Assume now that |𝑧 − 𝑧𝑗|≥ 1 for all 𝑗. Then⃒⃒⃒⃒
𝑣(𝑧)

(𝑧 − 𝑧𝑗)𝑘𝑗

⃒⃒⃒⃒
≤ |𝑣(𝑧)|≤ 𝛾𝑁

𝑒𝜂|Im 𝑧|

(1 + |𝑧|)𝑁
𝑚∏︁
𝑗=1

|𝑧 − 𝑧𝑗| for all 𝑁 ∈ Z+,

𝑗 = 1, . . . ,𝑚. Together with (7), this shows that for each 𝑁 ∈ Z+ there
exists a constant 𝛾′

𝑁 > 0 such that

|𝑤(𝑧)|≤ 𝛾′
𝑁

𝑒𝜂|Im 𝑧|

(1 + |𝑧|)𝑁
for all 𝑧 ∈ C.

By the classical Paley-Wiener theorem, there exists a function ℎ ∈ 𝐶∞(R),
such that suppℎ ⊂ [−𝜂, 𝜂] and ̂︀ℎ(𝑧) = 𝑤(𝑧). Putting 𝑔(𝑡) = ℎ(𝑡 − 𝜉), we
conclude from (8) and (6) that 𝑔 satisfies the required conditions. �

To continue, for 𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ C𝑛, 𝜁 = (𝜁1, . . . , 𝜁𝑛) ∈ C𝑛, we set

(𝑧, 𝜁) =
𝑛∑︁

𝑗=1

𝑧𝑗𝜁𝑗.

Also, let
𝑆 = {𝑧 ∈ C𝑛 : (𝑧, 𝑧) = 1}, S𝑛−1 = 𝑆 ∩ R𝑛. (9)

Lemma 2. Let 𝑇 ∈ ℰ ′
♮(R𝑛), 𝜆 ∈ C, ̃︀𝑇 (𝜆) = 0, 𝜉 ∈ 𝑆. Then the function

ℎ𝜉(𝑥) = 𝑒𝑖𝜆(𝑥, 𝜉), 𝑥 ∈ R𝑛

is in the class 𝐶∞(R𝑛).

Proof. For each 𝑦 ∈ R𝑛, one has

(ℎ𝜉 * 𝑇 )(𝑦) = ⟨𝑇, ℎ𝜉(−𝑥)⟩ℎ𝜉(𝑦). (10)

Since 𝑇 is radial, we obtain

⟨𝑇, ℎ𝜉(−𝑥)⟩ = ⟨𝑇, ℎ𝜉(−𝜏𝑥)⟩ (11)

for all 𝜏 ∈ 𝑆𝑂(𝑛). Let 𝑑𝜏 be the Haar measure on 𝑆𝑂(𝑛) normalized by∫︀
𝑆𝑂(𝑛)

𝑑𝜏 = 1. Formula (11) ensures that

⟨𝑇, ℎ𝜉(−𝑥)⟩ =

∫︁
𝑆𝑂(𝑛)

⟨𝑇, ℎ𝜉(−𝜏𝑥)⟩ 𝑑𝜏 =

⟨
𝑇,

∫︁
𝑆𝑂(𝑛)

ℎ𝜉(−𝜏𝑥)𝑑𝜏

⟩
. (12)
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Using now [1, Introducion, Section 3.1, formula (9)], we see that∫︁
𝑆𝑂(𝑛)

ℎ𝜉(−𝜏𝑥) 𝑑𝜏 =
1

𝜔𝑛−1

∫︁
S𝑛−1

𝑒−𝑖𝜆(|𝑥|𝜂, 𝜉) 𝑑𝜔(𝜂),

where 𝑑𝜔 is the area measure on S𝑛−1 and

𝜔𝑛−1 =

∫︁
S𝑛−1

𝑑𝜔(𝜂) = 𝑛𝜋
𝑛
2 /Γ

(︁
1 +

𝑛

2

)︁
.

Together with [1, Introducion, Section 3.2, Lemma 3.6], relation (12)
brings us to the formula

⟨𝑇, ℎ𝜉(−𝑥)⟩ = ̃︀𝑇 (𝜆) = 0.

Now, the assertion of Lemma 2 follows from (10). �

4. Proof of the main result. Let us prove assertion (i) of Theo-
rem 1. We start by noting that there is no loss of generality in assuming
that

𝑓(−𝐿, 0, . . . , 0) = 𝑓(𝐿, 0, . . . , 0) = 0 (13)

(otherwise, it is enough to enlarge the number 𝐿 and consider an approp-
riate continuous extension of 𝑓). By the assumption on 𝑇 , there is a
sequence {𝜆𝑚}∞𝑚=1 of points in 𝒵(𝑇 ) satisfying (1) and (2).

According to what has been said above, there exist 𝑑 > 0, 𝑀 > 0, such
that

𝑑 > max

{︂
𝐿

𝜋
,

1

𝑎

}︂
, (14)

and
𝑚 < 𝑑|𝜆𝑚| (15)

for all 𝑚 ∈ N, 𝑚 > 𝑀 . Using (13) and (14), define the function 𝑓1 ∈ 𝐶(R)
by the formula

𝑓1(𝑡) =

{︃
𝑓(𝑡, 0, . . . , 0) if 𝑡 ∈ [−𝐿,𝐿],

0 if 𝑡 /∈ [−𝐿,𝐿].
(16)

Lemma 1 ensures us that there is a function 𝑔 ∈ 𝐶(R), such that
supp 𝑔 ⊂ [𝐿, 𝜋𝑑] and

𝜋𝑑∫︁
−𝜋𝑑

𝑔(𝑡)𝑒−𝑖 𝑘
𝑑
𝑡 𝑑𝑡 = −

𝜋𝑑∫︁
−𝜋𝑑

𝑓1(𝑡)𝑒
−𝑖 𝑘

𝑑
𝑡 𝑑𝑡 (17)
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for all 𝑘 ∈ Z, |𝑘|≤ 2𝑀 . Now define

𝑓2(𝑡) = 𝑓1(𝑡) + 𝑔(𝑡), 𝑡 ∈ R.

Since supp 𝑓1 ⊂ [−𝐿,𝐿] and supp 𝑔 ⊂ [𝐿, 𝜋𝑑], we obtain 𝑓2 = 𝑓1 on
[−𝐿,𝐿]. Owing to (17), the Fourier series of the function 𝑓2 on [−𝜋𝑑, 𝜋𝑑]
has the form

𝑓2(𝑡) =
∑︁

|𝑚|>𝑀

𝑐𝑚𝑒
𝑖𝑚
𝑑
𝑡, (18)

where the sequence 𝑐𝑚 ∈ C satisfies the condition∑︁
|𝑚|>𝑀

|𝑐𝑚|2< +∞.

Relation (2) shows that

𝜀𝑚 → 0 as 𝑚 → +∞. (19)

For 𝑚 > 𝑀 , define
𝜁𝑚 =

𝑚

𝜆𝑚𝑑
.

For 𝑧 ∈ C, 𝑧 ̸= 0, we set
√
𝑧 =

√︀
|𝑧|𝑒𝑖(arg 𝑧)/2, where −𝜋 < arg 𝑧 ≤ 𝜋.

Bearing (19) in mind, we see from (15) and (14) that

√︀
1 − 𝜁2𝑚 =

√︃
1 − 1

(𝑎𝑑)2
+ 𝑂

(︁𝜀𝑚
𝑚

)︁
as 𝑚 → +∞.

Hence,
𝜆𝑚

√︀
1 − 𝜁2𝑚 =

𝑚

𝑑
𝛾 + 𝛿𝑚, 𝑚 > 𝑀, (20)

where
𝛾 =

√︀
(𝑎𝑑)2 − 1, 𝛿𝑚 ∈ C

and
𝛿𝑚 = 𝑂(𝜀𝑚) as 𝑚 → +∞. (21)

Next, for 𝑚 ∈ Z, |𝑚|> 𝑀 define the function ℎ𝑚 ∈ 𝐶∞(R𝑛) by the
formula

ℎ𝑚(𝑥) =

{︃
exp(𝑖𝜆𝑚(𝑥1𝜁𝑚 + 𝑥2

√︀
1 − 𝜁2𝑚)) if 𝑚 > 𝑀,

exp
(︁
−𝑖𝜆−𝑚

(︁
𝑥1𝜁−𝑚 + 𝑥2

√︀
1 − 𝜁2−𝑚

)︁)︁
if 𝑚 < −𝑀.

(22)
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Since (︁
𝜁𝑚,
√︀

1 − 𝜁2𝑚, 0, . . . , 0
)︁
∈ 𝑆

for each 𝑚 > 𝑀 (see (9)), we infer, by the definition of the sequence
{𝜆𝑚}∞𝑚=1 and Lemma 2, that

ℎ𝑚 ∈ 𝐶∞
𝑇 (R𝑛) for all |𝑚|> 𝑀. (23)

For 𝑚 ∈ Z, |𝑚|> 𝑀 , we set

𝜂𝑚 = 𝛿|𝑚| (24)

(see (20)). In view of (15), (20) and (24), relation (22) yields

ℎ𝑚(𝑥) = 𝑒𝑖
𝑚
𝑑
(𝑥1+𝛾𝑥2)𝑒𝑖𝜂𝑚𝑥2 (25)

for all 𝑚 ∈ Z, |𝑚|> 𝑀 .
Let 𝜙 ∈ 𝐶∞(R) be a non-negative function, such that

supp𝜙 ⊂ [−1, 1] and
∫︁
R

𝜙(𝑡)𝑑𝑡 = 1. (26)

Setting 𝜙𝑘(𝑡) = 𝑘𝜙(𝑘𝑡), 𝑘 = 1, 2, . . . we conclude from (26) that

|̂︀𝜙𝑘(𝑢)| ≤ 1 for all 𝑢 ∈ R, (27)

̂︀𝜙𝑘(𝑢) = 𝑂
(︀
|𝑢|−2

)︀
as 𝑢 → ∞, (28)

and
lim
𝑘→∞

̂︀𝜙𝑘(𝑢) = 1 for each 𝑢 ∈ R. (29)

Consider now the sequence of functions

𝐹𝑘(𝑥) =
∑︁

|𝑚|>𝑀

𝑐𝑚̂︀𝜙𝑘

(︁𝑚
𝑑

)︁
ℎ𝑚(𝑥), 𝑥 ∈ R𝑛. (30)

Relations (25), (24), (21) and (28) show that the series in (30) converges
locally uniformly on R𝑛. Bearing (25) in mind, we have

𝐹𝑘(𝑥) = 𝐹𝑘, 1(𝑥) + 𝐹𝑘, 2(𝑥),

where
𝐹𝑘, 1(𝑥) =

∑︁
|𝑚|>𝑀

𝑐𝑚̂︀𝜙𝑘

(︁𝑚
𝑑

)︁
𝑒𝑖

𝑚
𝑑
(𝑥1+𝛾𝑥2),
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𝐹𝑘, 2(𝑥) =
∑︁

|𝑚|>𝑀

𝑐𝑚̂︀𝜙𝑘

(︁𝑚
𝑑

)︁
𝑒𝑖

𝑚
𝑑
(𝑥1+𝛾𝑥2)

(︀
𝑒𝑖𝜂𝑚𝑥2 − 1

)︀
.

Let Φ ∈ 𝐶(R) be 2𝜋𝑑 - periodic and assume that

Φ(𝑡) = 𝑓2(𝑡) for 𝑡 ∈ [−𝜋𝑑, 𝜋𝑑]. (31)

It is easy to verify the relation

𝐹𝑘, 1(𝑥) = (Φ * 𝜙𝑘)(𝑥1 + 𝛾𝑥2) =

∫︁
R

Φ(𝑡)𝜙𝑘(𝑥1 + 𝛾𝑥2 − 𝑡) 𝑑𝑡

(see (18)). This implies that the sequence 𝐹𝑘, 1 converges locally uniformly
on R𝑛 and

lim
𝑘→∞

𝐹𝑘, 1(𝑥) = Φ(𝑥1 + 𝛾𝑥2).

Next, using (27) and the estimate

⃒⃒
𝑒𝑖𝜂𝑚𝑥2 − 1

⃒⃒
=

⃒⃒⃒⃒
⃒

𝜂𝑚𝑥2∫︁
0

𝑒𝑖𝑧 𝑑𝑧

⃒⃒⃒⃒
⃒ ≤ |𝜂𝑚𝑥2|𝑒|𝑥2Im 𝜂𝑚|,

we now get∑︁
|𝑚|>𝑀

⃒⃒⃒
𝑐𝑚̂︀𝜙𝑘

(︁𝑚
𝑑

)︁ (︀
𝑒𝑖𝜂𝑚𝑥2 − 1

)︀⃒⃒⃒
≤ |𝑥2|

∑︁
|𝑚|>𝑀

|𝑐𝑚𝜂𝑚|𝑒|𝑥2Im 𝜂𝑚|.

Hence,
|𝐹𝑘, 2(𝑥)|≤ |𝑥2|𝑒𝜔|𝑥2|

∑︁
|𝑚|>𝑀

(︀
|𝑐𝑚|2+|𝜂𝑚|2

)︀
, (32)

where
𝜔 = max

|𝑚|>𝑀
|Im 𝜂𝑚|.

In addition, the sequence 𝐹𝑘, 2 converges locally uniformly on R𝑛 and

Ψ(𝑥) = lim
𝑘→∞

𝐹𝑘, 2(𝑥) =
∑︁

|𝑚|>𝑀

𝑐𝑚𝑒
𝑖𝑚
𝑑
(𝑥1+𝛾𝑥2)

(︀
𝑒𝑖𝜂𝑚𝑥2 − 1

)︀
(see (29)). Estimate (32) yields

|Ψ(𝑥)|= 𝑂
(︀
|𝑥2|𝑒𝜔|𝑥2|

)︀
, 𝑥 ∈ R𝑛. (33)
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We now define the function 𝐹 ∈ 𝐶(R𝑛) by the formula

𝐹 (𝑥) = Φ(𝑥1 + 𝛾𝑥2) + Ψ(𝑥), 𝑥 ∈ R𝑛.

Together with (30), condition (23) shows that 𝐹𝑘 ∈ 𝐶𝑇 (R𝑛) for each 𝑘,
whence 𝐹 ∈ 𝐶𝑇 (R𝑛). Since Ψ(𝑥) = 0 for 𝑥 ∈ 𝐸, by the definition of 𝑓2
and (31), we obtain 𝐹 = 𝑓 on 𝐸. Using now (33), (21), and (19), we see
that for a sufficiently large 𝑀 , the function 𝐹 is the required extension
of 𝑓 .

Now we prove (ii). Let {𝜀𝑚}∞𝑚=1 be a sequence of positive numbers
satisfying (2). Consider the function

𝑢(𝑧) =
∞∏︁

𝑚=1

(︂
1 − 𝑧2

𝜆2
𝑚

)︂
, 𝑧 ∈ C, (34)

where 𝜆𝑚 = 𝑎𝑚 + 𝑖𝜀𝑚. Setting 𝛼𝑚 = 𝜆𝑚/𝑎, from expansion of function
sin𝜋𝑧
𝜋𝑧

in infinite product, we have

𝑢(𝑎𝑧) =
sin 𝜋𝑧

𝜋𝑧
𝑣(𝑧), 𝑧 /∈ Z, (35)

where

𝑣(𝑧) =
∞∏︁

𝑚=1

(︁
1 − 𝑧2

𝑚2

)︁−1(︁
1 − 𝑧2

𝛼2
𝑚

)︁
.

Let us estimate |𝑣(𝑧)| for the case when

|𝑧 − 𝑙|≥ 1

2
for each 𝑙 ∈ Z. (36)

One has

𝑣(𝑧) =
∞∏︁

𝑚=1

(︁ 𝑚

𝛼𝑚

)︁2(︁
1 − 𝑚− 𝛼𝑚

𝑚− 𝑧

)︁(︁
1 − 𝑚− 𝛼𝑚

𝑚 + 𝑧

)︁
,

so that

ln|𝑣(𝑧)|≤
∞∑︁

𝑚=1

(︂
ln
(︁ 𝑚

𝛼𝑚

)︁2
+ ln

(︂
1+
⃒⃒⃒𝑚− 𝛼𝑚

𝑚− 𝑧

⃒⃒⃒)︂
+ ln

(︂
1+
⃒⃒⃒𝑚− 𝛼𝑚

𝑚 + 𝑧

⃒⃒⃒)︂)︂
.

Using the inequality ln(1 + 𝑡) ≤ 𝑡 for 𝑡 ≥ 0, we infer that

ln|𝑣(𝑧)|≤ 1

𝑎

∞∑︁
𝑚=1

𝜀𝑚

(︂
2

|𝛼𝑚|
+

1

|𝑚− 𝑧|
+

1

|𝑚 + 𝑧|

)︂
≤



150 V. V. Volchkov and Vit. V. Volchkov

≤ 1

𝑎

∞∑︁
𝑚=1

(︂
2𝜀2𝑚 +

1

|𝛼𝑚|2
+

1

|𝑚− 𝑧|2
+

1

|𝑚 + 𝑧|2

)︂
.

Hence, from (36) it follows that

|𝑣(𝑧)|≤ 𝛾1,

where the constant 𝛾1 > 0 is independent of 𝑧. Then, owing to (35) and
the maximum modulus principle,

|𝑢(𝑧)|≤ 𝛾2𝑒
𝜋
𝑎
|Im 𝑧|, 𝑧 ∈ C,

where 𝛾2 > 0 does not depend on 𝑧. Due to the Paley-Wiener theorem
for the spherical transform (see [7, Part 1, Theorem 6.5]), there exists
𝑇 ∈ ℰ ′

♮(R𝑛), such that ̃︀𝑇 = 𝑢. Moreover, from the definition of {𝜆𝑚}∞𝑚=1,
we see that 𝑇 ∈ 𝒵𝑎. We now estimate |̃︀𝑇 ′(𝜆𝑞)| for sufficiently large 𝑞 ∈ N.
Assume that 𝜀𝑞 < 𝑎/8 and |𝑧 − 𝜆𝑞|= 𝑎/8. This yields⃒⃒⃒⃒

1 +
𝑧

𝜆𝑞

⃒⃒⃒⃒
≥ 2 − |𝑧 − 𝜆𝑞|

|𝜆𝑞|
> 1 (37)

and ⃒⃒⃒⃒
|𝑧|
𝑎

− 𝑞

⃒⃒⃒⃒
≥ 1

8
+

𝜀𝑞
𝑎

<
1

4
. (38)

Then, from (34) and (37) it follows that⃒⃒⃒⃒
𝑢(𝑧)

𝑧 − 𝜆𝑞

⃒⃒⃒⃒
=

|𝑧 + 𝜆𝑞|
|𝜆𝑞|2

∞∏︁
𝑚=1
𝑚 ̸=𝑞

⃒⃒⃒⃒
1 − 𝑧2

𝜆2
𝑞

⃒⃒⃒⃒
>

1

|𝜆𝑞|

∞∏︁
𝑚=1
𝑚 ̸=𝑞

⃒⃒⃒⃒
1 − |𝑧|2

(𝑎𝑚)2

⃒⃒⃒⃒
.

Together with (38), this shows that there exist 𝛾3, 𝛾4 > 0, such that⃒⃒⃒⃒
𝑢(𝑧)

𝑧 − 𝜆𝑞

⃒⃒⃒⃒
>

𝛾3
|𝜆𝑞|2

⃒⃒
sin 𝜋

𝑎
|𝑧|
⃒⃒⃒⃒⃒

1 − |𝑧|2
(𝑎𝑞)2

⃒⃒⃒ > 𝛾4
|𝜆𝑞|2

. (39)

Thus,

|̃︀𝑇 ′(𝜆𝑞)|≥ min
|𝑧−𝜆𝑞 |=𝑎

8

⃒⃒⃒⃒
𝑢(𝑧)

𝑧 − 𝜆𝑞

⃒⃒⃒⃒
>

𝛾4
|𝜆𝑞|2

. (40)

Assume now that 𝑓 ∈ 𝐶𝑇, 𝑓 (R𝑛) for some 𝑓 ∈ 𝐶(𝐸), 𝑓 ̸= 0. Using (40)
and the definition of {𝜆𝑚}∞𝑚=1, we see from [7, Part 3, Theorem 3.2] that
condition (4) is true for some 𝜀 > 0. Thus, Theorem 1 is completely
proved.
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