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Abstract. We study a rate of uniform approximations on the real
line of summable Lipschitz functions f having a summable Hilbert
transform Hf by normalized logarithmic derivatives of rational
functions. Inequalities between different metrics of the logarithmic
derivatives of algebraic polynomials on the line are also considered.
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1. Main result. Denote the Hilbert transform of a function f by Hf ,

Hf(x) :=
1

π
lim
ε→+0

∫
|t−x|>ε

f(t)

t− x
dt, −∞ < x < +∞.

In this paper, by using the results of [10] and certain properties of the
Hilbert transform, we obtain upper bounds for uniform approximations
on R of a sufficiently wide subclass of real-valued functions f by rational
fractions Rn, n = 2, 3, . . . , of the special form

Rn(x) =
C

n

(
P ′(x)

P (x)
− Q′(x)

Q(x)

)
, C = C(f) > 0, (1)

where P , Q are real polynomials of degree n − 1. Here the expression in
brackets is a difference of the so-called simple partial fractions

n−1∑
k=1

1

x− zk
. (2)
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Setting rn−1 = P/Q, we represent the fraction (1) in the form of the
normalized logarithmic derivative of a rational function of degree n− 1:

Rn(x) =
C

n
·
r′n−1(x)

rn−1(x)
, degRn = 2n− 2.

Further we denote ‖ · ‖p := ‖ · ‖Lp(R) (1 6 p 6∞) and L := L1(R). We
write f ∈ Lipα{A;E}, if a function f is defined on a set E ⊆ R and there
are constants α ∈ (0,1] and A > 0, such that

|f(x1)− f(x2)| 6 A|x1 − x2|α

for any two points x1, x2 ∈ E. By C0(R) we denote the class of continuous
on R functions having the zero limit as x→ ±∞.

Theorem 1. Let n = 2, 3, . . . . Let a real-valued function f belong to
C0(R) and let the following conditions hold:

1) f ∈ Lipα{A;R} with some α ∈ (0,1), A > 0,
2) f ∈ L, Hf ∈ L.

Then there are real polynomials Q1, Q2 of degree n− 1, such that∣∣∣∣f(x)− ‖Hf‖1

4πn

r′(x)

r(x)

∣∣∣∣ < c(f)

nα/(1+α)
, −∞ < x < +∞,

where r(x) = Q1(x)/Q2(x); c(f) > 0 is a constant depending only on f .

Theorem 1 is proved in Section 3; we show that the constant

c(f) = 4A(απ)−1B
(
α
2
,1−α

2

)
+ 2α−1‖Hf‖1

is suitable (here B(x,y) is Euler’s beta-function). Our proof uses the well-
known implication: f ∈ Lipα{A;R} (α ∈ (0,1)) ⇒ Hf ∈ Lipα{Ã;R}.
Here the restriction α < 1 is essential; nevertheless, if the assumptions of
Theorem 1 hold for α = 1 and, additionally, Hf ∈ Lip1{Ã;R}, then the
estimate given in Theorem 1 holds with the bound

c(f)
/√

n, c(f) := 4Ã+ 2‖Hf‖1.

For a small α, the order of approximation O(n−α/(1+α)) ≈ O(n−α), es-
tablished by the theorem, cannot be essentially improved in the following
sense: if approximations of a function f by the class of all rational func-
tions of degree 2n−2 have order O(n−α0−ε) with α0 ∈ (α, 1) (while ε > 0 is
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arbitrarily small) for all n = 2, 3, . . . , then, by the Gonchar converse theo-
rem [6], f satisfies the Lipschitz condition of degree α0 almost everywhere
on R (in contrast to the condition f ∈ Lipα{A;R}, where α < α0).

Borodin and Kosukhin [2] have proved that any function f ∈ C0(R)
can be approximated uniformly on R by sums of the form (2) with poles
zk outside any given strip |Im z| < const. In our construction, all poles
of the approximating functions Rn (i.e., the zeros of the polynomials Q1,
Q2) lie on the two lines Im z = ±n−1/(1+α), so that |Im zk| → 0 as n→∞.

Some estimates of uniform approximations on R of certain functions f
by differences of simple partial fractions were obtained in [9]. For example,
an order of such approximations is O(n−1) if a function f has the form

f(x) =
x

(1 + x2)2
F

(
1− x2

1 + x2

)
, −∞ < x < +∞,

with some function F (t) ∈ Lip1{A; [−1, 1]}. Concerning the uniform ap-
proximation rate by simple partial fractions themselves (not by their dif-
ferences) on the whole real axis recall the result by Danchenko [4]: for any
function f of the form

f(x) = fa(x) = − 1

x− a
, a ∈ C \ R,

and sufficiently large n > n0(a) there is a complex polynomial P of degree
n, such that∣∣fa(x)− P ′(x)/P (x)

∣∣ < C · ln lnn/ lnn, −∞ < x < +∞,

where C > 0 is a constant depending only on a (the order of approximation
cannot be improved). At the end of Section 3, we discuss the rate of the
uniform approximation by normalized simple partial fractions.

2. Some remarks on the assumptions of Theorem 1. The class
of functions f , such that f ∈ L andHf ∈ L, is called [12, p. 165] theHardy
classH1(−∞,∞). Thus, the second condition of Theorem 1 can be written
as follows: f ∈ H1(−∞,∞). For example, the class H1(−∞,∞) contains
the derivative R′ of any bounded on R rational function R, because of the
Rusak inequality

‖R′‖1 + ‖H(R′)‖1 6 4πn‖R‖∞, n = degR

(see [12, p. 165]). Further nontrivial examples of functions f ∈ H1(−∞,∞)
can be found in the paper by Kober [8].
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Protasov [13] described the class Vp = Vp(R) of functions f ∈ Lp(R),
p ∈ (1,∞), that can be approximated in Lp(R) by sums of the form

N∑
k=1

pk
x− zk

, pk > 0. (3)

In particular, [13, Corollary 1], if a function f belongs to Lp(R) and is
real-valued, then f ∈ Vp if and only if Hf(x) > 0 for almost all x ∈ R.

Let us show that a nonzero function f , satisfying the conditions of
Theorem 1, cannot be approximated by sums (3) in Lp(R).

Proposition 1. Let a real-valued function f belong to Lp(R), p ∈ (1,∞).
Then f ∈ Vp ∩H1(−∞,∞) if and only if f(x) = 0 a.e.

Proof. The sufficient condition is obvious. To prove the necessary condi-
tion, we first recall the result of Kober [8, Theorem 1]:

f ∈ L, Hf ∈ L ⇒
∞∫

−∞

f(x)dx = 0. (4)

On the other hand (Hille and Tamarkin, see [8, Lemma 2]), we have1

f ∈ L, Hf ∈ L ⇒ HHf = −f a.e. (5)

Thus, if f ∈ H1(−∞,∞), then f̃ := Hf ∈ L and, by (5), Hf̃ = −f ∈ L;
by applying (4) to the function f̃ , we get

f ∈ H1(−∞,∞) ⇒
∞∫

−∞

Hf(x)dx = 0. (6)

But if f ∈ Vp, then Hf(x) > 0 a.e. [13]. Hence, for any function
f ∈ Vp ∩H1(−∞,∞) we have Hf(x) = 0 a.e. Therefore, f(x) = 0 a.e. by
f = −HHf , see (5). �

Let us formulate another simple observation concerning the class Vp.

Proposition 2. Let an even real-valued function f belong to Lp(R),
p ∈ (1,∞). Then f ∈ Vp if and only if f(x) = 0 a.e.

1Of course, we also have HHf = −f (a.e.) due to f ∈ Lp(R), p > 1 [7, p. 148].
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Proof. Indeed, the Hilbert transform Hf of an even function f is odd
(see [7, p. 146]). But if an odd function Hf(x) is non-negative (a.e.),
then Hf(x) = 0 (a.e.). Finally, we use, again, the formula f = −HHf ,
which is correct due to f ∈ Lp(R). �

The results of Danchenko [4] yield that the functions fa(x) (see Sec-
tion 1) cannot be approximated by simple partial fractions in Lp(R) with
finite p. In particular, this remark is also true for the real-valued function

g(x) := − 2x

x2 + 1
≡ − 1

x+ i
− 1

x− i
.

At the end of Section 4, we establish that the normalized logarithmic
derivatives Q′(x)/(nQ(x)) of real polynomials Q(x) rapidly converge to
g(x) on the line in Lp(R) with any 1 < p 6 ∞. Note that g ∈ Vp for all
1 < p <∞ by the theorem of Protasov, because

Hg(x) =
i

x+ i
+
−i
x− i

=
2

x2 + 1
> 0

(see [7, p. 104] for explicit values of H((x+ iα)−1) with nonzero α).
Although the class Vp is narrow, Protasov has showed [13, Remark 1]

that any function f ∈ Lp(R), p ∈ (1,∞), can be approximated in Lp(R)
by differences of sums of the form (3). Obviously, the normalized logarith-
mic derivatives of rational functions, see (1), belong to the space of such
differences.

3. Proof of Theorem 1. Put f̃ = Hf . Since f ∈ Lipα{A;R} with
α ∈ (0, 1), it follows by the theorem of Aleksandrov [1] that

f̃ ∈ Lipα{Ã;R}, Ã = Aπ−1B
(
α
2
, 1−α

2

)
.

Let us write the real-valued function f̃ in the form f̃ = f̃1 − f̃2,

f̃1(x) := max{f̃(x); 0} > 0, f̃2(x) := max{−f̃(x); 0} > 0.

Both functions f̃k also belong to the class Lipα{Ã;R}: for example, the
identity f̃1(x) = (f̃(x) + |f̃(x)|)/2 and the triangle inequality yield∣∣f̃1(x1)−f̃1(x2)

∣∣ 6 1
2

∣∣f̃(x1)−f̃(x2)
∣∣+ 1

2

∣∣|f̃(x1)|−|f̃(x2)|
∣∣ 6 ∣∣f̃(x1)−f̃(x2)

∣∣.
By the assumptions of the theorem, f̃ ∈ L. Hence, f̃1, f̃2 ∈ L and

‖f̃‖1 =

∞∫
−∞

f̃1(x)dx+

∞∫
−∞

f̃2(x)dx = ‖f̃1‖1 + ‖f̃2‖1.
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From this, we get ‖f̃1‖1 = ‖f̃2‖1 = 1
2
‖f̃‖1 using the formula (6).

Further, we can assume ‖f̃‖1 > 0. Both functions

Fk(x) := f̃k(x)
/
‖f̃k‖1 = 2f̃k(x)

/
‖f̃‖1, k = 1; 2,

are non-negative and

‖Fk‖1 = 1, Fk ∈ Lipα{A∗;R} (A∗ := 2Ã
/
‖f̃‖1).

By [10, Theorem 3], there are real polynomials Q1, Q2 of degree n − 1,
such that∣∣∣∣HFk(x) +

1

2πn

Q′k(x)

Qk(x)

∣∣∣∣ < 2A∗ + 2

αnα/(1+α)
, −∞ < x <∞, k = 1; 2.

Namely (see [10, Lemma 2]), we can take

Qk(x) =
n−1∏
j=1

(
(xk,j − x)2 + n−2/(1+α)

)
, k = 1; 2,

where the points xk,0 = −∞ < xk,1 < . . . < xk,n−1 < xk,n = ∞ are
defined by

xk,j+1∫
xk,j

Fk(x)dx =
1

n
, j = 0, . . . , n− 1.

Hence,∣∣∣∣HF1(x)−HF2(x) +
1

2πn

r′(x)

r(x)

∣∣∣∣ < 4A∗ + 4

αnα/(1+α)
, −∞ < x < +∞,

where r(x) := Q1(x)/Q2(x) and

HF1(x)−HF2(x) = 2‖f̃‖−1
1 H(f̃1(x)− f̃2(x)) = −2‖Hf‖−1

1 f(x)

by (5). Theorem 1 is proved. �
By using very similar arguments, we easily obtain the following as-

sertion, which complements the theorem in the case when f 6∈ L and
f ∈ Lp(R), p > 1.

Proposition 3. Let p ∈ (1,∞), n = 2, 3, . . . Let a real-valued function
f belong to C0(R) ∩ Lp(R). If the function Hf is nonnegative, Hf ∈ L



60 M. A. Komarov

and Hf ∈ Lipα{Ã;R} with some α ∈ (0, 1], Ã > 0, then there is a real
polynomial Q of degree n− 1, such that∣∣∣∣f(x)− ‖Hf‖1

2πn

Q′(x)

Q(x)

∣∣∣∣ < 2 · Ã+ ‖Hf‖1

αnα/(1+α)
, −∞ < x < +∞.

Note that any function f , satisfying the conditions of Proposition 3,
belongs to Vp. If, moreover, f 6≡ 0, then f 6∈ L (sf. Proposition 1).

Proof. Assume that d := ‖Hf‖1 > 0 and set F (x) = Hf(x)/d. The
function F is nonnegative and ‖F‖1 = 1, F ∈ Lipα{Ã/d;R}. By [10,
Theorem 3], there is a real polynomial Q of degree n− 1, such that∣∣∣∣HF (x) +

1

2πn

Q′(x)

Q(x)

∣∣∣∣ < 2Ã+ 2d

αnα/(1+α)d
, −∞ < x < +∞.

By f ∈ Lp(R), we have f = −HHf . Hence, HF (x) ≡ −f(x)/d, and the
assertion follows. The case d = 0 is trivial (f ≡ 0). �

4. Inequalities between different metrics for simple partial
fractions. Nikol’skii inequalities for simple partial fractions

ρn(z) =
n∑
k=1

1

z − zk

were studied by many authors (see, for example, [5], [3] and references
therein). Let us recall one result of the paper by Chunaev and Danchenko [3],
stated as Theorem 4.5: for any z1, . . . , zn ∈ C\R and 1 < p < q 6∞,

‖ρn‖q
′

q 6 2q
′−p′
(
κp
π

)p′q′( 1
p
− 1
q

)

(1 + cp)
p′‖ρn‖p

′

p , (7)

where κp is a unique natural number, which belongs to [p
2
, p

2
+ 1),

1

q
+

1

q′
= 1 =

1

p
+

1

p′
, cp =

{
tan π

2p
, 1 < p 6 2,

cot π
2p
, 2 6 p <∞,

cp > 1 is the norm of the Hilbert transform in Lp(R). A similar inequality
with a bigger constant was first obtained by Danchenko and Dodonov in
the paper [5], where the authors raised the problem of finding a better
upper bound for the ratio ‖ρn‖q

′
q

/
‖ρn‖p

′
p .
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Thus, our goal is to improve the constant factor in the estimate (7).
If all zk are non-real, then ρn(x) is bounded on the real line:

M := ‖ρn‖∞ <∞.

Putting q =∞ in (7), we get

M 6 21−p′
(
κp
π

)p′/p
(1 + cp)

p′‖ρn‖p
′

p , 1 < p <∞. (8)

But
1− p′ = p′

(
1

p′
− 1

)
= −p

′

p
,

therefore, (8) can be written in the form

M 6

(
κp
2π

)p′/p
(1 + cp)

p′‖ρn‖p
′

p , 1 < p <∞. (9)

Now, let q <∞. Since |ρn(x)| 6M at points x ∈ R, we see that

a∫
−a

|ρn(x)|qdx =

a∫
−a

|ρn(x)|q−p|ρn(x)|pdx 6M q−p

a∫
−a

|ρn(x)|pdx

for q > p and any a > 0. Letting a→∞, we get

‖ρn‖qq 6M q−p‖ρn‖pp, 1 < p < q,

because ρn belongs to all the spaces Lp(R), p > 1.
Using the estimate (9) and the transformation

(q − p)p
′q′

q
= pq

(
1

p
− 1

q

)
p′q′

q
= p(p′ − q′),

we obtain

‖ρn‖q
′

q 6M (q−p)q′/q ‖ρn‖pq
′/q

p 6

(
κp
2π

(1 + cp)
p

)p′−q′
‖ρn‖p(p

′−q′)+pq′/q
p .

Observe that

p(p′ − q′) +
pq′

q
= pq′

(
p′

q′
− 1 +

1

q

)
= pp′

(
1− 1

p′

)
= p′.
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Thus, we have proved the following result:

Theorem 2. For any simple partial fraction ρn without poles on R:

‖ρn‖q
′

q 6

(
κp
2π

(1 + cp)
p

)p′−q′
‖ρn‖p

′

p , 1 < p < q 6∞. (10)

For q =∞, the estimate (10) coincides with the result of Chunaev and
Danchenko (7), because of the equality p(p′ − 1) = p′. However, for any
q <∞, Theorem 2 is stronger than (7), since in this case

p(p′ − q′) = p′(p′ − q′)/(p′ − 1) < p′

and, therefore,
(1 + cp)

p(p′−q′) < (1 + cp)
p′ .

Even more, in contrast to (7), the estimate (10) has the following impor-
tant property: the left-hand side of the estimate tends to the right-hand
side as q → p.

Our next purpose is to establish some (q,∞) Nikol’skii inequalities
for differences of simple partial fractions. Let Θ be a weak norm of the
Hilbert transform, i.e., the smallest possible value of a constant C in the
Kolmogorov inequality

m({x ∈ R : |Hf(x)| > δ}) 6 C‖f‖1/δ,

where f is any real-valued summable function and m(E) denotes the
Lebesgue measure of a set E ⊂ R. Recall that [7, p. 338]

Θ =
π2/8

1− 3−2 + 5−2 − . . .
= 1.347 . . .

It was proved in [10] that if r is a real rational function of degree n and
µ(r,δ) := m({x ∈ R : |r′(x)/r(x)| > δ}), then, for any δ > 0,

µ(r, δ) 6 2πΘ · n/δ, (11)

where the constant 2πΘ cannot be replaced by a smaller value. Note that
(11) can be formulated as follows: for any real rational function r of degree
n and δ > 0 there is a set E = E(r, δ) ⊂ R, such that m(E) 6 δ and

|r′(x)| 6 2πΘ · n
δ
|r(x)|, x ∈ R\E.
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The last estimate was first obtained (with a bigger factor C lnn instead
of 2πΘ) by Gonchar [6] and used by him in the proof of the converse
theorem, mentioned in Section 1 above.

Estimates of the quantity µ(r, δ) are well-known in the case of complex
polynomials r = P by the works of Macintyre and Fuchs, Govorov and
Grushevskii and others (see details and references in [10]). For example,
the famous result by Macintyre and Fuchs (1940) is

µ(P, δ) 6 2e · n/δ, n = degP (δ > 0).

The best possible result [11] for real polynomials P of degree n is

µ(P, δ) 6 π · n/δ (δ > 0). (12)

Using (11) and (12), we easily establish the following extension of theo-
rem 3 of the paper [5], where the case of complex polynomials r = P is
considered:

Theorem 3. Let 1 < q 6 ∞ and let E be an arbitrary bounded or
unbounded segment of R. Then, for any real rational function r of degree
n without poles and zeros on E we have

‖R‖q
′

Lq(E) 6
(
2πΘ · nq′

)q′/q‖R‖L∞(E), 1/q + 1/q′ = 1,

where R(x) = r′(x)/r(x). Moreover, if r(x) = P (x) is a real polynomial of
degree n, i.e., R(x) ≡ ρn(x) is a real-valued simple partial fraction, then
the constant 2πΘ in this estimate can be replaced by π.

Proof. Set M = ‖R‖L∞(E). By the assumptions of the theorem, we have
M <∞ and R ∈ Lq(E) for all q > 1. Next, we have [7, p. 233]

‖R‖qLq(E) = q

M∫
0

µ̃(δ)δq−1dδ, µ̃(δ) := m({x ∈ E : |R(x)| > δ}).

But µ̃(δ) 6 µ(r, δ), hence, by (11):

‖R‖qLq(E) 6 q

M∫
0

2πΘ · n · δq−2dδ = 2πΘ · nq′M q−1,

and the first assertion of the theorem follows. Analogously, the second
assertion follows from (12). �
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Corollary. Let n = 2, 3, . . . and g(x) = −2x/(x2 + 1). There is a real
polynomial Q of degree n− 1, such that for every 1 < q 6∞∥∥∥∥g − 1

n

Q′

Q

∥∥∥∥q′
q

<
cq√
n
, cq := 4(π + 1)(3πq′)q

′/q, 1/q + 1/q′ = 1.

Proof. Recall that Hg(x) = 2/(x2 + 1) (see Section 2), therefore,

Hg ∈ L, ‖Hg‖1 = 2π, Hg ∈ Lip1{2;R}.

By applying Proposition 3, we get existence of a real polynomial Q of
degree n− 1, such that

‖∆‖∞ <
4(π + 1)√

n
≡ c∞√

n

(
∆(x) :=

1

n

Q′(x)

Q(x)
− g(x)

)
.

Now consider the logarithmic derivative R(x) := h′(x)/h(x), where

h(x) := Q(x)(x2 + 1)n

is a real polynomial of degree (n − 1) + 2n < 3n. But R(x) ≡ n∆(x);
hence, by Theorem 3, we have

‖∆‖q′q = n−q
′‖R‖q′q 6 n−q

′
(π · deg h · q′)q′/q‖R‖∞ 6

6 n1−q′(π · 3n · q′)q′/q‖∆‖∞ = n1−q′+q′/q(3πq′)q
′/q‖∆‖∞,

where 1−q′+q′/q = 0. Thus, the result follows from this and the previous
estimate of ‖∆‖∞. �
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