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new integral inequalities including k-Riemann — Liouville fractional
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1. Introdaction. In the recent years, theory of inequalities has been
attracting many researchers due to its applications in our daily life and
within the mathematics. Theory of convex functions has great importance
in various fields of pure and applied sciences. It is known that theory of
convex functions is closely related to theory of inequalities. It has now
become a trending aspect of mathematical research to generalize classical
known results via the fractional integral operator.

Fractional calculus may be described as an extension of the concept of
derivative operator from integer order n to arbitrary order a. Fractional
derivative has been considered as the inverse of a fractional integral. Con-
siderable work has been done in the recent years on fractional integrals
because of their applications in many fields of science and technology.
The fractional integrals are a powerful tool in applied mathematics, used
to solve many problems from different fields of science and engineering.

The Riemann-Liouville integral is named after Bernhard Riemann and
Joseph Liouville, the latter was the first to consider the possibility of frac-
tional calculus in 1832. The concept of k-Riemann— Liouville fractional
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integral is an important extension of Riemann - Liouville fractional inte-
grals. We want to stress here that for k£ # 1, the properties of k-Riemann —
Liouville fractional integrals are quite dissimilar from those of general Rie-
mann — Liouville fractional integrals. For this, the k-Riemann - Liouville
fractional integrals have aroused interest of many researchers. Our con-
cern is the k—Riemann—Liouville fractional integral operator. We invite
the interested reader to see [5], [17], [13], [16], [11] and references therein.
The following definitions are well-known:

Definition 1. A function f : [a,b] — R is said to be convex if

fltz+(1=t)y) <tf(z)+(1-1)f(y)
for all z,y € [a,b] and t € [0, 1].

Many important inequalities are established for the class of convex
functions; one of the most important is called Hermite - Hadamard’s in-
equality (or Hadamard’s inequality). This double inequality is stated as
follows:

Let f: I CR — R be a convex function and let a,b € I, with a < b.

Then ,
f<a—|—b> oL /f(x)dx<f(a>+f<b)
“b—a h '

2 2

This inequality is in the reversed direction if f is concave.

Definition 2. [9] The function f : [a,b] — R is said to be n—convex if
the inequality

[tz + (1 =t)y) < fy) + tn(f(), f(y))
holds for all z,y € [a,b] and t € [0,1], and n is defined by

n: f(la,0]) x f([a,0]) = R.

If we set n(z,y) = x — y in the definition above, we can directly obtain
the classical definition of a convex function.

Definition 3. [9] Let a real function f be defined on some non-empty
interval I of real numbers. The function f is said to be quasi—convex on
I if following inequality holds:

[tz + (1L —t)y) < max{f(z), f(y)} (QC)
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Also, f is called n-quasi-convex if

[z + (1 —t)y) <max{f(y),f(y) +n(f(z), f(y))} (n—Q0C)
holds for all z,y € I and t € [0, 1].

Clearly, any convex function is a QC function, though not every QC
function is convex.

For example the function f : R™ — R, f(z) = In(z), x € R is
quasi-convex but it is not convex.

Definition 4. [8] we say that the function f : C C X — [0,00) is of
s-Godunova—Levin type, with s € [0, 1], if the inequality

flla+ (@ =ty) <t f(@)+ 1 -1)"f(y) (s —GL)
holds for all t € (0,1) and z,y € C.

Now we give a necessary definition of fractional calculus theory, which
is used throughout this paper.

Definition 5. [14] Let f € Li[a,b]. The k-Riemann— Liouville integrals
k5 fand  JiX f of order o > 0 with a > 0 are defined by

T

WIS (2) = kF:(a) /(;p —t)* L F(t)dt, z>a, k>0
and
1 b
WO (z) = ) /(t — ) (), z<b k>0

respectively, where I'y(-) stands for the k-Gamma function.

For a positive real number & and a complex number « with Re () > 0,
the k-Gamma function is given by the integral [7]:

tk
Ie(a) = /ta_le_kdt with al'y(a) = Tk(a + k).
0

Remark. If k =1, then k-Riemann— Liouville fractional integrals reduce
to the classical Riemann — Liouville fractional integral. And, if « = 1 and
k =1, the fractional integral reduces to the classical integral.
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For some recent results connected with fractional integral inequalities,
see [1], 3], 6], [12].

The main aim of this paper is to establish three new integral identities
and to prove, using these equalities, some new integral inequalities for
1n-QC and s-GL convex functions via the k-Riemann — Liouville fractional
integral operators.

2. Main Results. In order to move further, we need the following
useful lemma.

Lemma 1. Let f: I C R — R be a differentiable function on I°, where
a,b € I witht € [0,1]. If f' € Lla,b], then for all a < z < y < b and
k,a >0, we have:

1

Je f(x) = /(1—t>%f' (tz+ (1 t)y) dt.

0

fly)  Ti(a+k) .
y—r  (y—a)it

Proof. Integrate by parts:

1

/(1_t)%f'(m+(1—t)y)dt=

0
1

_ 1 _ Dilat+k)
Cy—u (y— )“kj f)

This completes the proof. [

Theorem 1. Let f: 1 C R - R, I C [0,00), be a differentiable
function on I°, such that f’' € L|a,b|, where a,b € I, with a <z <y < b.
If f" is n»—QC on [z,y| for t € [0,1], then we have
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1 _ Dyp(a+k)
)~ ) <

< (1) mas (7). £ )+ 0 (P @), 5 )

o
for all k, o > 0.

Proof. Since ' (tz + (1 = t)y) < max{f'(y), f'(y) +n(f'(x), f'(y))} for
t € [0,1], we obtain, from Lemma 1:

1 B Fk(Oé—i-]{ B :L‘ B
) - 0/1 0F e+ (1= )it <

< max (/). 1) + 1 (/z), f'(y))}/u—t)%dt

0

- (a -]i k) max {f'(y), f'(y) +n (f'(x), f'(y))}

This completes the proof. [

Corollary 1. If we set n(z,y) = « —y in Theorem 1, we obtain

1 f(y)—rk(a_'_k)

o k
y—w (y—a)F "

- flo) < (g ) max ), 70}

Corollary 2. For x = a and y = b, we obtain

1 Tp(a+ k) k 1
$0) = G =z W@ < () max (£ 0. @) <

< (25) 1

where || f'|| = sup|f'(z)|. Moreover, if we choose k = a = 1, we obtain

_a/f

Theorem 2. Let f: I CR — R, [ C [0,00), be a differentiable function
on I°, such that f' € Lla,b], where a,b € I, a <z <y <b If|f'|"is
n—QC on [z,y| fort € [0,1],¢>1,p= q%l, then we have

) max{f ), f@}. (O
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1 _ Fk((l/‘l‘k?) o
‘y—xf(y) (y —ax)i*! el )| <
< (50) max UFQI G+l @ I} @)

for all k, o > 0.
Proof. First of all, we know that

[ (tz + (1 =) )" < [max {|F' )", [F )"+ (S @ 1f @I}

Using the well known Holder inequality, properties of the absolute value,
and using Lemma 1, we obtain

1 (a+k

1kJO‘ ’—‘/1—75 flte+ (1 —t)y dt’

</ﬂ1_tiwftx+u—¢mnﬁ<

\ =

1
q

/1—t P (|f" (tz + (1 = t)y)|" dt)

Q=

Z(apliﬁ[max{lf W) 17 I+ @11 DY

which completes the desired inequality. [
Corollary 1. Set n(z,y) = x —y to obtain

‘ 1 [y (o + k)
y— e

i >'<

< (@pl{jl—k)

Corollary 2. Choose x =a, y =0b and a = k =1 to obtain

B I=
Q=

[max {| ()|, [£'(=)|"}] "

b

05— [ ra] < o=

a

—a

[max {|f'®)", £ (@"}]*.  (3)
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Lemma 2. Let f: I C R — R be a differentiable function on [°, where
a,be I witht € [0,1]. If f' € L[a,b], then we have, for alla < z <y <b
and k,a > 0:

1 - D@+ k) oot e
Ty @ = 10) s [k fy) = kT f(2)]
:/t‘if’(tﬁ(l—t)y)dt+/(1—t)‘if’(tx+(1—t)y)dt.

Proof. Integrating by parts, we can write the integrals above as follows:

1

/t%f’ (tr + (1 —t)y)dt =

0

1 (o) + Fi(a+ k)

T—y (y—a)t "

Jor [ (),

1

/(1—t)%f'(m+(1—t)y>dt=

=]

1 Ipla+k)
ey T T (®)

Adding the above integral equalities, we get the desired inequality. [

Theorem 3. Let f : I C R — R be a differentiable function on I°,
where a,b € I with t € [0,1]. If f' € L[a,b] and |f’| is a s-GL type
function, then

1 Fk(a—i-k) N .
T —y [f(x) = fy)] + W [kJm+ (y) — kt]yff(l‘)] ‘ <
< (f' @)+ 1 Wl [ﬁ (% +1,1— s) + #g—i—k} ’

1
foralla <z <y<bandk,a>0,secl0,1); B(z,y)= [t (1-t)V 'dt,
0

x> 1,y >0 is the Euler Beta function.
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Proof. From Lemma 2 and the properties of the absolute value:
1 1
L/ﬁf%m+%l—ﬂwdﬁ+/ﬂ—¢ﬁfﬂm+%1—wwdt<
0

0
1

< [17 - oyldes [0 07 |F o+ 0 -0yl de

0

Since |f’| is a s-Godunova—Levin type function, we get, applying inte-
gration by parts to every integral, respectively:

1 1
/t%|f'(tx+<1—t)y)\dt< @) [ a4 (v |/t% (1= t)dt
0 0

+L1—Q}

| 2 O\H

= [ @I+ 17w 8 (

a—ks+k
and
1
. .
/ﬁ—wwfm+ﬂ—wmﬁ:UWM5@—a%+Q+E%%%%
0

Finally, since g (x,y) = S (y,x), we have

1 Tila+k) -, N
o ) = )+ T [ )~ T @)
<UF@I+ 17D [ (5 +11-s) + ——].

This completes the proof. [J

Lemma 3. Let f : I C R — R be a twice differentiable function on I°,
where a,b € I with t € [0,1]. If f” € Lla,b], then for all a < b and
& —1>0, we have

.75%%7—Tr(a+%ﬁ[Jiif()+ 1 @] - £ =
_ _’fg;;ﬁg)Q [jt'i‘f”(ta—|-(1—t)b)dt+/(1 —t)* f”(ta+(1—t)b)dt]-

0

=
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Proof. Integrating by parts several times, we obtain the following
equalities:

% & ey f/<aT+b % a+b
O/tkf (L= 0Byt = e = e (Y5 ) ¢
230 [
Pl /t Flta+ (1 — t)b)dt
1 & ay f/<aT+b % (I+b
1/(1—75)ch (ta—f—(l—t)b)dt:—(a_b)Q% - (a—b’;22‘2—1f< 5 >+
TSy A S—

N

O/t?i?f(ta—i—(l—t)b)dt b—azl/ (b—u)* 2 f(u)du =
lz;_(za)aiz k a+b+f< )
/(1 —t)%*Qf (ta+ (1 —t)b)dt = m /(u-a)iQf(u)duz

NI

By adding these inequalities and multiplying by k(—b)aW’ we get the

required inequality. [
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Remark 1. Taking k = 1 in Lemma 3, we obtain equality (2) from [2]
for m = 1.

Theorem 4. Let f: I C R — R be a differentiable function on I°, such
that " € Lla,b], where a,b € I, a < b with t € [0,1]. If |f"|* is n-QC on
la,b] C I and q > 1, then the following inequality for fractional integrals
holds:

’%Fk (Oé-l—k) [ Ja+b1+ f( )+ k‘]irbl’ (a)} _f<a;_b)’ s
< (55 g b (701 7" @ + ol 7 @F O]

Where%—l > 0.

Proof. Using Lemma 3, the power-mean inequality, and properties of
absolute value, we can write

(a(bkf—;;_lrk(mk)[ Sl FO) T (@]—f(‘l;b)]g
g%[}t%r/l(l—t)ﬂ|f”(ta+(1—t)b)|dt<

2
1

< ([

0

£5 £ (ta+ (1 — t)b)\th>5+

o
ol

1

+ (/(1 - t)zdt>1;(/(1 — )% [f"(ta + (1 — t)b)| dt)‘lz _

= ( Ea)iu;lk>@mxﬂf%wVAf%wP+nﬂf%>PIf%ﬂ>ﬂ

[N

[l eI

Q|

And it can be easily checked that

O\MH

1
thdt = [(1—t)*dt =
1

this completes the proof. [
Corollary 1. Set n(a,b) = a — b in Theorem 4 to obtain
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k2% 2

ab—a)F !

2

a+b>’ <

Di (k) [ w125 JO)+ w1250 1 (0] = F(557)] <

Q=

< (3 s b (7 OF 1 @] @

Corollary 2. Let a,b € RT and a < b. Choose « =1 and k = 1 in (4)
to obtain an estimate for Jensen’s inequality:

O IOy (U0 |« L2 e (7 0 @)

Q|

Proof. Indeed, for @« = 1 and £ = 1 we can rewrite the left-hand side
of (4):

‘%Fk (a+ k) LJZY;* £(b) + kJ;ﬂ (a)] _f<a—2|—b>‘ _
— ‘2T_1F1(2) [J%+ f(b) + J;Tj?bi f(a)] _f(a—21—b>‘ _
:’f(b);f(a)_f(a—;—bﬂ’

as well as the right-hand side

(b ; a>20z (OZ— k) [max (| /" (b)[*, [/ (CUW)F -
(b—a)?

-8 [max (/" @), f" (a)]q)]é'

This inequality is of the same order as the inequality obtained in [4] (see
Corollary 2.2). O

Similarly, we can prove the following corollary:

Corollary 3. Let a,b € RT and a < b. Choose « = 2 and k = 1 in (4)
to obtain

2

. / fayr — F(E0) ] < U e (1 @1 1 @17

Qe

2 24

For ¢ = 1, this inequality is of the same order as the inequality obtained
in [15] (see Prposition 1) and in [2] inequality (11).
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Theorem 5. Letf: I CR— R, I C[0,00), be a differentiable function
on I°, such that f, g € L[a,b] and a,b € I, 0 < a < b. |f|" and |g|* are
n-QC on [a,b] for t € [0,1], ¢ > 1. Then, for all x € [a,b], $ +1 > 0,
% + % =1, the following inequality holds:

b
d‘\
b—a/ o

<M [ R e p0) + g @) - [ rad],

where

M= max{[f ®)], [fO) +n(f (@, [f®))},

N = max{lg(®)",[g(®)" +n(lg (@) ]g (b))},
hta + (1 — t)b) = [A—t)x + (tx —1)] f(ta+ (L —t)b) > 0 for all
t€[0,1] and ¢ € [0,1].
Proof. We will use the weighted Holder inequality:

/fta+ (1= )b)glta+ (1 — O)b)h(ta+ (1 — t)b)dt,

1
b—a

/ f(2)g (2) h(z)dz| < / 1 (ta+ (1= OB htat+(1—t))dt) " x

—

/yg (ta+ (1 — 1) )th(m+<1—t)b)dt)E

1

< (/lh(ta+(1—t)b)dt)’l’(/h(tmr(l—t)b)dt)qx

0

RSA

X

x [max {|f (O)1", [f(O)" +n(f (@), [f B))}]
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x [max {lg (0)|, 19(0)|* + n(lg ()], g (B)|)})7 =

= (/h(ta+(1—t)b)dt); X MrNi =

— M#Ni (/ [(1=1)% + (¢ —1)] flta+ (1 — t)b)dt) -

0

Iy (a+k 1

=it [ D g @) T 0] - 5 [ Foas);
this completes the proof. [

Corollary 1. Set n(a,b) = a — b to obtain

bia‘ /f(x)g (z) h(z)dz| <

a

<

{(Il; (aa)+ E) I )+ g f b_a/f d:p]

Q=

x [max {| £ B, |F(@)"})7 [max {]g ()|, lg(a)|"})7

Further in this article, the following notation is used:

g ) e T f(a)] — [0+ i )]

V= |f"(ta+ (1 —=1)b)] < [max{|f*(O)], | O) +n(f (@), [/ (B))}].
W= [f"(tb+ (1 = t) a)| < [max {[f"(a)[, [f"(a)] + n(|f"O)] . [f" (@)])}]-

Lemma 4. Let f: I C R — R be a twice differentiable mapping on I°.
If f" € Lla,b], a, b € I, then the following equality holds for all ¢ > 1:

fla)+ f(b)  Twlatk) (b—a)’
2 2(b—a)* ! 2

U=

(I + 1), (5)

where

I = f1(1 Ot (1 — ta + th)dt,
0
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I, = fl(l — )tk f((ta + (1 — t)b)dt.

Proof. Integrating by parts twice, transform the first integral:

1

I = /(1 —)t* (1 — t)a + th)dt =

0

te72f((1 — t)a + tb)dt—

[l N
|?|Q
o | |
w2
(e

—

—/ti‘—lf((l — t)a + tb)dt.

Make the (1 —t)a + tb = z transformation in both obtained integrals and
add them, then write:

P (OB ()

(b—a)?  (b—a)rtt /(fﬂ—a)k f(z)dx—

a

(e +1

T h_ai? /(I —a)* 7 f(z)da

a
or

f(b) (o + k) Ja-1 (2 4+ Dk(a+ k)

L = (b— (I)2 (b— a)%Jrl kJp— f(a) - (b— a)%+2 k‘]l?—f(a)'

Similarly, for the other integral

f(a) Ce(a+ k)
b—a?  (b—ar "

(2 + 1)T(a + k)

] - a
’ (b—a)i?

T (B) —

wy-f(b).
Get, by summing these equalites and then grouping the summands:

_ @+ f®)] G +DOla+k) o
Li+1h= b—a) — -k (b—a)F T [y f(b) + kJy-fla)]+
Pk<05+]€)

G-

[JO () + w2 f(a)] . (6)
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Obtain (5) by multiplying both sides of equality (6) by the expression

—(b_;)Q. The proof is completed. [J

Remark 2. For k =1 in Lemma 4, we obtain equality (20) in [2].
Theorem 6. Letf: I CR— R, I C[0,00), be adifferentiable function

on I°, such that f"” € Lla,b], where a,b € I, a < x <y < b. If |f"| is
n-QC on [x,y] for t € [0, 1], then we have, for all k,a > 0:

’f(a)+f(b) - Tyla+k)
2 2(b—a)* !

(b—a)
(£+1)(%+2)

Ul <y < [V + W].

Proof. Using properties of the absolute value and Lemma 4, we obtain

‘f(a)+f(b)_ Dyl +k)
2 2(b—a)* !

zﬂ<
<(h;@a/ﬂ_wﬁ[U%O_wa+wH+UWMﬂ41—®®”ﬁ<

0

(b - a)2 1 1 i "
< sy OO ol @)L 0D +
b A (@)L @] 4O 1 @D

205+ 1)(F+2)
The proof is completed. [
Corollary 1. Set n(a,b) = a — b in Theorem 6 to obtain

fla)+f)  Tilatk) | (b= a)max{[f" ()], |f"(a)[}
2 2b—a)f ' | (F+1(%+2) '

(7)

3. New Holder and improved-iscan inequalities.

Theorem 7. Let f: I CR — R, I C [0,00), be a differentiable function
on I°, such that " € Lla,b], where a,b € [ ,a < x <y <b If|f"|?is
n-QC on [x,y] fort € [0,1], g > 1, p = q%l, then we have, for all k, o > 0:

‘f(a) + /()  Tilat+k)
2

2(b—a)* !
)+ () ] (e v)

U‘é

-
[un
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Proof. Using the Holder-Iscan inequality (see [10]), properties of the ab-
solute value, and Lemma 4, we obtain

L) 10) _ T
2(b—a)x !

0] =

(b—a)| [

= ‘/(1 —OtE[f"((1 - t)a -+ tb) + f"(ta+ (1 — t)b)]dt‘ <

0

< (b;a)Q H(/l(l kpdt /1 t)1f"((1 t)a+tb)]th);+

0

+</( 1)t (jt|f” a+tb)|th>}
{/11—15 tirdt) (

(1= [f"(1 =)+ m)|th>3+

o — _

1 1

+ </(1 —t)tipﬂdt)p(/ﬂf”((l — t)b+ta)|th>qH.
0 0
Given the fact that
1 1
— 2 %p = kp+1 g
/(1 1)t 7P dt ﬁ( and/ 1P g = 5<Z,kp+2>,
0 0

we can write
‘ﬂ@+f®X_FA@+k
2(b—a)x !

<O ) ()

q

U‘\

1 1
} (WE + VE) .
The proof is completed. [J

Theorem 8. Let f: I CR — R, I C[0,00), be a differentiable function
on I°, such that f” € Lla,b], where a,b € I, a < x <y < b. If |f"]? is
n-QC on [z,y| fort € [0,1], ¢ > 1, p= qqu, then we have, for all k, o > 0:

f(a)+ f(b) Ce(a+ k) (b—a)? 1 1
2 2p—att VIS T2 5 (Weavi),
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]{72
(a+ k) (a+2k)

Proof. Using the improved power-mean integral inequality, properties of
the absolute value, and Lemma 4, we obtain

‘f(a) +f(b)  Tila+k)

where S =

2 2(b—a)it ‘ S
< <b_2a)2 H(/(l tzt%dt> *% / ¢ t)a+tb)|th>}'+
+ (/1(1 —t)t%“dt)l_'ll(/l(l — )R (1 —t)a+tb)|th)é}+

1 1

N

(b ;a>2 [/(1 —t)%thdt + /(1 - t)t%“dt] <W§ + V5> <
g (b—a)? (];[/q +V5> /(1—t)tz [(1—t) +4dt <
(bo— a)? k?
2 (a+k)(a+2k)

X

(we+vi).
The proof is completed. [J

4. Applications to special means. Now we consider some means
for arbitrary real numbers «, .

1) Arithmetic mean : A(a, 8) = a—;’ga
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2) Geometric mean : G(«, ) = v/« B, aff >
3) Logarithmic mean: L(a, B) = 1n|a\ lnlﬂ\ ey 7é 18], a, B #0,

ﬁn+1 n+1

1
4) Generalized log-mean: L,(a, ) = [m]n,n € Z\{-1,0},
a, B> 0.

1
5) The Identric Mean: I(a, 3) = ¢ [ﬁ} e ,a# [ and a, > 0.

aa

Now, using the obtained results, we give some applications to special
means of real numbers.

Proposition 1. Let a,b € R" and a < b; then we have
I(a,b) < bes . (8)

Proof. The assertion follows from Corollary 2 applied to the QC mapping
a=k=1and f(r) = —In(x), where z € R*. O
Proposition 2. Let a,b € R", a < b. Then we have, for all ¢ > 1:

I(a,b) b—a
In ~% ‘g . 9
‘n b 2% (9)

Proof. The assertion follows from Corollary 2 applied to the QC mapping
a=k=1and f(z) = —In(x), where z € R*. O

Remark 3. Obviously, the upper bound (8) for f(z) = —In(x) is better
than (9).

Proposition 3. Let a,b € [e,00) and a < b. Then we have

A(blna,alnb) A(lna,Inbd) o (b—a)?* 2Inb-—3
G?(a,b) L(b,a) |~ 12 b

Proof. The assertion follows from (7) applied to the QC mapping
fl) =22 2 € [e,00), @ = 2 and k = 1 (indeed, since the function
f(z) is on the interval [e,00) decreases, it is QC). O

Proposition 4. Let a,b € [%, o0) and a < b. Then we have
(b—a)’
12a

Proof. The assertion follows from (7) applied to the QC mapping
f(z) = zlnz, z € [1,00), @ = 2 and k = 1 (indeed, since the function
f(z) is on the interval [e, 00) and decreases, it is QC). O

2
1
Afalna,blnb) — [A(a, b)Inb + %L‘l(b, a) - 54, b)] ) <
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