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Abstract. In this paper, we introduce the concept of weaving
continuous K-g-frames in Hilbert spaces, which are the generali-
zation of weaving K-g-frames and weaving c-g-frames. We prove
some new results for these frames, focusing on the constructions of
c-K-g-woven frames for Hilbert spaces by certain operators with
specific properties. Finally, we verify a Paley-Wiener type pertur-
bation of these frames.
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1. Introduction and preliminaries. Duffin and Scheaffer intro-
duced frames [13] in the context of non-harmonic Fourier series. Frames
are very useful in the characterization of function spaces and fields of ap-
plications, such as filter bank theory, signal and image processing, coding,
and wireless communications. Nowadays, frames play a significant role
in both pure and applied mathematics, thus constituting a fundamental
research area in mathematics, computer science, and engineering; how-
ever, technical advances and measure amounts of data which cannot be
handled with a signal processing system have been increased using the var-
ious frames like g-frame [21], fusion frame [7], K-frame [16], and weaving
frames [6], etc.

Continuous frames were introduced by Ali, Antoine, and Gazeau [2]
and later, independently, by Kaiser [17]. These frames are the first gener-
alization frames to measure spaces. For more studies about these frames,
we refer to [14]. By combining the above-mentioned extensions of frames,
the new and more general notion of continuous g-frame has been intro-
duced in [11].
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In 2012, Găvruţa introduced new kinds of frames for operators (or
K-frames) in [16] while studying the atomic systems with respect to a
bounded operator K, already introduced by Feichtinger and Werther in
[15], who showed that atomic systems for K are equivalent to the
K-frames. Note that the continuous case of these frames had previ-
ously been introduced in [3], [4]. For another kind of K-frames, we refer
to [18–20].

Recently, motivated by a question in distributed signal processing, a
new concept of weaving frames has been introduced by Bemrose et al. [6].
In their work, two frames {fj}j∈J and {gj}j∈J for a Hilbert space H are
(weakly) woven if, for each subset σ ∈ J, the family {fj}j∈σ ∪ {gj}j∈σc is
a frame for H.

In this paper, we generalize some results in [5] to the continuous version
of weaving c-g-frames for operators in Hilbert spaces.

Throughout the paper, (Ω, µ) is a measure space with positive mea-
sure µ, H and {Hω}ω∈Ω are Hilbert spaces and a family of Hilbert spaces,
respectively, and B(H,K) is the set of all bounded and linear opera-
tors from H to K. If H = K, then B(H,H) are denoted by B(H) and
K ∈ B(H). For each m > 1 where m ∈ N, we define [m] := {1, 2, . . . ,m}
and [m]c = {m+ 1,m+ 2, . . . }.

First, we need the pseudo-inverse operator. If an operator U has closed
range, then there exists a right-inverse operator U † (pseudo-inverse of U)
in the following sense (see [9]):

Lemma 1. Let U ∈ B(K,H) be a bounded operator with closed range
R(U). Then there exists a bounded operator U † ∈ B(H,K) for which

UU †x = x, x ∈ R(U).

Moreover, the orthogonal projection of H onto R(U) is given by UU †.

Lemma 2. [12] Let L1 ∈ B(H1, H) and L2 ∈ B(H2, H). Then the fol-
lowing assertions are equivalent:

1) R(L1) ⊆ R(L2);
2) L1L

∗
1 6 λ2L2L

∗
2 for some λ > 0;

3) there exists a mapping U ∈ B(H1, H2), such that L1 = L2U .
We first mention the definition of the continuous K-frame from [18].

Definition 1. Suppose that (Ω, µ) is a measure space with positive mea-
sure µ and K ∈ B(H). A mapping F : Ω → H is called a continuous
K-frame (or c-K-frame) for H with respect to (Ω, µ), if
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(i) For all h ∈ H, ω 7→ 〈h, F (ω)〉 is a measurable function on Ω,
(ii) there exist positive constants A and B, such that for each f ∈ H,

A‖K∗h‖2 6
∫
Ω

|〈h, F (ω)〉|2 dµ(x) 6 B‖h‖2. (1)

When K = IdH , we get the concept continuous frame (or c-frame)
via [14].

Now, we summarize some facts about c-g-frames from [1]. Define

Πω∈ΩHω = {F : Ω −→ ∪ω∈ΩHω : F (ω) ∈ Hω}.

We say that F ∈ Πω∈ΩHω is strongly measurable if F , as a mapping of Ω
to ⊕ω∈ΩHω, is measurable. Let

L2(Hω, µ)=
{
F ∈ Πω∈ΩHω : F be strongly measurable,

∫
Ω

‖F (ω)‖2dµ(ω) <∞
}
.

With the inner product given by

〈F,G〉 =

∫
Ω

〈F (ω), G(ω)〉dµ(ω).

It can be proved that L2(Hω, µ) is a Hilbert space [1]. We will denote the
norm of F ∈ L2(Hω, µ) by ‖F‖2.

The continuous version of K-g-frames was introduced in [3] in the fol-
lowing way.

Definition 2. [3] Let K ∈ B(H). A family {Λω ∈ B(H,Hω)}ω∈Ω is called
a continuous K- g - frame (or briefly c -K- g - frame) for H with respect to
{Hω}ω∈Ω, if

(i) the mapping Ω 7−→ C, ω 7−→ ‖Λωf‖ is measurable for any f ∈ H.
(ii) there exist constants 0 < A 6 B <∞, such that for each f ∈ H:

A‖K∗f‖2 6
∫
Ω

‖Λωf‖2 dµ(ω) 6 B‖f‖2. (2)

A family {Λω}ω∈Ω is called a c-g-Bessel family if the right-hand inequal-
ity (2) holds; the number B is called the Bessel constant. If K = IdH ,
then the family{Λω}ω∈Ω is called c-g-frame. If A, B can be chosen such
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that A = B, then {Λω}ω∈Ω is called a tight c-K-g-frame and if A = B = 1,
it is called Parseval c-K-g-frame, and we have∫

Ω

‖Λωf‖2 dµ(ω) = ‖K∗f‖2.

In all kinds of K-frames the synthesis and analysis operators are the
same; so if {Λω}ω∈Ω is a continuous g-Bessel family for H with respect
to {Hω}ω∈Ω with the bound B, then these operators are defined by (for
more details, we refer to [3])

TΛ : L2(Hω, µ) −→ H,

〈TΛF, g〉 =

∫
Ω

〈Λ∗ωF (ω), g〉dµ(ω),

and

T ∗Λ : H −→ L2(Hω, µ)

T ∗Λ(g)(ω) = Λωg.

Thus, the frame operator SΛ = TΛT
∗
Λ is given by

SΛ : H −→ H, 〈SΛf, g〉 =

∫
Ω

〈f,ΛωΛ∗ωg〉 dµ.

Therefore,
AKK∗ 6 SΛ 6 BIdH .

Definition 3. [22] A family of c-frames {Fωi}ω∈Ω, i∈[m] for H with respect
to µ is said to be c-woven, if there exist universal same positive constants
0 < A 6 B < ∞, such that for each partition {σi}i∈[m] of Ω, the family
{Fωi}ω∈σi, i∈[m] is a c-frame for H with the bounds A and B. Each family
{Fωi}ω∈σi, i∈[m] is called a weaving.

2. Weaving Continuous K-g-Frames. In this section, we introduce
the notion of continuous K-g-woven frames in Hilbert spaces and discuss
some of their properties. Throughout the paper, by partition of a measure
space (Ω, µ) we mean partition of Ω into disjoint measurable sets.

Definition 4. A family of c-K-g-frames {Λωi ∈ B(H,Hω)}ω∈Ω, i∈[m] for H
is said to be continuous K-g-woven (or c-K-g-woven) if there exist universal
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constants 0 < A 6 B, such that for each partition {σi}i∈[m] of Ω, the family
{Λωi}ω∈σi, i∈[m] is a c-K-g-frame for H with bounds A and B.

In the above definition, A and B are called universal c-K-g-frame
bounds. It is easy to show that every c-K-g-woven has a universal up-
per c-K-g-frame bound. Indeed, let {Λωi}ω∈Ω be a c-g-Bessel family for
H with bound Bi for each i ∈ [m]. Then, for any partition {σi}i∈[m] of Ω
and f ∈ H, we have∑

i∈[m]

∫
σi

‖Λωif‖2 dµ 6
∑
i∈[m]

∫
Ω

‖Λωif‖2 dµ 6
( ∑
i∈[m]

Bi

)
‖f‖2.

The next proposition shows that it is enough to check c-K-g-weaving
on a smaller measurable space than the original. It is an extension of
Proposition 3.10 in [22].

Theorem 1. For each i ∈ [m], let {Λωi}ω∈Ω be a c-K-g-frame for H with
frame bounds Ai and Bi. If there exists a measurable subset Σ ⊂ Ω, such
that the family of c-K-g-frame {Λωi}ω∈Σ, i∈[m] is a c-K-g-woven for H with
universal frame bounds A and B, then {Λωi}ω∈Ω, i∈[m] is a c-K-g-woven for
H with universal bounds A and

∑
i∈[m] Bi.

Proof. Suppose that {σi}i∈[m] is a partition of Ω and f ∈ H. We have

∑
i∈[m]

∫
σi

‖Λωif‖2 dµ(ω) 6
∑
i∈[m]

Bi‖f‖2.

For the lower bound, it is clear that {σi∩Σ}i∈[m] is a partition of Σ. Thus,
{Λωi}ω∈σi∩Σ, i∈[m] is a c-K-g-frame for H with the lower frame bound A.
Hence, for each f ∈ H∑

i∈[m]

∫
σi

‖Λωif‖2 dµ(ω) >
∑
i∈[m]

∫
σi∩Σ

‖Λωif‖2 dµ(ω) > A‖K∗f‖2.

This completes the proof. �

Casazza and Lynch in [8] showed that it is possible to remove vectors
from woven frames and still be left with woven frames. Later, this topic
was presented in [22]. Now, we study it for c-K-g-woven in the following
Theorem.
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Theorem 2. Let {Λωi}ω∈Ω, i∈[m] be a c-K-g-woven for H with universal
bounds A and B. If there exists 0 < D < A and a measurable subset
Σ ⊂ Ω and n ∈ [m], such that for each f ∈ H,∑

i∈[m]\{n}

∫
Ω\Σ

‖Λωif‖2 dµ(ω) 6 D‖f‖2, ∀f ∈ H,

then the family {Λωi}ω∈Σ, i∈[m] is a c-K-g-woven for H with frame bounds
A−D and B.

Proof. Suppose that {σi}i∈[m] is a partition of Σ and {τi}i∈[m] is a partition
of Ω \ Σ. For a given f ∈ H, define

ϕ : Σ −→ C, ϕ(ω) =
∑
i∈[m]

χσi(ω)‖Λωif‖,

and
φ : Λ −→ C, φ(ω) =

∑
i∈[m]

χσi∪τi(ω)‖Λωif‖,

where, χσi is the characteristic function of σi. Since {Λωi}ω∈σi∪τi, i∈[m] is
a c-K-g-frame for H and ϕ = φ|Σ, then ϕ and φ are measurable. So, for
each f ∈ H, we have∑

i∈[m]

∫
σi

‖Λωif‖2 dµ(ω) 6
∑
i∈[m]

∫
σi∪τi

‖Λωif‖2 dµ(ω) 6 B‖f‖2.

Now, for the lower frame bound, assume that {ςi}i∈[m] is a partition of
Ω \Σ, such that ςn = ∅. Then {ςi ∪ σi}i∈[m] is a partition of Ω and, so, for
any f ∈ H we have:∑

i∈[m]

∫
σi

‖Λωif‖2 dµ(ω) =

=
∑

i∈[m]\{n}

( ∫
ςi∪σi

‖Λωif‖2 dµ(ω)−
∫
ςi

‖Λωif‖2 dµ(ω)
)

+

∫
σn

‖Λωif‖2 dµ(ω) >

>
∑

i∈[m]\{n}

( ∫
ςi∪σi

‖Λωif‖2 dµ(ω)−
∫

Ω\Σ

‖Λωif‖2 dµ(ω)
)

+

∫
σn

‖Λωif‖2 dµ(ω) =

=
∑
i∈[m]

∫
ςi∪σi

‖Λωif‖2 dµ(ω)−
∑

i∈[m]\{n}

∫
Ω\Σ

‖Λωif‖2 dµ(ω) > (A−D)‖K∗f‖2.
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The proof is completed. �

The next result provides a necessary and sufficient condition for
c-K-g-woven that connects to c-K-woven.

Theorem 3. Let Ωi ⊆ Ω be measurable subsets for all i ∈ [m], and
let Fi and Gi be c - frame mappings on Ωi for Hω with the pair frame
bounds (AFi , BFi), and (AGi , BGi), respectively, for each ω ∈ Ω. Assume
that Λωi, Θωi ∈ B(H,Ωi) for any i ∈ [m], such that {Λωi}ω∈Ω, i∈[m] and
{Θωi}ω∈Ω, i∈[m] are strongly measurable. Then the following assertions are
equivalent:

(I) {Λ∗ωiFi}ω∈Ω, i∈[m] and {Θ∗ωiGi}ω∈Ω, i∈[m] are c-K-woven for H.
(II) {Λωi}ω∈Ω, i∈[m] and {Θωi}ω∈Ω, i∈[m] are c-K-g-woven for H.

Proof. (I) ⇒ (II). Assume that σ ⊂ Ω is a measurable subset and
f ∈ H. Let {Λ∗ωiFi}ω∈Ω, i∈[m] and {Θ∗ωiGi}ω∈Ω, i∈[m] be c-K-woven for H
with universal frame bounds C, D, and A = inf{AFωi , AGωi}. We have,
for each i ∈ [m]:

A

∫
σ

‖Λωif‖2 dµ(ω) + A

∫
σc

‖Θωif‖2 dµ(ω) 6

6
∫
σ

AFωi‖Λωif‖2 dµ(ω) +

∫
σc

AGωi‖Θωif‖2 dµ(ω) 6

6
∫
σ

∫
Ωi

|〈Λωif, Fi(x)〉|2 dµ(x) dµ(ω) +

∫
σc

∫
Ωi

|〈Θωif,Gi(x)〉|2 dµ(x) dµ(ω) =

=

∫
σ

∫
Ωi

|〈f,Λ∗ωiFi(x)〉|2 dµ(x) dµ(ω) +

∫
σc

∫
Ωi

|〈f,Θ∗ωiGi(x)〉|2 dµ(x) dµ(ω) 6

6 D‖f‖2.

In the same way, we conclude that

B

∫
σ

‖Λωif‖2 dµ(ω) +B

∫
σc

‖Θωif‖2 dµ(ω) >

>
∫
σ

∫
Ωi

|〈f,Λ∗ωiFi(x)〉|2 dµ(x) dµ(ω)+

∫
σc

∫
Ωi

|〈f,Θ∗ωiGi(x)〉|2 dµ(x) dµ(ω) >

> C‖K∗f‖2,
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where B = sup{BFωi , BGωi}. Thus, we have checked that {Λωi}ω∈Ω, i∈[m]

and {Θωi}ω∈Ω, i∈[m] are c-K-g-woven for H with universal frame bounds
C

B

and
D

A
.

(II) ⇒ (I). Suppose that {Λωi}ω∈Ω, i∈[m] and {Θωi}ω∈Ω, i∈[m] are
c-K-g-woven for H with universal frame bounds C and D. Now, we can
write for each f ∈ H:∫

σ

∫
Ωi

|〈f,Λ∗ωiFi(x)〉|2 dµ(x) dµ(ω) +

∫
σc

∫
Ωi

|〈f,Θ∗ωiGi(x)〉|2 dµ(x) dµ(ω) =

=

∫
σ

∫
Ωi

|〈Λωif, Fi(x)〉|2 dµ(x) dµ(ω) +

∫
σc

∫
Ωi

|〈Θωif,Gi(x)〉|2 dµ(x) dµ(ω) >

>
∫
σ

AFωi‖Λωif‖2 dµ(ω) +

∫
σc

AGωi‖Θωif‖2 dµ(ω) >

> A
(∫
σ

‖Λωif‖2 dµ(ω) +

∫
σc

‖Θωif‖2 dµ(ω)
)
> AC‖K∗f‖2.

Also, we can get∫
σ

∫
Ωi

|〈f,Λ∗ωiFi(x)〉|2 dµ(x)dµ(ω)+

∫
σc

∫
Ωi

|〈f,Θ∗ωiGi(x)〉|2dµ(x)dµ(ω)6BD‖f‖2.

So, {Λ∗ωiFi}ω∈Ω, i∈[m] and {Θ∗ωiGi}ω∈Ω, i∈[m] are c-K-woven for H with
universal bounds AC and BD. �

In the next theorem we give a sufficient condition for c-K-g-woven.

Theorem 4. Let {Λωi}ω∈Ω be a c-K-g-frame for H with frame bounds
Ai and Bi for each i ∈ [m]. Suppose that there exists M > 0, such that
for all f ∈ H, i 6= k ∈ [m] and any measurable subset ∆ ⊂ Ω:∫
∆

‖(Λωi −Λωk)f‖2 dµ(ω) 6M min
{∫

∆

‖Λωif‖2 dµ(ω),

∫
∆

‖Λωkf‖2 dµ(ω)
}
.

Then the family {Λωi}ω∈Ω, i∈[m] is a c-K-g-woven with universal bounds

A

(m− 1)(M + 1) + 1
and B,
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where A :=
∑
i∈[m]

Ai and B =
∑
i∈[m]

Bi.

Proof. The upper bound is evident. For the lower bound, suppose that
{σi}i∈[m] is a partition of Ω and f ∈ H. Therefore,∑

i∈[m]

Ai‖K∗f‖2 6
∑
i∈[m]

∫
Ω

‖Λωif‖2 dµ(ω) =
∑
i∈[m]

∑
j∈[m]

∫
σj

‖Λωif‖2 dµ(ω) 6

6
∑
i∈[m]

(∫
σi

‖Λωif‖2dµ(ω)+
∑
j∈[m]
j 6=i

∫
σj

{
‖Λωif−Λωjf‖2dµ(ω)+‖Λωjf‖2dµ(ω)

})
6

6
∑
i∈[m]

(∫
σi

‖Λωif‖2 dµ(ω) +
∑
j∈[m]
j 6=i

∫
σj

(M + 1)‖Λωjf‖2 dµ(ω)
)

=

=
{

(m− 1)(M + 1) + 1
} ∑
i∈[m]

∫
σi

‖Λωif‖2 dµ(ω).

This completes the proof. �

3. Construction of c-K-g-woven with Bounded Operators.
For a given c-K-g-woven {Λωi ∈ B(H,Hω)}ω∈Ω, i∈[m] of H, we will obtain
another c-K-g-woven for space. One approach is to construct the family
{Λωi ∈ B(H,Hω)}ω∈Ω, i∈[m], where U ∈ B(H). The following theorem
gives us necessary and sufficient conditions for {ΛωiU

∗}ω∈Ω, i∈[m] to be a
c-K-g-woven of H.

Theorem 5. Let K ∈ B(H) be a closed range, {Λωi}ω∈Ω, i∈[m] be a
c-K-g-woven for H with universal bounds A,B and U ∈ B(H) with
R(U∗) ⊆ R(K). Then {ΛωiU

∗}ω∈Ω, i∈[m] is a c-K-g-woven for H if and
only if there exists a constant δ > 0, such that for all f ∈ H

‖U∗f‖ > δ‖K∗f‖.

Proof. First, since U∗f ∈ H and ω 7→ ‖Λωif‖ is a measurable function
for each f ∈ H and i ∈ [m], then ω 7→ ‖ΛωiU

∗f‖ is measurable for any
f ∈ H and i ∈ [m]. Suppose that {ΛωiU

∗}ω∈Ω, i∈[m] to be a c-K-g-woven
for H with the lower bound C. If B is the upper bound of {Λωi}ω∈Ω, i∈[m],
then for each f ∈ H and any partition {σi}i∈[m] of Ω,

C‖K∗f‖2 6
∑
i∈[m]

∫
σi

‖ΛωiU
∗f‖2 dµ 6 B‖U∗f‖2.
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Hence, ‖U∗f‖ >
√

C
B
‖K∗f‖. As for the opposite implication, for every

f ∈ H we have

‖U∗f‖ = ‖(K†)∗K∗U∗f‖ 6 ‖K†‖ · ‖K∗U∗f‖.

Therefore, for each partition {σi}i∈[m] of Ω

Aδ2‖K†‖−2‖K∗f‖2 6 A‖K†‖−2‖U∗f‖2 6 A‖K∗U∗f‖2 6

6
∑
i∈[m]

∫
σi

‖ΛωiU
∗f‖2d µ.

The upper bound condition is given similarly. �

Corollary. Let K be a closed range, {Λωi}ω∈Ω, i∈[m] be a c-K-g-woven for
H with universal bounds A,B. If U ∈ B(H) with R(U∗) ⊆ R(K), then
{ΛωiU

∗}ω∈Ω, i∈[m] is a c-K-g-woven for H if and only if U is surjective.

Proof. By Theorem 5, we get, for any f ∈ H,

δ‖K†‖−1‖f‖ 6 δ‖K∗f‖ 6 ‖U∗f‖

and this completes the proof. �

Theorem 6. Suppose that Λ = {Λωi}ω∈Ω, i∈[m] is a c-K-g-woven for H
with the lower bound A and U ∈ B(H) with R(U) ⊆ R(K). Then Λ is a
c-U -g-woven for H.

Proof. Due to Lemma 2, there exists α > 0, such that UU∗ 6 α2KK∗.
Let {σi}i∈[m] be a partition of Ω. Then, for each f ∈ H, we have

Aα−2‖U∗f‖2 6 A‖K∗f‖2 6
∑
i∈[m]

∫
σi

‖Λωif‖2 dµ(ω).

Thus, Λ is a c-U -g-woven. �

Theorem 7. Suppose that K∈B(H) has dense range, Λ={Λωi}ω∈Ω, i∈[m]

is a c-K-g-woven for H, and U ∈ B(H) has closed range. If
{ΛωiU

∗}ω∈Ω, i∈[m] is a c-K-g-woven for H, then U is surjective.

Proof. Assume that {σi}i∈[m] is a partition of Ω. Hence, for any f ∈ H,
we have

A‖K∗f‖2 6
∑
i∈[m]

∫
σi

‖ΛωiU
∗f‖2 dµ(ω). (3)
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Since N (K∗) = R(K)⊥ and K has dense range, K∗ is injective. By (3),
N (U∗) ⊆ N (K∗), U∗ is injective. Moreover R(U) = N (U∗)⊥ = H. Thus,
U is surjective. �

Corollary. Let K ∈ B(H) be a dense range, Λ = {Λωi}ω∈Ω, i∈[m] be a
c-K-g-woven for H, and U ∈ B(H) be a closed range with R(U∗) ⊆ R(K).
Then {ΛωU

∗}ω∈Ω is a c-K-g-woven for H if and only if U is surjective.

Theorem 8. Suppose that K ∈ B(H) and Λ = {Λωi}ω∈Ω, i∈[m] is a
c-K-g-woven for H with the frame bounds A, B. If U ∈ B(H) has a
closed range with UK = KU and R(K∗) ⊂ R(U), then {ΛωiU

∗}ω∈Ω, i∈[m]

is a c-K-g-woven for H with frame bounds A‖U †‖−2 and B‖U‖2.

Proof. As U has closed range, it has the pseudo-inverse U †, such that
UU † = I. Now, for each f ∈ H, we obtain

‖K∗f‖2 = ‖UU †K∗f‖2 = ‖(U †)∗U∗K∗f‖2 6 ‖U †‖2‖K∗U∗f‖2,

from which we arrive at∑
i∈[m]

∫
σi

‖ΛωiU
∗f‖2 dµ(ω) > A‖K∗U∗f‖2 > A‖U †‖−2‖K∗f‖2.

The upper bound is obvious. �

Theorem 9. Let K ∈ B(H) be a dense range, Λ = {Λωi}ω∈Ω, i∈[m] be a
c-K-g-woven for H, and U ∈ B(H) be a closed range. If {ΛωiU

∗}ω∈Ω, i∈[m]

and {ΛωiU}ω∈Ω, i∈[m] are c-K-g-woven for H, then U is invertible.

Proof. Suppose that A1, B1 are the universal bounds of {ΛωiU
∗}ω∈Ω, i∈[m]

and A2, B2 are the universal bounds of {ΛωiU}ω∈Ω. For any f ∈ H we
have

A1‖K∗f‖2 6
∑
i∈[m]

∫
σi

‖ΛωiU
∗f‖2 dµ(ω)‖2d µ 6 B1‖f‖2 (4)

andN (U∗) ⊆ N (K∗). SinceK has dense range,K∗ is injective. Moreover,
R(U) = N (U∗)⊥ = H, then U is surjective. Also, by

A2‖K∗f‖2 6
∑
i∈[m]

∫
σi

‖ΛωiUf‖2d µ 6 B2‖f‖2, (5)

we get N (U) ⊂ N (K∗), so U is injective. Thus, U is invertible. �
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Corollary. Suppose that K ∈ B(H) has a dense range, that U ∈ B(H)
has a closed range with UK = KU , and Λωi ∈ B(H,Hω) for any ω ∈ Ω,
i ∈ [m]. If {ΛωiU}ω∈Ω, i∈[m] and {ΛωiU

∗}ω∈Ω, i∈[m] are both c-K-g-woven
for H, then {Λωi}ω∈Ω, i∈[m] is a c-K-g-woven for H.

Proof. By theorem 9, U is invertible on H. Since UK = KU , U−1K =
= KU−1, R(K∗) ⊂ R(U−1) = H, and

{Λωi}ω∈Ω, i∈[m] = {ΛωiU
∗(U−1)∗}ω∈Ω, i∈[m].

Hence, by Theorem 8, {Λωi}ω∈Ω, i∈[m] is a c-K-g-woven for H. �

Theorem 10. Let Λ = {Λωi}ω∈Ω, i∈[m] be a c-K-g-woven for H and
U ∈ B(H) be a co-isometry (i. e., UU∗ = 1) with UK = KU . Then
{ΛωiU

∗}ω∈Ω, i∈[m] is a c-K-g-woven for H with universal bounds A and B.

Proof. Let A, B be the universal bounds of Λ. Since U is co-isometry,
we have, for each f ∈ H,∑

i∈[m]

∫
σi

‖ΛωiU
∗f‖2 dµ(ω) > A‖K∗U∗f‖2 = A‖U∗K∗f‖2 = A‖K∗f‖2

For the upper bound, it is clear that∑
i∈[m]

∫
σi

‖ΛωiU
∗f‖2 dµ(ω) 6 B‖U∗f‖2 = B

and the proof is completed. �

4. Perturbation for c-K-g-woven. Bemrose et al. in [6] proved
sufficient conditions for weaving frames using perturbation and diagonal
dominance. Perturbation of c-K-g-frames and weaving c-g-frames has been
investigated in [3, 5]. We study a Paley-Wiener-type perturbation for
c-K-g-woven.

Theorem 11. Let {Λω}ω∈Ω and {Γω}ω∈Ω be two c-K-g-frames for H
with frame bounds A1, B1 and A2, B2, respectively. Suppose that there
exist non-negative scalers η and 0 6 λ < 1

2
, such that (1

2
− λ)A1 > γ, and

for each f ∈ H,∫
Ω

‖(Λω − Γω)f‖2 dµ(ω) 6 λ

∫
Ω

‖Λωf‖2 dµ(ω) + γ‖K∗f‖2.
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Then, {Λω}ω∈Ω and {Γω}ω∈Ω are c-K-g-woven for H with universal frame
bounds (1

2
− λ)A1 − γ and B1 +B2.

Proof. The upper frame bound is clear. For the lower frame bound,
assume that σ ⊂ Ω and we get, by the arithmetic-quadratic mean, for any
f ∈ H:∫

σ

‖Λωf‖2 dµ(ω) +

∫
σc

‖Γωf‖2 dµ(ω) >

>
∫
σ

‖Λωf‖2 dµ(ω) +
1

2

∫
σc

‖Λωf‖2 dµ(ω)−
∫
σc

‖(Λω − Γω)f‖2 dµ(ω) =

=
1

2

∫
Ω

‖Λωf‖2 dµ(ω) +
1

2

∫
σ

‖Λωf‖2 dµ(ω)−
∫
σc

‖(Λω − Γω)f‖2 dµ(ω) >

>
1

2

∫
Ω

‖Λωf‖2 dµ(ω)−
∫
σc

‖(Λω − Γω)f‖2 dµ(ω) >

>
1

2

∫
Ω

‖Λωf‖2 dµ(ω)− λ
∫
Ω

‖Λωf‖2 dµ(ω)− γ‖K∗f‖2 >

>
(

(
1

2
− λ)A1 − γ

)
‖K∗f‖2.

This completes the proof. �
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