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1. Introduction and main results. Let Γ ⊂ C be a rectifiable
Jordan curve. For a given 0 < λ 6 2 and 1 6 p < ∞, the Morrey space
Lp,λ (Γ) is defined as the set of all functions f ∈ Lploc (Γ), such that

‖f‖Lp,λ(Γ) :=

{
sup
B

1

|B ∩ Γ|1−λ/2

∫
B∩Γ

|f (z)|p |dz|
}1/p

<∞,

where |B ∩ Γ| denotes the Lebesgue measure of B ∩ Γ and the supremum
is taken over all disks B ⊂ C centered on Γ. Let T := {w : |w| = 1} or
T := [0, 2π]. In the case of Γ = T, the Morrey space Lp,λ (T) can be
defined as the set of all functions f ∈ Lploc (0, 2π) for which

‖f‖Lp,λ(T) = ‖f‖Lp,λ(0,2π) :=

{
sup
I

1

|I|1−
λ
2

∫
I

∣∣f (eiθ)∣∣p |dθ|}1/p

<∞,

where the supremum is taken over all subintervals I ⊂ (0, 2π). Lp,λ (Γ),
0 < λ 6 2 and 1 6 p < ∞, becomes a Banach space equipped with
the norm ‖·‖Lp,λ(Γ). If we choose λ = 2, then Lp,2 (Γ) coincides with the
Lebesgue space Lp (Γ); also, if we choose λ = 0, then Lp,0 (Γ) coincides
with L∞ (Γ). Moreover, Lp,λ1 (Γ) ⊂ Lp,λ2 (Γ) as soon as 0 6 λ1 6 λ2 6 2.
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Let G ⊂ C be a bounded Jordan domain with rectifiable boundary Γ
and let G− := ExtΓ. Denoting by Ep (G) the classical Smirnov class of
analytic functions in G, we define the Morrey-Smirnov class Ep,λ (G) as

Ep,λ (G) :=
{
f ∈ E1 (G) : f ∈ Lp,λ (Γ)

}
.

Then Ep,λ (G), 0 < λ 6 2 and 1 6 p < ∞, becomes a Banach space
equipped with the norm ‖f‖Ep,λ(G) := ‖f‖Lp,λ(Γ). If we choose λ = 2, then
Ep,2 (G) coincides with the classical Smirnov class Ep (G). Moreover, it
can be easily seen that Ep,λ1 (G) ⊂ Ep,λ2 (G) iff 0 6 λ1 6 λ2 6 2.

If G := D := {w : |w| < 1}, then we obtain the Morrey-Hardy space
Hp,λ (D) : = Ep,λ (D), defined on D.

Morrey spaces were introduced by Morrey in [24] and have impor-
tant applications in differential equations. They are commonly used for
study of local behavior of solutions of the elliptic differential equations,
especially. Many authors have considered the fundamental problems of
potential theory, maximal and singular operator theory in these spaces
(see for instance: [1–3], [25], [8], [22]). Also, problems of approxima-
tion theory in Morrey spaces have been studied; in particular, in the
papers [13], [14], [18–20], [5] the direct and inverse theorems of approxima-
tion theory in the Morrey spaces Lp,λ (T) and also in the Morrey-Smirnov
classes Ep,λ (G) were obtained.

In this work, we study approximation properties of matrix transforms
constructed via the Fourier and Faber series, in the subclasses of Morrey
spaces and Morrey-Smirnov classes of analytic functions, respectively. Let
us give some definitions needed to formulate the main results obtained in
this work.

Let f ∈ L1 (T) and let f (x) ∼ a0/2 +
∞∑
k=1

(ak cos kx+ bk sin kx) be its

Fourier series representation with the Fourier coefficients

ak :=
1

2π

π∫
−π

f (t) cos (kt) dt and bk :=
1

2π

π∫
−π

f (t) sin (kt) dt.

Let also Sn (f) (x) =
n∑
k=0

uk (f) (x) , n = 0, 1, 2, . . . be the n-th partial

sums of the Fourier series of f , where

u0 (f) (x) :=
a0

2
and uk (f) (x) := (ak cos kx+ bk sin kx) , k = 1, 2, . . .
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Let A = (an,k) be an infinite lower-triangular regular matrix with non-
negative elements and let s(A)

n =
∑n

k=0 an,k be its n-th row sum for
n = 0, 1, 2, . . .We say that the matrix A = (an,k) has almost monotone in-
creasing (decreasing) rows, if there is a constant K1 (K2), depending only
on A, such that an,k 6 K1an,m (an,m 6 K2an,k), where 0 6 k 6 m 6 n.
The matrix transform of Fourier series of f ∈ Lp,λ (T) with respect to
A = (an,k) is defined as

T (A)
n (f) (x) =

n∑
k=0

an,kSk (f) (x) .

If an,k := pn−k/Pn, for a given sequence (pn) of positive numbers,
where Pn =

∑n
k=0 pk, then the matrix transform T

(A)
n (f) coincides with

the Nörlund mean

Nn (f) (x) =
1

Pn

n∑
k=0

pn−kSk (f) (x) ,

which reduces to the Cesàro means

σn (f) (x) =
1

n+ 1

n∑
k=0

Sk (f) (x)

in the case pn = 1 for all n = 0, 1, 2, . . . Let us define the modulus of
smoothness Ω (f, ·)p,λ : [0,∞)→ [0,∞) defined as

Ω (f, δ)p,λ := sup
|t|6δ
‖f (·+ t)− f (·)‖Lp,λ(T) , δ > 0.

We use the relation f = O (g), which means that f 6 cg for a positive
constant c, independent of f and g.

Definition 1. Let f ∈ Lp,λ (T), 0 < λ 6 2, 1 < p < ∞ and 0 < α 6 1.
We say that f ∈ Lipp,λ(T, α) if Ω (f, δ)p,λ = O (δα) for 0 6 δ.

Firstly, we study the approximation properties of the matrix
transforms T (A)

n (f) in the subspaces Lipp,λ(T, α), 0 < α 6 1, and then
extend the obtained results to the subclasses of Ep,λ (G). Our main results
are following:

Theorem 1. Let 0 < λ 6 2 and 1 < p < ∞. Let f ∈ Lipp,λ (T, α),
0 < α < 1, and let A = (an,k) be a lower-triangular matrix with∣∣s(A)
n − 1

∣∣ = O (n−α). If one of the conditions:
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(i) A has almost monotone decreasing rows and (n+ 1)an,0 = O(1),

(ii) A has almost monotone increasing rows and (n + 1)an,k = O(1),
where k is the integer part of n/2,

holds, then ∥∥f − T (A)
n (f)

∥∥
Lp,λ(T)

= O
(
n−α

)
.

Let (pn) be a sequence of positive numbers. If (pn) is almost monotone
decreasing, then the matrix A = (an,k) with an,k := pn−k/Pn has almost
monotone increasing rows and

(n+ 1) an,k 6 K
(n+ 1) pk

Pn
= K1

K (k + 1) pk
Pk

= O (1) ,

where k = [n/2]. Thus A satisfies the condition ( ii) of Theorem 1. If (pn)
is almost monotone increasing and (n+ 1)pn = O (Pn), then A has almost
monotone decreasing rows and

(n+ 1)an,0 6 (n+ 1)
pn
Pn

=
1

Pn
O (Pn) = O(1).

Therefore, A satisfies the condition (i) of Theorem 1 and, hence, we have

Corollary 1. Let 0 < λ 6 2 and 1 < p < ∞. Let also f ∈ Lipp,λ (T, α)
for 0 < α < 1 and let (pn) be a sequence of positive numbers. If one of
the conditions:

(i) (pn) is almost monotone increasing and (n+ 1)pn = O (Pn) ,

(ii) (pn) is almost monotone decreasing

holds, then ‖f −Nn (f)‖Lp,λ(T) = O (n−α).

Theorem 2. Let 0 < λ 6 2 and 1 < p < ∞. Let f ∈ Lipp,λ (T,1)
and let A = (an,k) be a lower-triangular matrix satisfying the relation∣∣s(A)
n − 1

∣∣ = O (n−1).
If
∑n−1

k=1(n−k)|an,k−1−an,k| = O(1), then
∥∥f−T (A)

n (f)
∥∥
Lp,λ(T)

= O(n−1).

Since
∑n−1

k=1 (n− k) |an,k−1 − an,k| 6 n
∑n−1

k=1 |an,k−1 − an,k|, by Theo-
rem 1 we immediately have Corollary 2.

Corollary 1. Let 0 < λ 6 2 and 1 < p < ∞. Let f ∈ Lipp,λ (T, 1)
and let A = (an,k) be a lower-triangular matrix satisfying the relation
|s(A)
n − 1| = O(n−1).
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If
n−1∑
k=1

|an,k−1 − an,k| = O(n−1), then ‖f − T (A)
n (f)‖Lp,λ(T) = O(n−1).

If
∑n−1

k=1 |pk−pk+1| = O(Pn/n), we have
∑n−1

k=1 |an,k−1−an,k| = O(n−1),
where an,k := pn−k/Pn and Pn =

∑n
k=0 pk (see, [16]). Hence, Corollary 1

implies

Corollary 2. Let 0 < λ 6 2 and 1 < p < ∞. Let also f ∈ Lipp,λ (T, 1)
and let (pn) be a sequence of positive numbers.

If
n−1∑
k=1

|pk − pk+1| = O(Pn/n), then ‖f −Nn (f)‖Lp,λ(T) = O(n−1).

Note that similar results in classical and variable Lebesgue spaces were
proved in [4], [23], [21], [11], [15]. We extend the results obtained above
to the subclasses of Ep,λ (G). Moreover, similar results in weighted Orlicz
space were proved in [17]. Therefore, we need to give some definitions and
auxiliary results.

Definition 2. Let Γ be a smooth Jordan curve and let θ(s) be the angle
between the tangent and the positive real axis expressed as a function of
arclength s. If θ(s) has a modulus of continuity ω(θ, s) satisfying the Dini
smoothness condition

∫ δ
0

[ω(θ, s)/s] ds < ∞, δ > 0, then we say that Γ is
a Dini smooth curve.

We denote the set of Dini smooth curves by D.
Let ϕ be the conformal mapping of G− onto D−, normalized by the

conditions ϕ (∞) = ∞ and lim
z→∞

ϕ (z) /z > 0 , and let ψ := ϕ−1 be its

inverse. Since Γ is a rectifiable Jordan curve, the derivatives ϕ′ and ψ′

have definite nontangential boundary values a. e. on Γ and T, and the
boundary functions are integrable with respect to the Lebesgue measure
on Γ and T, respectively [10, p. 419 – 438]. On the other hand, if Γ ∈ D,
then, by [27], there are positive constants ci > 0, i = 1, 2, 3, 4, such that

0 < c1 6 |ψ
′
(w) | 6 c2 <∞, 0 < c3 6 |ϕ

′
(z) | 6 c4 <∞, (1)

a. e. on T and Γ, respectively. Using (1), it is easily to see that if Γ ∈ D,
then there exist some positive constants c′2 and c′′3, such that for any arc
γ ⊂ Γ the relation c

′
2 |γ| 6 |ϕ(γ)| 6 c′′3 |γ|, where |γ| and |ϕ(γ)| are

the linear Lebesgue measures of γ and its image under the conformal
mapping ϕ, holds. Then, denoting f0 (w) := (f ◦ ψ) (w), w ∈ T, we have
the implication

f ∈ Lp,λ (Γ)⇔ f0 ∈ Lp,λ (T) . (2)
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For a given f ∈ Lp,λ (Γ), the Cauchy-type integral

f+
0 (w) :=

1

2πi

∫
T

f0 (τ)

τ − w
dτ , w ∈ D

is analytic in D. If f ∈ Lp,λ (Γ), then, by (2) f0 ∈ Lp,λ (T) and by Corol-
lary 1 proved in [13], we have f+

0 ∈ Hp,λ (D).
Let f ∈ Ep,λ(G), 0 < λ 6 2, 1 < p < ∞ and 0 < α 6 1. Denoting

Ω(f, δ)G,p,λ := Ω(f+
0 , δ)p,λ, we say that

f ∈ Lipp,λ(G,α) if Ω(f, δ)G,p,λ = O(δα) for 0 6 δ.

Now let Fk, k = 0, 1, 2, . . . , be the Faber polynomials for G, defined
by the series representation (see, [26]):

ψ′ (w)

ψ (w)− z
=
∞∑
k=0

Fk (z)

wk+1
, w ∈ D− and z ∈ G. (3)

On the other hand, by the Cauchy integral formula:

f(z) =

∫
Γ

f(ζ)

ζ − z
dζ =

1

2πi

∫
T

f0(w)ψ′ (w)

ψ (w)− z
dw, z ∈ G,

for every f ∈ Ep,λ (G). Comparing this formula with (3), we have

f (z) ∼
∞∑
k=0

akFk (z) , z ∈ G, (4)

where

ak = ak (f) : =
1

2πi

∫
T

f0 (w)

wk+1
dw, k = 0, 1, 2, . . . (5)

The series (4) is called the Faber series of f ∈ Ep,λ (G) and the coef-
ficients ak, k = 0, 1, 2, . . . , are the Faber coefficients of f ∈ Ep,λ (G). For
f ∈ Ep,λ (G), we define the n-th partial sums of series (4) as

SGn (f) (z) :=
n∑
k=0

ak (f)Fk (z) , n = 1, 2, 3, . . . ,
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and n-th matrix transform

T
(A)
G,n (f) (z) :=

n∑
k=0

an,kS
G
k (f) (z) , n = 1, 2, 3, . . . ,

of the Faber series with respect to the infinite lower-triangular regular
matrix A = (an,k) with non-negative elements an,k. If an,k := pn−k/Pn
for a given sequence (pn) of positive numbers, where Pn =

∑n
k=0 pk, then

the matrix transforms T (A)
G,n (f) , n = 0, 1, . . . , coincide with the Nörlund

means

NG
n (f) (z) =

1

Pn

n∑
k=0

pn−kS
G
k (f) (z)

of Faber series. Now, let s(A)
n =

∑n
k=0 an,k , n = 0, 1, . . . be the n-th row

sum of the matrix A.

Theorem 3. Let Γ ∈ D, 0 < λ 6 2, 1 < p < ∞. Let f ∈ Lipp,λ(G,α),

0 < α < 1, and let A be a lower-triangular matrix with |s(A)
n −1| = O(n−α),

A = (an,k).
If one of the following conditions:

(i) A has almost monotone decreasing rows and (n+ 1) an,0 = O (1) ,

(ii) A has almost monotone increasing rows and (n+ 1) an,k = O (1) ,
where k is the integer part of n/2,

holds, then ∥∥∥f − T (A)
G,n (f)

∥∥∥
Lp,λ(Γ)

= O
(
n−α

)
.

Corollary 1. Let Γ ∈ D, 0 < λ 6 2, 1 < p < ∞. Let also
f ∈ Lipp,λ(G,α), 0 < α < 1, and let (pn) be a sequence of positive
numbers. If one of the following conditions:
(i) (pn) is almost monotone increasing and (n+ 1) pn = O (Pn) ,

(ii) (pn) is almost monotone decreasing,
holds, then ‖f −NG

n (f) ‖Lp,λ(Γ) = O (n−α) .

Theorem 4. Let Γ ∈ D, 0 < λ 6 2 and 1 < p < ∞. Let also
f ∈ Lipp,λ(G, 1) and let A = (an,k) be a lower-triangular matrix satisfying
the relation |s(A)

n − 1| = O (n−1).
If
∑n−1

k=1 (n− k) |an,k−1 − an,k| = O (1) , then∥∥∥f − T (A)
G,n (f)

∥∥∥
Lp,λ(Γ)

= O(n−1).



86 A. Testici, D. M. Israfilov

Corollary 1. Let Γ ∈ D, 0 < λ 6 2 and 1 < p <∞. Let f ∈ Lipp,λ(G, 1)
and let A = (an,k) be a lower-triangular matrix satisfying the condition
|s(A)
n − 1| = O (n−1).

If
∑n−1

k=1 |an,k−1 − an,k| = O(n−1), then
∥∥∥f−T (A)

G,n (f)
∥∥∥
Lp,λ(Γ)

= O(n−1).

Corollary 2. Let Γ ∈ D, 0 < λ 6 2 and 1 < p < ∞.
Let f ∈ Lipp,λ (G, 1) and let (pn) be a sequence of positive numbers.
If

∑n−1
k=1 |pk − pk+1| = O (Pn/n) , then

∥∥f −NG
n (f)

∥∥
Lp,λ(Γ)

= O (n−1) .

2. Auxiliary results.

Lemma 1. Let 0 < λ 6 2 and 1 < p < ∞. Then there exists a
constant c such that for every f ∈ Lp,λ (T) the inequality ‖Sn (f)‖Lp,λ(T) 6
c ‖f‖Lp,λ(T) holds.

Proof. Let I be any subinterval of T with the characteristic function
χI . By [7], the maximal function MχI belongs to A1 (T), i. e., almost
everywhere on T the inequality M (MχI) 6 cMχI holds. Considering the
boundedness [12] of Sn (f) in the weighted Lebesgue space, we have∫

I

|Sn (f) (x)|p dx =

∫
T

|Sn (f) (x)|p χI (x) dx 6

6
∫
T

|Sn (f) (x)|pMχI (x) dx 6 c

∫
T

|f (x)|pMχI (x) dx.

Then, by the equivalence (see, also: [8])

MχI (x) ≈ χI (x) +
∞∑
k=0

2−2kχ(2k+1I\2kI) (x)

we obtain

sup
I

1

|I|1−
λ
2

∫
I

|Sn (f) (x)|p dx 6

6 c6 sup
I

1

|I|1−
λ
2

∫
T

|f (x)|p
(
χI (x) +

∞∑
k=0

2−2kχ(2k+1I\2kI) (x)
)
dx 6

6 c6 sup
I

1

|I|1−
λ
2

∫
I

|f (x)|p dx+
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+c6 sup
I

1

|I|1−
λ
2

∫
T

|f (x)|p
∞∑
k=0

2−2kχ(2k+1I\2kI) (x) dx =

= c6

(
‖f‖p

Lp,λ(T)
+
∞∑
k=0

2−2k sup
I

1

|I|1−
λ
2

∫
2k+1I2kI

|f (x)|p (x) dx

)
6

6 c6

(
‖f‖p

Lp,λ(T)
+
∞∑
k=0

2−2k sup
I

1

|I|1−
λ
2

∫
2k+1I

|f (x)|p (x) dx

)
6

6 c6

(
‖f‖p+

Lp,λ(T)
+

+
∞∑
k=0

2−2k+(k+1)(1−λ
2

) sup
I

1

|2k+1I|1−
λ
2

∫
2k+1I

|f (x)|p (x) dx

)
6

6 c6

(
‖f‖p

Lp,λ(T)
+
∞∑
k=0

2−2k+(k+1)(1−λ
2

) sup
I

1

|I|1−
λ
2

∫
I

|f(x)|p (x)dx

)
6

6 c7 ‖f‖pLp,λ(T)
,

because of
∞∑
k=0

2−2k+(k+1)(1−α
2

) <∞. �

Let f ∈ L1 (T) and let f̃ be its conjugate function defined as

f̃ (x) :=
1

π

π∫
−π

f (t)

2 tan
(
t−x

2

)dt.
The conjugate operator f̃ is bounded in the weighted Lebesgue space [12].
Applying the same method used in the proof of Lemma 1, we obtain

Lemma 2. Let 0 < λ 6 2 and 1 < p <∞. Then there exists a constant
c such that for every f ∈ Lp,λ (T) the inequality

∥∥f̃∥∥
Lp,λ(T)

6 c ‖f‖Lp,λ(T)

holds.

Lemma 3. Let 0 < α 6 1, 0 < λ 6 2, 1 < p < ∞. If f ∈ Lipp,λ (T, α) ,
r = 1, 2, . . . , then ‖f − Sn (f)‖Lp,λ(T) = O (n−α).

Proof. Let T ∗n , n = 1, 2, . . . , be the best-approximation trigonometric
polynomial to f ∈ Lipp,λ (T,α) in Πn, where Πn is the set of trigonomet-
ric polynomials of degree not exceeding n. Then, from the direct theo-
rem proved in [13], we have ‖f − T ∗n‖Lp,λ(T) = O (n−α). Hence, applying
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Lemma 1, we have

‖f − Sn (f)‖Lp,λ(T) 6 ‖f − T ∗n‖Lp,λ(T) + ‖T ∗n − Sn (f)‖Lp,λ(T) 6

6 ‖f − T ∗n‖Lp,λ(T) + ‖Sn (T ∗n − f)‖Lp,λ(T) =

= O
(
‖f − T ∗n‖Lp,λ(T)

)
= O

(
n−α

)
.

Thus, the lemma is proved. �

LetW p,λ
1 (T):=

{
f : f be absolutely continuous and f ′ ∈ Lp,λ (T)

}
be the

Sobolev-Morrey space defined on T.

Lemma 4. Let 0 < λ 6 2 and 1 < p < ∞. Then f ∈ Lipp,λ (T, 1) ⇔
f ∈ W p,λ

1 (T).

Proof. Let f ∈ Lipp,λ (T, 1). Since Lp,λ (T, 1) ⊂ Lp (T), we have
‖f‖Lp(T) 6 c ‖f‖Lp,λ(T) and then Ω (f, δ)p,2 6 cΩ (f, δ)p,λ = O (δ). This
relation shows that f is an absolute continuous function on T and, more-
over, f ′ ∈ Lp (T). Since [f (x+ t)− f (x)] /t → f ′ (x) , t → 0, a. e. on T,
we have

2

δ

δ∫
δ/2

|f (x+ t)− f (x)|
t

dt→ |f ′ (x)| , δ → 0+,

and, then, by the Fatou Lemma in Lp,λ(T, 1)

∥∥f ′∥∥
Lp,λ(T)

=
∥∥∥ lim
δ→0+

2

δ

δ∫
δ/2

|f (x+ t)− f (x)|
t

dt
∥∥∥
Lp,λ(T)

6

6 lim
δ→0+

inf
∥∥∥2

δ

δ∫
δ/2

|f (x+ t)− f (x)|
t

dt
∥∥∥
Lp,λ(T)

6

6 lim
δ→0+

inf
4

δ

∥∥∥1

δ

δ∫
0

|f (x+ t)− f (x)| dt
∥∥∥
Lp,λ(T)

6

6 c lim
δ→0+

inf
4

δ
Ω (f,δ)p,λ = O (1) ;

hence, f ′ ∈ W p,λ
1 (T). Conversely, if f ∈ W p,λ

1 (T), then, by absolute

continuity of f , we have f (x+ t) − f (x) =
t∫

0

f ′ (x+ u) du. Considering
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the boundedness of the maximal operator in the Morrey spaces in [6], we
have

Ω (f, δ)p,λ = sup
|h|6δ
‖f (x+ t)− f (x)‖Lp,λ(T) 6

6 sup
|h|6δ

∥∥∥ t∫
0

|f ′ (x+ u)| du
∥∥∥
Lp,λ(T)

6 cδ
∥∥∥1

δ

δ∫
0

|f ′ (x+ u)| du
∥∥∥
Lp,λ(T)

6

6 cδ
∥∥f ′∥∥

Lp,λ(T)
6 cδ.

Thus f ∈ Lipp,λ (T, 1). �

Lemma 5. Let 0 < λ 6 2 and 1 < p < ∞. If f ∈ Lipp,λ (T, 1), then
‖Sn (f)− σn (f)‖Lp,λ(T) = O (n−1).

Proof. Let f ∈ Lipp,λ (T,1). By Lemma 4, we have f ∈ W p,λ
1 (T). If f

has the Fourier series
∞∑
k=0

uk (f), then the Fourier series of the conjugate

function f̃ ′ is
∞∑
k=1

kuk (f). After simple computations, we have

Sk (f)− σn (f) =

=
n∑
k=0

uk (f)− 1

n+ 1

n∑
k=0

k∑
ν=0

uν (f) =
n∑
k=0

(
uk (f)− 1

n+ 1

k∑
ν=0

uν (f)
)

=

=
n∑
k=0

(
1− n+ 1− k

n+ 1

)
uk (f) =

n∑
k=0

k

n+ 1
uk (f) ,

and, hence,

Sn (f)− σn (f) =
n∑
k=1

k

n+ 1
uk (f) . (6)

Using here Lemmas 1 and 2, we obtain∥∥∥Sn (f)− σn (f)
∥∥∥
Lp,λ(T)

=
∥∥∥ n∑
k=1

k

n+ 1
uk (f)

∥∥∥
Lp,λ(T)

=

=
1

n+ 1

∥∥∥Sn (f̃ ′)∥∥∥
Lp,λ(T)

6
c

n
‖f ′‖Lp,λ(T) = O

(
n−1
)
.

Thus, the lemma is proved. �
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Lemma 6. [11] Let A = (an,k) be infinite lower-triangular matrix and
0 < α < 1. If one of the conditions:
(i) A has almost monotone decreasing rows and (n+ 1) an,0 = O (1) ,

(ii) A has almost monotone increasing rows and (n + 1)an,r = O (1),
where r is the integer part of n/2 and

∣∣∣s(A)
n − 1

∣∣∣ = O (n−α) ,

holds, then
∑n

k=1 k
−αan,k = O (n−α).

Lemma 7. [16] If A = (an,k) is an infinite lower-triangular matrix with
non-negative elements an,k, then for every positive integer r and n such
that 1 6 r 6 n− 1, the equality

n−1∑
k=r

( k∑
m=r

|an,m−1 − an,m|
)

=
n−1∑
k=r

(n− k) |an,k−1 − an,k|

holds.

Let P be the set of all polynomials with no restrictions on the degree
and P (D) be the trace of all members of P on D.

We define the operator Υ : P (D)→ Ep,λ (G) as

Υ (P ) (z) :=
1

2πi

∫
T

P (w)ψ′ (w)

ψ (w)− z
dw =

1

2πi

∫
Γ

P (ϕ (ς))

ς − z
dς, z ∈ G.

If P (w) :=
n∑
k=0

bkw
k, then, by (3), we have

Υ
( n∑
k=0

bkw
k
)

=
1

2πi

n∑
k=0

bk

∫
T

wkψ′ (w)

ψ (w)− z
dw =

n∑
k=0

bkFk (z) .

If Γ ∈ D, 0 < λ 6 2, and 1 < p < ∞, then the linear operator
Υ : P (D)→ Ep,λ (G) is bounded (see [14]). Hence, extending the operator
Υ from P (D) to Hp,λ (D) as a linear and bounded operator, we obtain the
extended operator Υ : Hp,λ (D)→ Ep,λ (G) with the representation

Υ (f) (z) :=
1

2πi

∫
T

f (w)ψ′ (w)

ψ (w)− z
dw, z ∈ G, f ∈ Hp,λ (D) .

Theorem 5. [14] Let Γ ∈ D, 0 < λ 6 2 and 1 < p < ∞. Then the
operator Υ (P ) : Hp,λ (D) → Ep,λ (G) is linear, bounded, one to one, and
onto. Moreover, Υ

(
f+

0

)
= f for every f ∈ Ep,λ (G).



Approximation in Morrey Spaces 91

3. Proofs of the Main Results.
Proof of Theorem 1. Let f ∈ Lipp,λ(T, α), 0 < α < 1, 0 < λ 6 2,

1 < p < ∞ and let A = (an,k) be a lower-triangular matrix with
|s(A)
n − 1| = O (n−α). Suppose that one of the conditions (i) and (ii)

holds. By definition of T (A)
n (f) and s(A)

n , we have

T (A)
n (f)(x)− f(x) =

n∑
k=0

an,kSk(f)(x)− f(x) =

=
n∑
k=0

an,kSk(f)(x)− f(x) + s(A)
n f(x)− s(A)

n f(x) =

=
n∑
k=0

an,k [Sk (f) (x)− f (x)] +
(
s(A)
n − 1

)
f (x) .

Since |s(A)
n − 1| = O (n−α), by Lemmas 3 and 6 we obtain∥∥f − T (A)
n (f)

∥∥
Lp,λ(T)

6 an,0 ‖S0 (f)− f‖Lp,λ(T) +

+
n∑
k=1

an,k ‖Sk (f)− f‖Lp,λ(T) +
∣∣s(A)
n − 1

∣∣ ‖f‖Lp,λ(T) 6

6 O
( 1

n+ 1

)
+ c

n∑
k=1

an,kk
−α +O

(
n−α

)
= O

(
n−α

)
. �

Proof of Theorem 2. Let f ∈ Lipp,λ (T, 1), 0 < λ 6 2, p ∈ (1,∞),

A = (an,k) be a lower-triangular matrix, |s(A)
n − 1| = O(n−1). By Lemma 3,

we have:∥∥f − T (A)
n (f)

∥∥
Lp,λ(T)

6
∥∥Sn (f)− T (A)

n (f)
∥∥
Lp,λ(T)

+‖f − Sn (f)‖Lp,λ(T) =

=
∥∥Sn (f)− T (A)

n (f)
∥∥
Lp,λ(T)

+O
(
n−1
)
. (7)

If An,k :=
∑n

m=k an,m, then

T (A)
n (f) (x) =

n∑
k=0

an,kSk (f) (x) =
n∑
k=0

an,k

( k∑
m=0

um (f) (x)
)

=

=
n∑
k=0

( n∑
m=k

an,k

)
uk (f) (x) =

n∑
k=0

An,kuk (f) (x) .
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On the other hand, since s(A)
n =

∑n
k=0 an,k, we get:

Sn (f) (x) =
n∑

m=0

um (f) (x) =

= An,0

n∑
k=0

uk (f) (x) + (1− An,0)
n∑
k=0

uk (f) (x) =

=
n∑
k=0

An,0uk (f) (x) +
(
1− s(A)

n

)
Sn (f) (x) .

Thus,

T (A)
n (f) (x)− Sn (f) (x) =

n∑
k=1

(An,k − An,0)uk (f) (x) +

+
(
s(A)
n − 1

)
Sn (f) (x) .

By Lemma 1 and by the condition |s(A)
n − 1| = O (n−1) :∥∥∥Sn (f)− T (A)

n (f)
∥∥∥
Lp,λ(T)

6
∥∥∥ n∑
k=1

(An,k − An,0)uk (f)
∥∥∥
Lp,λ(T)

+O
(
n−1
)
.

(8)
Setting bn,k :=

An,k−An,0
k

, k = 1, 2, . . . , n and applying the Abel transform,
we have

n∑
k=1

(An,k − An,0)uk (f) =
n∑
k=1

bn,kkuk (f) = bn,n

n∑
m=1

mum (f) +

+
n−1∑
k=1

(bn,k − bn,k+1)
( k∑
m=1

mum (f)
)
,

and, then:

∥∥∥ n∑
k=1

(An,k − An,0)uk (f)
∥∥∥
Lp,λ(T)

6 |bn,n|
∥∥∥ n∑
m=1

mum (f)
∥∥∥
Lp,λ(T)

+

+
n−1∑
k=1

|bn,k − bn,k+1|
(∥∥∥ k∑

m=1

mum (f)
∥∥∥
Lp,λ(T)

)
. (9)
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Now, using (6) and applying Lemma 5, we have∥∥∥ n∑
m=1

mum (f)
∥∥∥
Lp,λ(T)

= (n+ 1) ‖Sn (f)− σn (f)‖Lp,λ(T) =

= (n+ 1)O
(
n−1
)

= O (1) ; (10)

later, by the condition
∣∣∣s(A)
n − 1

∣∣∣ = O (n−1):

|bn,n| =
|An,n − An,0|

n
=

∣∣an,n − s(A)
n

∣∣
n

=

=
1

n

(
s(A)
n − an,n

)
6

1

n
s(A)
n = O

(
n−1
)
. (11)

Since, by the relations (8)–(11),

∥∥Sn (f)− T (A)
n (f)

∥∥
Lp,λ(T)

6 O
(
n−1 +

n−1∑
k=1

|bn,k − bn,k+1|
)
, (12)

to complete the proof it remains to prove that
n−1∑
k=1

|bn,k − bn,k+1| = O (n−1).

After simple calculations, we have

bn,k − bn,k+1 =
1

k(k + 1)

[
(k + 1) an,k −

k∑
m=0

an,m

]
(13)

and, later, iteration easily shows that for k = 1, 2, . . . , n,

∣∣∣ k∑
m=0

an,m − (k + 1) an,k

∣∣∣ 6 k∑
m=1

m |an,m−1 − an,m| . (14)

If the condition
∑n−1

k=1 (n− k) |an,k−1 − an,k| = O (1) of Theorem 2 holds,
then by (13) and (14) we get

n−1∑
k=1

|bn,k − bn,k+1| 6
r∑

k=1

1

k (k + 1)

k∑
m=1

m |an,m−1 − an,m|+

+
n−1∑
k=r

1

k (k + 1)

k∑
m=1

m |an,m−1 − an,m| , (15)
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for r := [n/2]. For the first term of the right-hand side, applying the Abel
transform we have

r∑
k=1

1

k (k + 1)

k∑
m=1

m |an,m−1 − an,m| 6

6
r∑

k=1

|an,k−1 − an,k| =
r∑

k=1

1

(n− k)
(n− k) |an,k−1 − an,k| 6

6
1

(n− r)

r∑
k=1

(n− k) |an,k−1 − an,k| 6

6
1

(n− r)
O (1) = O

(
n−1
)
. (16)

For the second term, we can write

n−1∑
k=r

1

k (k + 1)

k∑
m=1

m |an,m−1 − an,m| 6

6
n−1∑
k=r

1

k(k + 1)

r∑
m=1

m |an,m−1 − an,m|+

+
n−1∑
k=r

1

k(k + 1)

k∑
m=r

m |an,m−1 − an,m| := In1 + In2 .

Since
r∑

k=1

|an,k−1 − an,k| = O (n−1), based on (16) we have

In1 6
n−1∑
k=r

1

k + 1

r∑
m=1

|an,m−1 − an,m| =

= O
(
n−1
) n−1∑
k=r

1

k + 1
= O

(
n−1
)

(n− r) 1

r + 1
= O

(
n−1
)
.

Now we estimate In2 . By Lemma 7

In2 6
n−1∑
k=r

1

k + 1

k∑
m=r

|an,m−1 − an,m| 6
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6
1

r + 1

n−1∑
k=r

( k∑
m=r

|an,m−1 − an,m|
)
6

2

n

n−1∑
k=r

( k∑
m=r

|an,m−1 − an,m|
)
6

6
2

n

n−1∑
k=r

(n− k) |an,k−1−an,k| 6
2

n

n−1∑
k=1

(n− k) |an,k−1−an,k| = O
(
n−1
)
.

Thus
n−1∑
k=r

1

k (k + 1)

k∑
m=1

m |an,m−1 − an,m| 6 In1 + In2 = O
(
n−1
)
. (17)

Hence, by the relations (15) – (17) we have

n−1∑
k=1

|bn,k − bn,k+1| = O
(
n−1
)
. (18)

Now, the relations (7), (12), and (18) imply the desired inequality. �

Proof of Theorem 3. Let Γ ∈ D, 0 < λ 6 2, 1 < p < ∞,
and f ∈ Lipp,λ (G,α) for 0 < α < 1. Let A = (an,k) be a lower-
triangular matrix with |s(A)

n − 1| = O (n−α). Since f ∈ Ep,λ (G), we have
f+

0 ∈ Hp,λ (D) ⊂ H1 (D), which implies that the boundary function of f+
0

belongs to Lp,λ (T). Let
∞∑
k=0

βk
(
f+

0

)
wk, w ∈ D, be the Taylor-series expan-

sion of the function f+
0 on the unit disk D. By Theorem 3.4 in [9, p. 38],

we get:

ck
(
f+

0

)
=

{
βk
(
f+

0

)
, k > 0,

0, k < 0,

where
∞∑

k=−∞
ck
(
f+

0

)
eikt is the Fourier series of the boundary function of

f+
0 ∈ Lp,λ (T) ⊂ L1 (T) . Therefore, we have f+

0 (w) =
∞∑

k=−∞
ck
(
f+

0

)
wk.

Assuming that f0 (w) = f+
0 (w)− f−0 (w) a. e. on T, we get:

ak (f) =
1

2πi

∫
T

f0 (w)

wk+1
dw =

1

2πi

∫
T

f+
0 (w)

wk+1
dw − 1

2πi

∫
T

f−0 (w)

wk+1
dw =

=
1

2πi

∫
T

f+
0 (w)

wk+1
dw = βk

(
f+

0

)
,
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which shows that the Faber coefficients ak (f), k = 0, 1, 2, . . . , are the
Taylor coefficients of f+

0 at the origin, that is

f+
0 (w) =

∞∑
k=0

ak (f)wk, w ∈ D. (19)

If
∞∑
k=0

ak (f)Fk (z) is the Faber-series expansion of f ∈ Ep,λ (G), then, by

(19) and (3), we get

Υ
( n∑
k=0

ck
(
f+

0

)
wk
)

= SGn (f) (z) and Υ
(
T (A)
n

(
f+

0

))
= T

(A)
G,n (f) . (20)

Taking into account the conditions of Theorem 3, we have f+
0 ∈ Lipp,λ (T, α).

Now, applying Theorem 1 for f+
0 and Theorem 5, we have:∥∥∥f − T (A)

G,n (f)
∥∥∥
Lp,λ(Γ)

=
∥∥Υ
(
f+

0

)
−Υ

(
T (A)
n

(
f+

0

))∥∥
Lp,λ(Γ)

=

=
∥∥Υ
(
f+

0 − T (A)
n

(
f+

0

))∥∥
Lp,λ(Γ)

6 c
∥∥f+

0 − T (A)
n

(
f+

0

)∥∥
Lp,λ(T)

= O
(
n−α

)
.�

Proof of Theorem 4. Let Γ ∈ D, 0 < λ 6 2, 1 < p <∞. The condition
f ∈ Lipp,λ (G, 1) of Theorem 4, by definition of classes Lipp,λ (G, 1), means
that f+

0 ∈ Lipp,λ (T, 1). Then, applying Theorem 2 for f+
0 , by (20) and

Theorem 5, we have∥∥∥f − T (A)
G,n (f)

∥∥∥
Lp,λ(Γ)

=
∥∥Υ
(
f+

0

)
−Υ

(
T (A)
n

(
f+

0

))∥∥
Lp,λ(Γ)

=

=
∥∥Υ
(
f+

0 − T (A)
n

(
f+

0

))∥∥
Lp,λ(Γ)

6 c
∥∥f+

0 − T (A)
n

(
f+

0

)∥∥
Lp,λ(T)

= O
(
n−1
)
.�
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