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ON THE DIFFERENCE EQUATION ASSOCIATED WITH
THE DOUBLY PERIODIC GROUP AND ITS
APPLICATIONS

Abstract. Let D be a rectangle. We consider a four-element
linear difference equation defined on D. The shifts of this equation
are the generating transformations of the corresponding doubly pe-
riodic group and their inverse transformations. We search for a so-
lution in the class of functions that are holomorphic outside D and
vanish at infinity. Their boundary values satisfy a Holder condition
on any compact that does not contain the vertices. At the vertices,
we allow, at most, logarithmic singularities. The independent term
is holomorphic on D, and its boundary value satisfies a Holder con-
dition. The independent term may not be analytically continuable
across an interval of the boundary, since the solution and the inde-
pendent term belong to different classes of analytical functions. We
regularize the difference equation and determine the conditions for
the regularization to be equivalent. If the independent term is an
odd function, then the problem is solvable. Additionally, we give
some applications of the difference operator to interpolation prob-
lems for integer functions of exponential type and the construction
of biorthogonally conjugated systems of analytical functions.
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1. Introduction. Let D be a rectangle with vertices t; = —a — 1,
ty = a—1i, t3 = —ty, and t4y = —to, and sides ¢;, j = 1,4, considered in
the order in which they occur on the boundary I' = dD. Here, we assume
that @ > 1 and t € ¢; = Im{t} = —1. This is the fundamental region of
the doubly periodic group with primitive periods w; = 2a and wy = 21
and generating transformations oy (2) = z + wy, k = 1, 2.
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Consider the linear difference equation

4

VH()=) floj)] = 9(2), z€D, (1)

J=1

where 03 = 07", 04 = 0, %, under the following assumptions:

1) The unknown function f(z) is holomorphic outside D, and f(c0)=0.
Its boundary value f~(¢) satisfies a Holder condition on any compact
that does not contain the vertices. At the vertices, we allow, at most,
logarithmic singularities.

2) The independent term g(z) is holomorphic inside D, and its bound-
ary value g*(t) € H,(I').

We denote this class of solutions by B.

Note that, even though the operator V' commutes with the differen-
tiation operator, we cannot apply to Equation (1) the powerful classical
methods used in the study of convolution operators (see [9]). This is due
to the fact that the set C\|Jo;(D), j = 1,4, is disconnected. Equation (1)
in the special case of a square D was studied in [5]. The applications of
the equation to interpolation problems for entire functions of exponential
type (e.f.e.t.) were considered in [7]. The approximating properties of
biorthogonal systems of analytical functions generated by Equation (1)
were examined in the paper [6]. All the mentioned studies essentially re-
lied on the symmetry ¢ € I' & it € I'. However, this is not the case if
a > 1, and the problems that arise in this case are of a different kind. For
instance, instead of the classical lacunary Stieltjes moment problem for
e.f.e.t., studied in the paper |7], we should consider the generalization of
the problem to the case of two rays with a piecewise-exponential weight.

This paper consists of three sections. In the first section (2. Regulariza-
tion of Equation (1)), we suggest a regularization method for Equation (1)
and give the conditions that ensure the equivalence of the regularization.
In the second section (3. On a special case), we prove that Equation (1) has
only one solvability condition if a < 3. Some applications of these results
are given in the third section (4. Some applications), where we consider
applications to interpolation problems for e.f.e.t. in the case a < 3 and the
approximating properties of biorthogonal systems of analytical functions
generated by Equation (1) for a < v/3.
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2. Regulariza quation (1). We search for a solution in the form of
a Cauchy-type integral

f(z) = = / o) (r—2)"dr, 2¢D, 2)
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with an unknown density ¢(7). Let us define an odd involutive piecewise-
linear shift a(t) = {o(t),t € £,,} that changes the orientation of I'. We
can assume, without loss of generality, that

p(t) + ¢ lat)] = 0. (3)

Indeed, the density in the Cauchy-type integral (2) is defined up to a term
a®(7), where a(z) is a function holomorphic in D. Then, we consider con-
dition (3) as an unconditionally solvable Carleman problem with respect
to the unknown function a(z) (see [3|). It follows from (2) that

where

Alz,m) =) (T —05(2)) " ()

Jj=1

If we proceed in (4) to the limit as z — ¢, we obtain a formula similar
to that of Sokhotski—Plemelj, namely

(ETp) (1) = =270 (a(t) + (Ew) (1).

Therefore, according to condition (3), we have

o) ()= 90+ 5= [ K)o dr=g* (@) = g lale)] . (©

where
K(t,7) = A(t,7) — Ala(t), a(t)] (7)

and (Tp) (t) = (ET) (t) = (ET) (a(t)).
(

Lemma 1. Kernel (7) is bounded.
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Proof. The proof boils down to a straightforward verification of the as-
sertion of the lemma for all possible positions of the point ¢ on the sides
of the rectangle. [

So, we have regularized Equation (1). We now make the inverse transi-
tion from Fredholm equation (6) to Equation (1). Assume that Equation
(6) is solvable. Then, there exists a solution with property (3). The proof
is completely similar to the one given in the paper [1]. Thus, we have

(ETo)(t)—(ETo)(a(t)) = g" () =g [a(t)] = (Ep)(2) = g(2)+C, z€D.
Assume that Equation (6) has N solvability conditions.

Theorem 1. Equation (1) has N + 1 solvability conditions, namely N
solvability conditions of integral Equation (6) and the condition
(E¢) (0) = g(0), which ensures the equivalence of the regularization.

Let us formulate four statements that we will use later on.
1) Kernel (7) is skew-symmetric, i.e., K(t,7) = —K(1,1).
2) The constant function is a solution of the associated equation

T’ = 0. 8)

3) A fundamental system of solutions (f.s.s.) of either Equation (8) or
the homogeneous equation

T =0 (9)

can be constructed, such that some of the functions satisfy condition (3),
while the other functions satisfy the opposite condition, i.e.,

p(t) = ¢ la@)]. (10)

The proof is totally similar to the one given in [1].
4) Kernel (5) fulfills the condition

1 +
— A - D
5 g (1)A(z,7)dr =0, z € D,
T

which means that it is not a generating kernel. Indeed, the transformations
0i(z), 7 = 1,4, map the points z of int D into points of ext D.

Lemma 2. Assume that the f.s.s. of Equation (9) contains a function
©(t) with property (10). Then, the function ¥(t) = p(t) + (ETp) (1) is a
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nontrivial solution of Equation (9) with property (10). Conversely, assume
that the f.s.s. of Equation (8) contains a function 1(t) with property
(3). Then the function ¢(t) = ¥(t) — (ET4)(t) is a nontrivial solution of
Equation (9) with property (10).

Proof. The equality 2p(t) = — (ETp) (t) — (ETy) [a(t)] is true for the
function ¢(t), which means that the function ¢ (t) has property (3). For
such solutions, the associated equation can be written in the form
20(t) = (ETY) (t) — (ET) [a(t)], and the validity of the first part of
the lemma can be proven by direct substitution. Assume that ¢ = 0.
Then the solution of Equation (10) is the boundary value of a function
that is analytical in D and has property (10), i.e., it is the constant func-
tion, which is a solution of the associated equation. The second part of
the lemma can be proven in a similar manner. [

Corollary 1. The number of solutions with property (10) in the f.s.s. of
Equation (9) is the same as the number of functions with property (3)
in the f.s.s. of Equation (8). The number of solutions with property (3)
in the f.s.s. of Equation (9) is the same as the number of functions with
property (10) in the f.s.s. of the associated equation.

The statement in the second part of the corollary follows from that in
the first part as a consequence of the Fredholm alternative, i.e., the f.s.s.
of Equation (9) contains at least one function having property (3). In
what follows, we assume that ¢(¢) denotes a function with property (3),
and 1 (t) denotes a function with property (10).

Definition 1. If
(Bp)(2)=C, z€D,, (11)

with C' # 0, then we say that (t) is a solution of the first kind.
Lemma 3. If p(t) is a solution of the first kind, then

/(,0(7') dr = 0. (12)

r

Proof. Proceed to the limit in (11) as z — t. As a result, obtain

@ o / A(t, 7)p(r) dr = C. (13)
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Multiply this equality by ¢(¢) and integrate over I'; then change the order
of integration in the double integral. Taking into account that kernel (5)
is skew-symmetric and, also, that (10) < (12), obtain

—C/ﬂﬂﬁzc/ﬂﬂﬁ

r r
This finishes the proof of the lemma. [

Definition 2. If ¢(t) is a solution that satisfies condition (11) for C' =0
and, at the same time, condition (12) does not hold, then we say that ((t)
is a solution of the second kind.

Lemma 4. Equation (10) cannot have both a solution ¢(t) of the first
kind and a solution 1 (t) of the second kind.

Proof. Assume the opposite. Multiply (13) by the function ¢;(¢) and
integrate the obtained equality over I'. Since the product of two functions
with property (3) is a function with property (10), get

ozc/wwﬁ.

This concludes the proof of the lemma. [

Definition 3. If ¢(t) is a solution that satisfies condition (11) for C'=0
and condition (12), then we say that ¢(t) is a solution of the third kind.

Let ((z) = ((z;2a;2i) be a quasiperiodic Weierstrass zeta function
with primitive periods 2a and 2i (see [8], part 2, §11).

Lemma 5. Assume that Equation (9) has a solution ¢(t) of the third
kind. Then the integral

vlt) = 5 [ <=0t ar (14)

understood in the sense of the Cauchy principal value, is a nontrivial
solution of the associated Equation (8) and it has property (10).

Proof. As a consequence of equality (12), the function given by (14) fulfills
condition (10). For such solutions, we have

(8) = (E™Y) (t) + (E*Y) (a(t) =0= (EY) (2) =0, z € D.
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It remains to note that () = ¥+ (t) — ¢(t) and verify straightforwardly
that the lemma holds. If we assume that ¢ (t) = 0, then p(t) = ¢*(¢),
i.e., it follows, by property (3), that ¢(¢) = 0. This finishes the proof.

Conversely, assume that ¢ (t) is a function having property (10) and
belonging to the f.s.s. of the associated equation. The Carleman prob-
lem a™(t) + a™[a(t)] = ¥(t) is solvable (see [3]). Then, the function
o(t) = a™(t) — a™[a(t)] is a solution of Equation (9) of the third kind.
Here, we assume that the solution () is not a constant, i. e., it is not the
boundary value of an analytical function.

Consider now the homogeneous Equation (9) and replace the variables
7 and ¢t with —7 and —t, taking into account that the shift a(t) is an odd
function. Therefore, (T'y) (t) =0 < (T'¢) (—t) = 0. The same is valid in
the case of the associated Equation (8). O

Corollary 2. The fs.s. of Equation (9) or Equation (8) can be con-
structed in such a manner that some of the functions belonging to it are
even and the rest are odd.

Corollary 3. Assume that o(t) is either an even function having prop-
erty (3) or an odd function having property (10). Then,

¥i [ o(r)dr=o,

¢

Corollary 4. Assume that g(z) is an odd function and the nonhomoge-
neous Equation (6) is solvable. Then, there exists an odd solution ¢(t)
of Equation (6), and the condition of equivalence of the regularization in
Theorem 1 is automatically fulfilled.

Let us consider another zeta function (;(z) = ((z;2a—2i;2a+2i). Note
that it is not defined on the sides of the rectangle but on its diagonals.
Note also that the differences 7 —t and a(7) — «(t) differ from each other
by a quasiperiod of the function (;(z). The value of this quasiperiod
depends on the relative position of the points 7 and ¢ on the sides of the
rectangle. Thus, ((7 —t) — ([a(7) — a(t)] = B(t,7), where 5(t,7) is a
piecewise-constant function discontinuous at the vertices with respect to
each variable. Kernel (5) is the sum of the first four terms of the expansion
of the function (;(7 — z — 2a) in a series of partial fractions.

Remark 1. If we consider the kernel (; (T — z — 2a) instead of kernel (5),
then, by the foregoing, the research of integral Equations (8) and (9) does
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not present difficulties (on this matter, see [4]). Kernel (5) is convenient
because it has the minimum number of terms for which the given reasoning
is valid.

Lemma 6. Let us suppose that Tp = 0. If the solution (t) is an even
function with property (3), then T'¢' = 0.

Proof. Consider the kernel B(z,7) = (1(7 — 2 — 2a) — A(z,7). Then,
o(t) — GT(t) + G [a(t)] = 0, where

Note that

/B(t, T)(T)dT =0

by virtue of Corollary 3. Here, G(z) € A[D] = G*(t) € C*' (T'). Moreover,
GT [a(t)] € C(T), since the solution is an even function. It only remains
to note that 0A/0z = —0A/0T and

(B ()=~ [T 4~ (B) (), 2 e D,

271
r

if we integrate by parts. In this case, the term that appears outside the
integral vanishes because it is the increment of a continuous function along
a closed curve. This concludes the proof. [J

Corollary 5. The function ¢'(t) from Lemma 6 is an odd solution of
the third kind.

3. On a special case. Unfortunately, it is hardly possible to deter-
mine the number of solvability conditions of Equation (1) in the general
case. However, this turns out to be possible in the particular case, in which
a < 3, by using the contraction mapping theorem in a Banach space. For
the sake of simplicity, we assume that a = 3. Consider an odd solution of
the associated equation with property (10). Suppose that

M = max|y(t)], t €T. (15)

It is enough to consider just two cases. We will find an upper estimate for
the absolute value of the integral term in Equation (8).
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. Equality (15) is attained at some point ¢ € ¢;. There are three
possible subcases:

a) T €l = K(t,7) = 0.

b) 7 € f3. In this case, we have K(t,7) = (u+2i) " + (u—6)"" +
(u+6)"—(u—6i)" —(u—6—41)"" — (u+6—43)"", where u = 7 —t.
Since u = 2i + v, with v € [—6,6], we obtain K(t,7) = —if(z), where
fla) =8 [(ac +16)"" + (2 + 40) (22 — 64z + 1600)*1} and z = 42 € [0, 36].
By Corollary 3, we take the number 27! [max f(z) — min f(z)] < 0.27 in-
stead of max f(x).

c) 7 € L, where L = {5 U {,. According to condition (10), we have

/Mmem:/kﬁﬁMﬂm
L Ly

where Ki(t,7) = (u +20)" '+ (u—6)"" — (u+6 —4)' — (u+ 12 —
S2) T — (w4 64+2) " — (w4127 + (u—44) "+ (u—6—2i)"". Since
t=—1+4+p, -3<p <3, and 7= -3+, —1 < v < 1, we obtain
|K1| < 1.14. Furthermore, 6 - 0,27 + 2 - 1,14 < 27, which means that
1 = 0. Thus, the assumption was incorrect. There remains the last
possibility.

II. Equality (15) is attained at some point ¢ € f5. There are three
possible subcases:

a) T €ly= K(t,7) =0.

b) 7 € {4. In this case, we have K(t,7) = ( 2) " + (u —|— 2i) " +
+(u—6)"" = (u+12-2)) " — (u+12+2i)"" — (u+18)"".  Since
u = —6 + vi, with |y| < 2, we obtain K(t, 7') = —f(x ), where
f(z) =24 [(x + 144)~ " + (2 + 40)(2* + 762 + 1600) '] and z=~2 €0, 4].
By Corollary 3, we take the number 27! [max f(z) — min f(z)] < 0.04
instead of max f(z).

c) T € L, where L = {1 |J¥¢3. According to condition (10), we have

/mmwﬂm:/mwwmm
where

Kit,7) = (u—20)""+ (u—06)"— (u+4i+6) " — (u+124+2)"" -
—(u+4) " (w420 —6) "+ (u+6—2)""+(u+12)"". Since T = y—i,
|7 < 3, and t = 3 + xi, || < 1, we obtain |K;| < 0,95. Furthermore,
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2-0,04 +6-0,95 < 27, which means that ¢y = 0. Next, assume that the
f.s.s. of the associated equation contains a nonconstant even function with
property (10). Therefore, the f.s.s. of Equation (9) contains an even func-
tion ¢(t) with property (3). It follows from Corollary 5 that there exists
an odd solution of the third kind, i. e., the f.s.s. of the associated equation
contains an odd function with property (10) (see Lemma 5). Thus, we
come to a contradiction with the estimates obtained above.

Remark 2. The foregoing estimates for the absolute values of the inte-
grals worsen very quickly as a increases. The optimum estimate is the one
obtained for a = 1, i.e., when D is a square. From a geometric point of
view, this is obvious: the “more” the rectangle shape deviates from that
of a square, the worse are the estimates.

Let us state the result we have obtained.

Lemma 7. Ifa € [1,3], then the f.s.s. of the associated equation contains
only one function with property (10), namely the constant function.

Remark 3. The estimates that ensure the truth of Lemma 2 imply that
the number a may be slightly greater than 3. In this paper, however, we
do not dwell on the issue of how much greater.

Remark 4. [t follows from the given estimates that the f.s.s. of the as-
sociated equation does not contain any function with property (3), and
the f.s.s. of Equation (9) does not contain any function with property
(10). We do not dwell on this issue in more detail since the solutions of
the associated equation having property (3) are of little interest. They are
automatically orthogonal to the right-hand side of Equation (6). The num-
ber of solvability conditions of Equation (1) does not depend on whether
such solutions exist.

Theorem 2. Ifa € [1,3], then N = 0 in Theorem 1, i.e., Equation (1)
has only one solvability condition. Under the additional assumption that
the independent term ¢(z) is an odd function, Equation (1) is uncondi-
tionally solvable.

Remark 5. The ultimate form of the f.s.s. of Equations (8) and (9)
can be made more specific if a € [1,3]. In this case, the f.s.s. of Equa-
tion (8) contains only the constant function, and the f.s.s. of Equation (9)
contains only an odd solution yo(t) of the second kind, which has nonre-
movable discontinuities of the first kind (jump discontinuities) at least at
two opposite vertices.



48 F. N. Garif’yanov, E. V. Strezhneva

Indeed, if one assumes that y(t) € C(I'), then T'py = 0 = T'¢, = 0,
thus arriving at a contradiction.

4. Some applications. Consider an even e.f.e.t. F'(z) that is Borel-
associated with an odd solution f(z) € B (see [2], §1, 1.1.). Its conjugated
indicator diagram is, generally speaking, a rectangle D. Assume that

2k+1

9(z) = =23 (gl;f: 1’

k=0

and the convergence radius of this series satisfies the condition

R > +/a? + 1. Since the solution is odd, we have

(VF)(2) = —2 / F(x) exp(—2az) sh(z2)dz — 2 / F(t) exp(2it) sh(t2)dt,

L

where L is the ray argt = /2. Equate the Maclaurin coefficients in the
expansions of the functions g(z) and (V' f) (z). As the result, obtain

F(z)x? ! exp(—2ax)dm+/F(t)t2k+l exp(2it)dt = v, k =0,00. (16)

0 L

Theorem 3. If a € [1,3], then the lacunary moment problem (16) is
solvable. The corresponding homogeneous moment problem ( for all k
and v, = 0 ) has only one nontrivial solution Fy(z).

Note that Fy(z) is an upper function that is Borel-associated with the
lower function fy(2), i.e., the Cauchy-type integral (2) with the density
©o(T) (see Remark 5).

Remark 6. The conjugated indicator diagram may not be the rectangle
D but some smaller convex set D' C D. This case, however possible, is
of little interest. Indeed, the independent term must allow the analyti-
cal continuation from D to some neighborhood of infinity, and, moreover,
g(0) = 0. Provided that all these conditions hold, problem (1) is overde-
termined. Then, F(z) = G(z)/P(z), where G(z) is an upper function that
is Borel-associated with the lower function g(z), and

P() =Y exp[ox(0)2]
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is the characteristic quasipolynomial of the difference equation. The frac-
tion F(z) must be an e.fe.t., and its lower function f(z) must be a solu-
tion of Equation (1) from class B. It is obvious that such overdetermined
problems are of little interest.

In conclusion, let us consider some properties of the biorthogonal con-
jugated systems of analytical functions generated by the difference oper-

ator V. In what follows, we assume that a < v/3. Let us suppose that
A(r) = A0, 1),

{om(D)} + (Eom) (2) = (1) (m) " (z" = k™), z€ D, m=0,1,...,

(17)
and f,,(z) is the Cauchy-type integral (2) with the density ¢,,(7). Assume
that hg = 1, and choose the constants h,, for any m > 0 in such a manner
that the equivalence condition of the regularization in Theorem 1 holds.
Carry out the normalization:

/fo(T) dr =2mi, VYm >0 /fm(T) dr = 0.

Then the system of functions {f,,(z)}, m=0,1,..., and
Ap(z) = {1,k =0; AP(2),k > 1}

are biorthogonal on I' in the sense that

1 / F= (1) Ax(r) dr = 6,0 (18)

271

Consider the region Dy limited by arcs of the four circles |z —0;(0)| =
= Va*+1,j = 1,4 (0 € Dy). The functions f,,(z) are analytically
continuable from the sides of I to I'g = dDy. Therefore, we can replace
the curve I' in (18) with Tg. The region D, and its complement CD, are
the only natural regions of convergence of the corresponding biorthogonal
series. A number of theorems on their properties can be obtained in the
same way as it was done in [6], where the case a = 1 was considered. By
way of illustration, we state here one of these theorems:

Theorem 4. Let h(z) be an even function, such that h(z) € A[CDy).
Then,

h(z) =Y amfm(z), z€CDy, (19)
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where the series converges absolutely and uniformly. The series coefficients
are determined by biorthogonality condition (18).

Remark 7. Assume that a = /3. The set Dy of points outside the four
circles splits into two regions sharing a single boundary point, namely
2 =0. If a > /3, then the regions have no common boundary points.
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