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Abstract. In this paper, we study hypercyclicity on solid Banach
function spaces, and give the characterization for weighted trans-
lation operators to be hypercyclic in terms of weight and aperiodic
functions. Some sufficient and necessary conditions for these oper-
ators to be chaotic are obtained as well.
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1. Introduction and Preliminaries. Hypercyclicity, as an active re-
search topic in mathematics, arises from the invariant closed subset prob-
lem, which is one of the important and significant problems in analysis.
Besides, it is related to some notions of topological dynamics, such as
topological transitivity, topological mixing, linear chaos, and so on. In-
deed, fruitful results and theories appeared during the last four decades.
We refer to these two classic books [2], [10] as monographs on this topic.

Among the works in this direction, H. Salas in [14] gave a concrete
example on `p(Z) by characterizing hypercyclic weighted shifts, which is
very important to motivate researchers to demonstrate some deep results
and construct examples in various cases. Inspired by H. Salas’ work,
the authors of [6], [7] gave some sufficient and necessary conditions for
weighted translation operators to be hypercyclic on the Lebesgue space in
context of homogeneous spaces and locally compact groups.

Recently, the focus was on studying hypercyclicity of operators on
other special function spaces, such as Orlicz spaces; see [8], [9]. In this
note, we consider hypercyclicity on more general spaces, namely, Banach
function spaces, which are Banach spaces of measurable functions. Indeed,
we characterize hypercyclic weighted translation operators on such spaces.
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Also, we give some sufficient and necessary conditions for these operators
to be chaotic, and present some application in Morrey spaces.

First, we recall some preliminaries and definitions of Banach function
spaces, and refer to [3] for a classic monograph. Let X be a topological
space. Denote the set of all Borel measurable complex-valued functions
on X byM0(X).

Definition 1. Let X be a topological space and F be a linear subspace
ofM0(X). If F equipped with a given norm ‖ · ‖F is a Banach space, we
say that F is a Banach function space on X. A Banach function space
(F ,‖ · ‖F) on X is called solid if for each f ∈ F and g ∈ M0(X), the
inequality |g| 6 |f | implies g ∈ F and ‖g‖F 6 ‖f‖F .
Definition 2. Let F be a Banach function space on a topological space
X, and α : X → X be a Borel measurable bijection, whose inverse α−1 is
also Borel measurable. We say that F is α-invariant if f ◦ α±1 ∈ F and
‖f ◦ α±1‖F = ‖f‖F for each f ∈ F .
Example 1. Let G be a locally compact group, a be a fixed element in
G, and Φ be a Young function. Let (LΦ(G),‖ · ‖Φ) be an Orlicz space with
respect to a left Haar measure on G. Define the function αa : G→ G by

αa(x) := ax, (x ∈ G).

Then LΦ(G) is an αa-invariant solid Banach function space on G.
In the following, we recall the definition of hypercyclicity.

Definition 3. Let X be a Banach space. A bounded linear operator
T : X → X is called hypercyclic if there exists an element x ∈ X , such
that the orbit {x, Tx, . . . , T nx, . . .} is dense in X ; here T n denotes the
n-th iterate of T . In this case, x is called a hypercyclic vector.

It is well-known (cf. [10]) that topological transitivity and hypercyclic-
ity are equivalent on X . An operator T is said to be topologically transitive
if for any pair of non-empty open sets U,V in X , there exists n ∈ N, such
that T n(U) ∩ V 6= ∅. Besides, it should be noted that a Banach space
admits a hypercyclic operator if, and only if, it is separable and infinite-
dimensional [1], [4]. So, in this paper, we assume that Banach spaces are
separable and infinite-dimensional. Next, we introduce our setting.

Definition 4. Let X be a topological space and α : X → X be a
Borel measurable bijection, such that its inverse is also Borel measur-
able. Let F be an α-invariant solid Banach function space on X and let
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w : X → (0,∞) be a bounded Borel measurable function (called a weight).
Then, the corresponding (generated) weighted translation operator Tα,w
on F is defined by

Tα,w : F → F , Tα,wf := w · (f ◦ α)

for all f ∈ F .
Easily, one can see that Tα,w is well-defined, and by some calculation,

for each n ∈ N and f ∈ F , we have

T nα,wf =
( n−1∏
j=0

w ◦ αj
)
· (f ◦ αn)

where αn means n-fold combination of α. If 1
w
is also bounded, then Tα,w

is invertible and we denote its inverse by Sα,w := T−1
α,w.

In order to pursue our goal, one more concept is required.

Definition 5. Let X be a topological space, and α : X → X be a Borel
measurable bijection, such that its inverse is also Borel measurable. Then
α is called aperiodic if for each compact subset K of X there exists a
constant N > 0, such that for each n > N , K ∩ α±n(K) = ∅.

Example 2. Aperiodicity of elements of a locally compact group G was
defined originally in [11]. In fact, an element a ∈ G is called compact
in [11]) if the closed subgroup of G generated by a is compact, and any
non-compact element of G is called aperiodic in [7]. Let G be a second
countable locally compact group; fix an element a ∈ G. As in Example 1,
define the function αa : G → G by αa(x) := ax for all x ∈ G. Then, by
the characterization given in [7, Lemma 2.1], αa is an aperiodic function
if, and only if, a is an aperiodic element of G. We note (see [7]) that in
many familiar non-discrete groups, including the additive group Rd, the
Heisenberg group and the affine group, all elements except the identity
are aperiodic. Therefore, one can construct many aperiodic functions α
on various groups.

2. Main Results. In this section, we will provide and demonstrate
the main results. We denote by χE the characteristic function of E. To re-
mind ourselves of all the required conditions and properties on the Banach
function space F , we collect them below.

Definition 6. Let X be a topological space, F be a Banach function
space on X, and α be a Borel measurable bijection from X onto X, such
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that α−1 is also Borel measurable. Let Fbc be the set of all bounded
compactly supported functions in F . We say that F satisfies condition
Ωα if

1) F is solid and α-invariant;
2) for each compact set E ⊆ X, we have χE ∈ F ;
3) Fbc is dense in F .

Example 3. Let G be a locally compact group, a be a fixed element in G
and αa be the mapping given in Example 1. Let Φ be a ∆2-regular Young
function. Then the Orlicz space LΦ(G) satisfies condition Ωαa . We recall
that a Young function Φ is called ∆2-regular if there are some constants
c > 0 and x0 > 0, such that Φ(2x) 6 cΦ(x) for all x > x0.

Now we are ready to give the main results of this paper.

Theorem 1. Let X be a topological space and α be an aperiodic func-
tion on X. Let w be a given weight on X, and 1

w
be bounded. Let F be a

Banach function space on X satisfying condition Ωα. Then the following
properties are equivalent.

(i) Tα,w is hypercyclic on F .
(ii) For each compact subset K of X, there are a sequence of Borel

subsets (Ek)
∞
k=1 of K, and a strictly increasing sequence of natural

numbers (nk)
∞
k=1, such that limk→∞ ‖χK\Ek

‖F = 0 and

lim
k→∞

sup
x∈Ek

nk−1∏
j=0

(
(w ◦ αj)(x)

)−1
= lim

k→∞
sup
x∈Ek

nk∏
j=1

(w ◦ α−j)(x) = 0.

Proof. (i) ⇒ (ii). Suppose that Tα,w is hypercyclic, and K ⊆ X is
compact. Then, by the condition (2) of Definition 6, we have χK ∈ F .
Since α is an aperiodic function, there exists a constant M > 0, such that
for each n >M ,

K ∩ α±n(K) = ∅. (1)

Since Tα,w is hypercyclic, the set of all hypercyclic vectors of Tα,w is dense
in F . So, for each k ∈ N, there is a hypercyclic vector fk in F , such that

‖fk − χK‖F 6
1

4k
. (2)

Due to the fact that fk is a hypercyclic vector, there is a natural number
nk, such that

‖T nk
α,wfk − χK‖F <

1

4k
. (3)



Chaotic and Hypercyclic Operators on Solid Spaces 87

We can suppose that n1 > M , and the sequence (nk)
∞
k=1 is strictly increas-

ing. Put Ak := {x ∈ K : |fk(x) − 1| > 1
2k
}. Then, for each x ∈ K \ Ak,

we have
1− |fk(x)| 6 |fk(x)− 1| < 1

2k
,

and so, 0 < 1− 1
2k
< |fk(x)|. Thus,

‖χAk
fk − χAk

‖F 6 ‖fk − χK‖F 6
1

4k
(4)

which is implied by the fact that fk − χK ∈ F , the solidity of F , and

|χAk
fk − χAk

| = |χAk
fk − χAk

χK | = χAk
|fk − χK | 6 |fk − χK |.

Moreover, ∣∣∣ 1

2k
χAk

∣∣∣ 6 |χAk
fk − χAk

|,

which entails ∥∥∥ 1

2k
χAk

∥∥∥
F
6 ‖χAk

fk − χAk
‖F . (5)

By (4) and (5), we have ‖χAk
‖F 6 1

2k
. Now, we put Bk := {x ∈ X \K :

|fk(x)| > 1
2k
}. Then, for each x ∈ X \ (K ∪ Bk), we have |fk(x)| < 1

2k
.

Also, since Bk ∩K = ∅, we have

|χBk
fk| = |χBk

fk − χBk∩K | = |χBk
· (fk − χK)| =

= χBk
|fk − χK | 6 |fk − χK |,

which implies χBfk ∈ F by solidity of F . Therefore,

‖χBk
fk‖F 6 ‖fk − χK‖F 6

1

4k
. (6)

Besides, by the definition of Bk, we have 0 6 1
2k
χBk
6 χBk

|fk|. So,∥∥∥ 1

2k
χBk

∥∥∥
F
6 ‖χBk

fk‖F . (7)

Using (6) and (7), we have ‖χBk
‖F 6 1

2k
. On the other hand, for all k ∈ N,
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1

4k
>
∥∥T nk

α,wfk − χK
∥∥
F =

∥∥∥( nk−1∏
j=0

w ◦ αj
)
· (fk ◦ αnk)− χK

∥∥∥
F

=

=
∥∥∥( nk−1∏

j=0

w ◦ αj ◦ α−nk

)
fk −

(
χK ◦ α−nk

) ∥∥∥
F

=

=
∥∥∥( nk∏

j=1

w ◦ α−j
)
fk −

(
χK ◦ α−nk

) ∥∥∥
F
.

For each k ∈ N, put

Ck :=
{
x ∈ K :

∣∣∣( nk−1∏
j=0

(w ◦ αj)(x)
)
· (fk ◦ αnk) (x)− 1

∣∣∣ > 1

2k

}
.

Then, by (3) and the solidity of F , we have

1

4k
>
∥∥∥( nk−1∏

j=0

w ◦ αj
)
· (fk ◦ αnk)− χK

∥∥∥
F
>

>
∥∥∥χCk

( nk−1∏
j=0

w ◦ αj
)
· (fk ◦ αnk)− χCk

∥∥∥
F
>
∥∥∥ 1

2k
χCk

∥∥∥
F

=
1

2k
‖χCk

‖F

which says ‖χCk
‖F <

1
2k
. Next, set

Dk :=
{
x ∈ K :

( nk∏
j=1

(w ◦ α−j)(x)
)
· |fk(x)| > 1

2k

}
.

If x /∈ K, then clearly, χDk
(x).χK (α−nk(x)) = 0. Let x ∈ K. By ape-

riodicity of α, one has α−nk(K) ∩ K = ∅, and so α−nk(x) /∈ K. Hence
χDk

(x).χK (α−nk(x)) = 0. Together with (3), this imply

1

4k
>
∥∥∥( nk∏

j=1

w ◦ α−j
)
fk −

(
χK ◦ α−nk

) ∥∥∥
F

=
∥∥∥χDk

( nk∏
j=1

w ◦ α−j
)
fk

∥∥∥
F
>

>
∥∥∥ 1

2k
χDk

∥∥∥
F

=
1

2k
‖χDk

‖F

which implies ‖χDk
‖F< 1

2k
.
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Next, we show that for each x ∈ K \ (Ck ∪ α−nk(Bk)),

( nk−1∏
j=0

w ◦ αj(x)
)−1

6
|fk ◦ αnk(x)|

1− 1
2k

<
1
2k

1− 1
2k

=
1

2k − 1
. (8)

If x ∈ K \ (Ck ∪ α−nk(Bk)), then x ∈ K, x /∈ Ck and αnk(x) /∈ Bk. Since
αnk(K)

⋂
K = ∅ and x ∈ K, we have αnk(x) ∈ X \ K. Applying the

definition of Bk, we have the following estimate:

|(fk ◦ αnk) (x)| = |fk (αnk(x))| < 1

2k
,

and so,

|(fk ◦ αnk)(x)|
1− 1

2k

<
1
2k

1− 1
2k

. (9)

Moreover, since x /∈ Ck, by the definition of Ck, one has

1−
( nk−1∏

j=0

(w ◦ αj)(x)
)
|(fk ◦ αnk)(x)| < 1

2k

which says

( nk−1∏
j=0

(w ◦ αj)(x)
)−1

6
|fk ◦ αnk(x)|

1− 1
2k

. (10)

Now, (8) can be immediately deduced from (9) and (10).
On the other hand, we are going to show that

nk∏
j=1

(w ◦ α−j)(x) <
1
2k

|fk(x)|
<

1

2k − 1
, x ∈ K \ (Dk ∪ Ak) . (11)

With this aim, assume that x ∈ K \ (Dk

⋃
Ak). Then |fk(x)| > 1− 1

2k
by

the definition of Ak. Hence,

1
2k

|fk(x)|
<

1
2k

1− 1
2k

. (12)
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Also, by the definition of Dk, we have( nk∏
j=1

(w ◦ α−j)(x)
)
|fk(x)| < 1

2k
,

and so
m∏
j=1

(w ◦ α−j)(x) <
1
2k

|fk(x)|
. (13)

Hence, one can obtain (11) by (12) and (13). Now, put

Ek =K \
(
Ak ∪ α−nk(Bk) ∪ Ck ∪Dk

)
We claim that ∥∥χK\Ek

∥∥
F <

4

2k
.

Indeed, since
χK\Ek

6 χAk
⋃
α−nk (B)

⋃
Ck

⋃
Dk
,

we have∥∥χK\Ek

∥∥
F 6 ‖χAk

‖F +
∥∥χα−nk (Bk)

∥∥
F + ‖χCk

‖F + ‖χDk
‖F =

= ‖χAk
‖F + ‖χBk

‖F + ‖χCk
‖F + ‖χDk

‖F <
4

2k
.

Moreover, using (8) and (11), for each x ∈ Ek, we have

( nk−1∏
j=0

(w ◦ αj)(x)
)−1

6
1

2k − 1
and

nk∏
j=1

(w ◦ α−j)(x) 6
1

2k − 1
.

Therefore, condition (ii) follows.
(ii) ⇒ (i). Assume that condition (ii) holds. We are going to show

that Tα,w is topologically transitive. For this, let U and V be non-empty
open subsets of F . Since Fbc is dense in F , there are functions f, g ∈ Fbc,
such that f ∈ U and g ∈ V . Put

K := supp(f)
⋃

supp(g).

Then K is compact. Since α is aperiodic, there is a constant M > 0 such
that for each n >M , K∩α±n(K) = ∅. Besides, for the set K, there are a
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sequence of Borel subsets (Ek)
∞
k=1 of K, and a strictly increasing sequence

of natural numbers (nk)
∞
k=1 satisfying condition (ii). Here we may assume

nk > M for each k ∈ N. Thus,

∥∥∥T nk
α,w(fχEk

)
∥∥∥
F

=
∥∥∥( nk−1∏

j=0

(w ◦ αj)
)
· (fχEk

) ◦ αnk

∥∥∥
F

=

=
∥∥∥( nk∏

j=1

(w ◦ α−j)
)
· (fχEk

)
∥∥∥
F
6 ‖f‖F · sup

x∈Ek

nk∏
j=1

(w ◦ α−j)(x)

for each k ∈ N. Hence, by condition (ii),

lim
k→∞

∥∥T nk
α,w(fχEk

)
∥∥
F = 0. (14)

Similarly,
lim
k→∞

∥∥Snk
α,w(gχEk

)
∥∥
F = 0. (15)

For each k ∈ N, let
vk := fχEk

+ Snk
α,w(gχEk

).

Then, vk ∈ F and, for each k ∈ N, we have

‖vk − f‖F 6 ‖f − fχEk
‖F +

∥∥Snk
α,w(gχEk

)
∥∥
F =

= ‖f · χK\Ek
‖F +

∥∥Snk
α,w(gχEk

)
∥∥
F 6

6 ‖f‖sup‖χK\Ek
‖F +

∥∥Snk
α,w(gχEk

)
∥∥
F .

So, lim
k→∞

vk = f in F . Also, by (14), we have lim
k→∞

T nk
α,wvk = g in F , which

is implied by the inequalities |g| (1− χEk
) 6 |g|χK\Ek

and

‖T nk
α,wvk − g‖F = ‖T nk

α,w(fχEk
) + gχEk

− g‖F 6
6 ‖T nk

α,w(fχEk
)‖F + ‖g‖sup ‖χK\Ek

‖F .

Therefore, U ∩ T−nk(V ) 6= ∅. This implies that Tα,w is topologically
transitive, and the proof is complete. �

In the following, we give some sufficient and necessary conditions for a
weighted translation to be chaotic. First we recall the definition of chaos.

Definition 7. Let X be a Banach space, and T be a bounded linear
operator on X . A vector x ∈ X is called a periodic element of T if there
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exists a constant N ∈ N, such that TNx = x. The set of all periodic
elements of T is denoted by P(T ). An operator T is called chaotic if it is
topologically transitive and P(T ) is dense in X .

Theorem 2. Let X be a topological space, α be a Borel measurable
bijection from X onto X, such that α−1 is also Borel measurable, and let
w be a weight on X. Let F be a Banach function space on X satisfying
condition Ωα. Assume that for each compact subset E ⊆ X, there exists
a sequence of Borel subsets (Ek)

∞
k=1 of K, such that lim

k→∞
‖χK\Ek

‖F = 0

and

lim
k−→∞

( ∞∑
l=1

∥∥∥( lnk∏
j=1

w ◦ α−j
)
· χEk

∥∥∥
F

+

+
∞∑
l=1

∥∥∥( lnk−1∏
j=0

w ◦ αj
)−1

· χEk

∥∥∥
F

)
= 0,

for some strictly increasing sequence (nk)
∞
k=1 ⊆ N. Then Tα,w is chaotic

on F .

Proof. First we show that Tα,w is topologically transitive. Let U and V be
non-empty open subsets of F . We prove that there exists a number n ∈ N,
such that T nα,w(U) ∩ V 6= ∅. Since Fbc is dense in F , there are functions
f , g, such that f ∈ U ∩Fbc and g ∈ V ∩Fbc. Put K := supp(f)∪ supp(g).
So, K is compact. Then we can pick an increasing sequence (nk) ⊆ N
and a sequence of subsets (Ek) of K satisfying the assumptions of the
statement. Due to the inequality

‖T nk
α,w(fχEk

)‖F =
∥∥∥( nk−1∏

j=0

w ◦ αj
)
· (fχEk

) ◦ αnk

∥∥∥
F

=

=
∥∥∥( nk∏

j=1

w ◦ α−j
)
· (fχEk

)
∥∥∥
F
6

6 ‖f‖sup

∥∥∥( nk∏
j=1

w ◦ α−j
)
· χEk

∥∥∥
F
,

one has lim
k→∞

T nk
α,w(fχEk

) = 0 in F . Similar to the above argument, we
can see that lim

k→∞
Snk
α,w(gχEk

) = 0 in F . (Note that in this theorem, it is
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not necessary to assume that 1
w

is bounded. This is because here f and
g are compactly supported.) Therefore, together with lim

k→∞
‖χK\Ek

‖F = 0,
we have

lim
k→∞

(Snk
α,w(gχEk

) + fχEk
) = f and lim

k→∞
T nk
α,w(Snk

α,w(gχEk
) + fχEk

) = g.

This implies that T nk
α,w(U) ∩ V 6= ∅ for some k ∈ N, which tells us that

Tα,w is topologically transitive.
Next, we prove that P(Tα,w) is dense in F . Recall that f ∈ U ∩ Fbc.

For each k ∈ N, let

vk := fχEk
+
∞∑
l=1

T lnk
α,w(fχEk

) +
∞∑
l=1

Slnk
α,w(fχEk

).

Note that the series
∞∑
l=1

T lnk
α,w(fχEk

) is convergent in F because it is abso-

lutely convergent. Indeed,

∞∑
l=1

‖T lnk
α,w(fχEk

)‖F 6 ‖f‖sup

∞∑
l=1

∥∥∥( lnk∏
j=0

w ◦ α−j
)
· χEk

∥∥∥
F
<∞.

Similarly,
∞∑
l=1

Slnk
α,w(fχEk

) is convergent in F , too. Using lim
k→∞
‖χK\Ek

‖F=0,

we have lim
k→∞

vk=f in F . In addition, a simple calculation gives T nk
α,wvk=vk.

This implies that U ∩P (Tα,w) 6=∅. Therefore, P(Tα,w) is dense in F . �

Example 4. Let 1 6 q 6 p < ∞. Let f ∈ Lqloc(Rn). Then its Morrey
norm is defined by

‖f‖Mp
q

:= sup
(x, r)∈Rn×(0,∞)

|B(x, r)|
1
p
− 1

q

(∫
B(x, r)

|f(y)|qdy
) 1

q
, (16)

where B(x, r) is the open ball centered by x with radius r. In this case, the
set of all Lqloc(Rn)-functions f with ‖f‖Mp

q
< ∞ is denoted by Mp

q(Rn),
and (Mp

q(Rn),‖ · ‖Mp
q
) is called a Morrey space. Morrey spaces are gene-

ralizations of the usual Lebesgue spaces. In fact, for each 1 6 p < ∞,
we haveMp

p(Rn) = Lp(Rn). Morrey spaces were introduced by J. Peetre
in [13], which was originally motivated by [12]. For more details and
references, see [15–17]. For each 1 6 q < p < ∞, the Morrey space
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Mp
q(Rn) is not separable. However, if we consider theMp

q(Rn)-closure of
L∞c (Rn)∩Mp

q(Rn), denoted by M̃p
q(Rn), then the Banach space M̃p

q(Rn) is
separable and infinite-dimensional, where L∞c (Rn) is the set of all functions
in L∞(Rn) with compact support. Also, for each 1 6 q < p <∞, the set
M̃p

q(Rn) \ Lp(Rn) is spaceable and large enough (see [5, Theorem 2.2]).
Note that a subset S of a topological vector space X is called spaceable if
S ∪ {0} contains a closed infinite-dimensional subspace of X.

As we mentioned in Example 1, for each non-zero element a ∈ Rn, the
function αa defined by αa(x) := x− a for all x ∈ Rn is an aperiodic func-
tion. Therefore, by the above facts, the Banach space M̃p

q(Rn) satisfies the
condition Ωαa , because the Lebesgue measure on Rn is additive-invariant.

Applying Theorem 2 and Example 4, we can conclude the following
result for Morrey spaces.

Corollary 1. Let w be a weight on Rn, and let a ∈ Rn be a non-zero
element. Assume that for each compact subset K ⊆ Rn, there exists a
sequence of Borel subsets (Ek)

∞
k=1 of K, such that lim

k→∞
‖χK\Ek

‖Mp
q

= 0

and

lim
k−→∞

( ∞∑
l=1

∥∥∥( lnk∏
j=1

w(· − ja)
)
· χEk

∥∥∥
Mp

q

+

+
∞∑
l=1

∥∥∥( lnk−1∏
j=0

w(·+ ja)
)−1

· χEk

∥∥∥
Mp

q

)
= 0,

for some strictly increasing sequence (nk)
∞
k=1 ⊆ N. Then Tα,w is chaotic

on M̃p
q(Rn).

We end this paper by giving a necessary condition for chaos under one
more assumption. For each f ∈ F , let σ(f) := {x ∈ X : f(x) 6= 0}.
In Theorem 3, we assume that there exists a constant p > 0, such that
‖f + g‖pF = ‖f‖pF +‖g‖pF whenever f, g ∈ F and σ(f)∩σ(g) = ∅. In fact,
this property appears in many familiar Banach spaces.

Theorem 3. Let X be a topological space, α be an aperiodic func-
tion from X onto X, and let w be a weight on X. Let F be a Banach
function space on X satisfying condition Ωα and the additional condition
above. Assume that Tα,w is chaotic on F . Then, for each compact subset
K ⊆ X, there exists a sequence of Borel subsets (Ek)

∞
k=1 of K, such that
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lim
k→∞
‖χK\Ek

‖F = 0 and

lim
k→∞

( ∞∑
l=1

∥∥∥( lnk∏
j=1

w ◦ α−j
)
· χEk

∥∥∥p
F

+

+
∞∑
l=1

∥∥∥( lnk−1∏
j=0

w ◦ αj
)−1

· χEk

∥∥∥p
F

)
= 0,

for some strictly increasing sequence (nk)
∞
k=1 ⊆ N.

Proof. Suppose that Tα,w is chaotic and K ⊆ X is compact. Then, by
the condition Ωα, we have χK ∈ F . Since α is an aperiodic function, there
exists a constant M > 0, such that for each n >M ,

K ∩ α±n(K) = ∅. (17)

For each k ∈ N, by the density of periodic elements of Tα,w, there exists
fk ∈ P(Tα,w), such that T nk

α,wfk = fk = Snk
α,wfk and

‖fk − χK‖F <
1

4k
(18)

where we may assume that n1 > M , and (nk)
∞
k=1 is strictly increasing. Put

Ak := {x ∈ K : |fk(x)− 1| > 1
2k
}. Then, as in the proof of Theorem 1, we

have
|fk(x)| > 1− 1

2k
on K \ Ak, and ‖χAk

‖F <
1

2k
.

Let Ek = K \ Ak. Then

‖χK\Ek
‖F = ‖χAk

‖F <
1

2k
.

On the other hand, by the fact K ∩ α±nk(K) = ∅, we observe∣∣∣χ⋃∞
l=1(α−lnk (K)∪αlnk (K))fk

∣∣∣ =

=
∣∣∣χ⋃∞

l=1(α−lnk (K)∪αlnk (K))fk − χ⋃∞
l=1(α−lnk (K)∪αlnk (K))χK

∣∣∣ =

= χ⋃∞
l=1(α−lnk (K)∪αlnk (K))|fk − χK | 6 |fk − χK |.

It follows that ∥∥∥χ⋃∞
l=1(α−lnk (K)∪αlnk (K))fk

∥∥∥
F
6 ‖fk − χK‖F .
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Hence, by α-invariance, and the disjointness of αrnk(K) and αsnk(K) for
r 6= s, we get

1

4kp
>
∥∥∥χ⋃∞

l=1(α−lnk (K)∪αlnk (K))fk

∥∥∥p
F

=
∥∥∥ ∞∑
l=1

χα−lnk (K)fk+
∞∑
l=1

χαlnk (K)fk

∥∥∥p
F

=

=
∞∑
l=1

∥∥χα−lnk (K)fk
∥∥p
F

+
∞∑
l=1

∥∥χαlnk (K)fk
∥∥p
F

=

=
∞∑
l=1

∥∥χK(fk ◦ α−lnk)
∥∥p
F +

∞∑
l=1

∥∥χK(fk ◦ αlnk)
∥∥p
F =

=
∞∑
l=1

∥∥χK((T lnk
α,wfk) ◦ α−lnk)

∥∥p
F +

∞∑
l=1

∥∥χK((Slnk
α,wfk) ◦ αlnk)

∥∥p
F =

=
∞∑
l=1

∥∥∥χK( lnk−1∏
j=0

w ◦ αj ◦ α−lnk

)
·
(
fk ◦ αlnk ◦ α−lnk

) ∥∥∥p
F

+

+
∞∑
l=1

∥∥∥χK( lnk∏
j=1

w ◦ α−j ◦ αlnk

)−1

·
(
fk ◦ α−lnk ◦ αlnk

) ∥∥∥p
F
.

This implies that

1

4kp
>

∞∑
l=1

∥∥∥( lnk∏
j=1

w ◦α−j
)
· fkχEk

∥∥∥p
F

+
∞∑
l=1

∥∥∥( lnk−1∏
j=0

w ◦αj
)−1

· fkχEk

∥∥∥p
F
>

>

(
1− 1

2k

)( ∞∑
l=1

∥∥∥( lnk∏
j=1

w◦α−j
)
·χEk

∥∥∥p
F

+
∞∑
l=1

∥∥∥( lnk−1∏
j=0

w◦αj
)−1

·χEk

∥∥∥p
F

)
.

Therefore, the condition given in the conclusion follows. �
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