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ON THE HOMOTOPY CLASSIFICATION OF POSITIVELY
HOMOGENEOUS FUNCTIONS OF THREE VARIABLES

Abstract. In this paper, we study the problem of homotopy clas-
sification of the set F of positively homogeneous smooth functions
in three variables whose gradients do not vanish at nonzero points.
This problem is of interest in the study of periodic and bounded so-
lutions of systems of ordinary differential equations with the main
positive homogeneous nonlinearity. The subset F0 ⊂ F is pre-
sented and for any function g(x) ∈ F0, a formula for calculating
the rotation γ(∇g) of its gradient ∇g(x) on the boundary of the
unit ball |x| < 1 is derived. It is proved that any function from F
is homotopic to some function from F0.
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topy classification, vector field rotation
2010 Mathematical Subject Classification: 26A21, 54C50

1. Introduction. The article investigates the problem of homotopy
classification of the set F of functions f(x) satisfying the conditions

a) f ∈ C1 (R3 \ {0};R1);
b) f(λx) ≡ λmf(x) ∀λ > 0, where m = m(f) 6= 0;

c) ∇f(x) 6= 0 ∀x 6= 0, where ∇f(x) =
(
∂f
∂x1
, ∂f
∂x2
, ∂f
∂x3

)
.

This problem is important when studying periodic and bounded solutions
of systems of ordinary differential equations with the main positive homo-
geneous nonlinearity [3], [4], [5].

The problem of homotopy classification of the set F consists of de-
scribing homotopy classes of functions. Two functions f1, f2 ∈ F are
called homotopic if there exists a family of functions f̃(·, t) ∈ F , t ∈ [0, 1],
continuously depending on t and such that f̃(·, 0) = f1, f̃(·, 1) = f2.
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It follows from the results of [4] that the functions f1, f2 ∈ F are
homotopic if and only if the corresponding sets are similar:

Ω−(fi) =
{
x ∈ R3 : |x| = 1, fi(x) < 0

}
, i = 1, 2.

The similarity of the sets Ω−(fi), i = 1, 2 is defined by means of the
existence of a family of diffeomorphisms G(·, µ) : S2 7→ S2, µ ∈ [0, 1],
where S2 = {x ∈ R3 : |x| = 1}, which depends continuously on µ and
satisfies the conditions G(x, 0) ≡ x, G(Ω−(f1), 1) = Ω−(f2). Establishing
similarity of sets Ω−(fi), i = 1, 2 is a topological problem.

In this work, the following results are obtained:

1. The subset F0 ⊂ F is presented: it consists of functions of the form

g(x) = |x|ν(〈c1, x〉 − d1|x|) · . . . · (〈cp, x〉 − dp|x|), (1)

ν, di ∈ R1, ci ∈ R3, i = 1, p, |x|2 = 〈x, x〉, 〈x, y〉 = x1y1 +x2y2 +x3y3.
2. A formula for calculating the rotation γ(∇g) of the gradient ∇g of

the function g ∈ F0 on S2 is derived.
3. It is proved that any function from F is homotopic to some function

from F0.

Thus, functions of the form (1) are representatives of all classes of homo-
topic functions from F . The results obtained in this work can subsequently
be extended to functions of four or more variables.

2. Main results. Let g(x) be a function of the form (1). Let us
find out, under what conditions g(x) belongs to the set F . The following
theorem is true:

Theorem 1. The function g(x) defined by the formula (1) belongs to
F if and only if the following conditions are satisfied:

A1: (ν + p) 6= 0;
A2: |ci| 6= |di|, i = 1, . . . , p;
A3: for any i, j ∈ {1, . . . , p}, i 6= j, the implication is correct:

(|ci| > |di|, |cj| > |dj|) =⇒ |dicj − djci| >
(
|ci|2|cj|2 − 〈ci, cj〉2

)1/2
.

If the conditions A1 – A3 are satisfied, then for the rotation γ(∇g) of the
vector field ∇g on S2 the following formula holds:

γ(∇g) = p+(g)− p−(g), (2)



On the homotopy classification 69

where p±(g) is the number of connected components of the set

Ω±(g) = {x ∈ S2 : ±g(x) > 0}.

Denote by F0 the set of functions of the form (1) under the conditions
A1 – A3.

By virtue of the results of [4], the homotopy classification of the set
F is equivalent to describing the structure of the sets Ω−(f), f ∈ F up
to similarity. The structures of these sets are completely determined by
functions from F0. Namely, the following theorem holds:

Theorem 2. Any function f ∈ F is homotopic to some g ∈ F0.

The values of γ(∇f), p±(f) do not change under homotopies of the
function f ∈ F . Therefore Theorems 1 and 2 imply the following

Corollary. For f ∈ F , the formula holds: γ(∇f) = p+(f)−p−(f), where
p±(f) is the number of connected components of the set Ω±(f).

3. Let us present the proofs of Theorems 1 and 2. First, let us check
the following lemma:

Lemma 1. For two positively homogeneous functions fi(λx) ≡ λmifi(x),
fi ∈ C1 (R3 \ {0};R1), i = 1, 2, where the numbers m1, m2, m1 + m2 are
nonzero, the product f1f2 belongs to the set F if and only if f1, f2 ∈ F
and |f1(x)|+ |f2(x)| > 0 ∀x 6= 0.

Proof. For any positively homogeneous function f ∈ C1 (R3 \ {0};R1),
f(λx) ≡ λmf(x) the Euler formula holds: mf(x) = 〈∇f(x), x〉 for
x 6= 0. Therefore, for such a function with m 6= 0, the inclusion f ∈ F is
equivalent to the condition |f(x)|+ |∇f(x)| > 0 ∀x 6= 0.

Let f1f2 ∈ F . Then, for any x 6= 0 we have:

|f1(x)f2(x)|+ |f2(x)∇f1(x) + f1(x)∇f2(x)| > 0. (3)

Hence, the following inequalities hold for any x 6= 0 :

|f1(x)|+ |f2(x)| > 0, |fi(x)|+ |∇fi(x)| > 0, i = 1, 2. (4)

Consequently, f1, f2 ∈ F .
Conversely, if f1, f2 ∈ F and |f1(x)|+ |f2(x)| > 0 ∀x 6= 0, then for any

x 6= 0 the inequalities (4) hold. Then, for any x 6= 0 the following cases
are possible:
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1) f1(x)f2(x) 6= 0;
2) f1(x) = 0, f2(x) 6= 0 and ∇f1(x) 6= 0, f2(x)∇f1(x) 6= 0;
3) f1(x) 6= 0, f2(x) = 0 and ∇f2(x) 6= 0, f1(x)∇f2(x) 6= 0.

In all cases, the inequality (3) is true. Hence, f1f2 ∈ F .
Lemma 1 is proved. �

Proof of Theorem 1. Lemma 1 implies that the function g(x), defined
by the formula (1), belongs to the set F if and only if the conditions A1

and

A′2: 〈ci, x〉 − di|x| ∈ F , i = 1, . . . , p;
A′3: the following inequality holds for any i, j ∈ {1, . . . , p}, i 6= j, x 6= 0:

|〈ci, x〉 − di|x||+ |〈cj, x〉 − dj|x|| > 0;

are fulfilled.
It is easy to check that the condition A′2 is equivalent to the condition

A2. Let us show that under the conditions A1, A2, the conditions A′3 and
A3 are equivalent. For this, we clarify the conditions for the unsolvability
of the system of equations

〈ci, x〉 = di, 〈cj, x〉 = dj, |x| = 1 (5)

for fixed i, j and assuming |ci| 6= |di|, |cj| 6= |dj|. Obviously, the system of
equations (5) is not solvable if |ci| < |di| or |cj| < |dj|.

Consider the case when |ci| > |di|, |cj| > |dj|. If the vectors ci and cj
are collinear ci = λcj, then the system of equations (5) is not solvable if
and only if di 6= λdj. In this case, the conditions A′3 and A3 are equivalent.

Let the vectors ci and cj are not collinear. Then any vector x ∈ R3

can be represented as x = αci + βcj + h, where 〈ci,h〉 = 0, 〈cj,h〉 = 0, and
the system of equations (5) can be written as follows:

|ci|2α + 〈ci,cj〉β = di,

〈ci,cj〉α + |cj|2β = dj,

|αci + βcj|2 + |h|2 = 1.

(6)

From the first two equations, one can find α and β:

α =
di|cj|2 − dj〈ci,cj〉
|ci|2|cj|2 − 〈ci,cj〉2

, β =
dj|ci|2 − di〈ci,cj〉
|ci|2|cj|2 − 〈ci,cj〉2

.
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Therefore, the system of equations (6) is not solvable only in the case
when

|αci + βcj| > 1.

Substituting the values α and β into this inequality, we get:

|dicj − djci| >
(
|ci|2|cj|2 − 〈ci, cj〉2

)1/2
.

The equivalence of the conditions A′3 and A3 is proved. This proves that
the function g(x), defined by the formula (1), belongs to the set F if and
only if the conditions A1 – A3 are satisfied.

Now prove the formula (2), assuming that the conditions A1 – A3 are
satisfied. For the rotation γ(∇g) of the vector field ∇g on S2, according
to the results of [3, p. 597], the following formula is valid:

γ(∇g) = 1− χ
(
Ω−(g)

)
, (7)

where χ
(
Ω−(g)

)
is the Euler characteristic of the closure Ω−(g) of the set

Ω−(g). To find χ
(
Ω−(g)

)
, we use the following well-known properties the

Euler characteristic [2]:
1◦. If A, B, A ∪B, A ∩B are polyhedra, then

χ(A ∪B) = χ(A) + χ(B)− χ(A ∩B).

2◦. If the boundary ∂A of the polyhedron A ⊂ S2 consists of k disjoint
circles, then χ(A) = 2− k.

The set Ω−(g) has a smooth boundary, therefore it is a polyhedron.
We represent it as a union of connected components

Ω−(g) = Ω−,1 ∪ . . . ∪ Ω−,p− .

In accordance with the properties of 1◦ and 2◦, we have:

χ
(
Ω−(g)

)
= χ

(
Ω−,1

)
+ . . .+ χ

(
Ω−,p−

)
,

χ
(
Ω−,i

)
= 2− ki, i = 1, . . . , p−,

where ki is the number of connected components ∂Ω−,i. We substitute
these values into the formula (7):

γ(∇g) = 1− 2p− +
(
k1 + . . .+ kp−

)
.



72 E. Mukhamadiev, A. N. Naimov

Taking into account the easily verified equality k1 +. . .+kp− = p+ +p−−1,
we get the formula (2).

Theorem 1 is proved. �
Let f ∈ F has homogeneity of order m. Consider the set

Ω0(f) = {x ∈ S2 : f(x) = 0}.

If Ω0(f) is empty, then f and sign(f)|x|m are linear homotopic:
(1 − t)f + t sign(f)|x|m ∈ F for t ∈ [0, 1]. In this case, Theorem 2 is
true.

If Ω0(f) is not empty, then it consists of a finite number of connected
components:

Ω0(f) = Ω0,1(f) ∪ . . . ∪ Ω0,p(f).

Each connected component Ω0,i(f) is a smooth line, diffeomorphic to a
circle. If all the lines Ω0,i(f), i = 1, . . . , p are circles, then the equalities
Ω0,i(f) = Ω0(gi), i = 1, . . . , p hold for some gi(x) = 〈ci,x〉 − di|x| ∈ F ,
i = 1, . . . , p. It implies that g = g1 · . . . · gp ∈ F0 (due to Lemma 1) and
f is linearly homotopic to g. It remains to consider the case when not all
lines Ω0,i(f), i = 1, . . . , p are circles. Conceptually it is clear that they can
be continuously transformed into the circles and thus define a homotopy
of f to some function g = g1 · . . . · gp ∈ F0. We will further implement this
idea.

First, we prove a lemma on the representation of the function f .

Lemma 2. The function f can be represented as

f(x) = f1(x) · . . . · fp(x)|x|m−p, (8)

where fi ∈ F , mi = mi(fi) = 1, Ω0(fi) = Ω0,i(f), i = 1, . . . , p.

Proof. For p = 1, the representation (8) is obvious, therefore, we consider
p > 1. Let us choose δ > 0 so small that the set

Ω2δ(f) = {x ∈ S2 : |f(x)| < 2δ}

consists of exactly p connected components:

Ω2δ(f) = Ω2δ,1(f) ∪ . . . ∪ Ω2δ,p(f),

where Ω0,i(f) ⊂ Ω2δ,i(f). For every i = 1, . . . , p− 1 we put

fi(x) =


δΨ

(
δ−1f

( x
|x|

))
|x|, x

|x|
∈ Ω2δ,i(f),

±2δ|x|, x

|x|
6∈ Ω2δ,i(f), ±f

( x
|x|

)
> 2δ,



On the homotopy classification 73

where

Ψ(t) =


t, 0 6 t 6 1,

t+ (2− t)(1− t)2, 1 < t < 2,

2, t > 2,

and Ψ(t) = −Ψ(−t) for t < 0. It is easy to check that fi ∈ F ,
Ω0(fi) = Ω0,i(f), i = 1, . . . , p − 1. We continuously extend the func-
tion fp, defined by the formula fp(x) = f(x) (f1(x) · . . . · fp−1(x))−1 for
x ∈ S2 \ (Ω0,1(f) ∪ . . . ∪ Ω0,p−1(f)), to S2 and to R3 \ {0} positively ho-
mogeneously with order 1. Then fp ∈ F , Ω0(fp) = Ω0,p(f) and the repre-
sentation (8) is true.

Lemma 2 is proved. �

Proof of Theorem 2. The functions fi, i = 1, . . . , p are homotoped to
some functions gi(x) = 〈ci,x〉 − di|x| ∈ F , i = 1, . . . , p so that the sets of
zeros do not intersect under the homotopy. Then, according to Lemma 1,
the function f is homotopic to the function g = g1 · . . . · gp.

Subsequently, without loss of generality, we can assume that
fi ∈ C∞ (R3 \ {0};R1), i = 1, . . . , p, since any function from F is linearly
homotopic to some function from F ∩ C∞ (R3 \ {0};R1) (see, for exam-
ple, [4, p. 122], [5, p. 164]). In this case, the lines Ω0(fi), i = 1, . . . , p, are
infinitely smooth. We apply two types of transformations to these lines:
Tε(Γ, C) transforms a closed smooth line Γ to a circle C, Ta,h,ε(C) is the
parallel translation of the circle C in the direction of the unit vector a by
length h.

The transformation Tε(Γ, C) is applied under the following conditions:
Γ, C ⊂ S2, the closed line Γ is sufficiently smooth and diffeomorphic to a
circle, the circle C lies inside the domain bounded by Γ. The transforma-
tion Tε(Γ, C) is a family of diffeomorphisms Gε(·, µ) : S2 7→ S2, µ ∈ [0, 1],
continuously depending on µ and having the following properties:

1◦. Gε(x, µ) = x„ if µ = 0, x ∈ S2 or µ ∈ [0,1], x 6∈ Dε(Γ, C), where
Dε(Γ, C) is an ε–neighborhood of the domain D(Γ, C), bounded by the
lines Γ and C.

2◦. Gε(Γ, 1) = C.
The transformation Ta,h,ε(C) is applied to the circle C ⊂ S2 and is a

family of diffeomorphisms Ga,h,ε(·, µ) : S2 7→ S2, µ ∈ [0, 1], continuously
depending on µ and having the following properties:

3◦. Ga,h,ε(x, µ) = x, if µ = 0, x ∈ S2 or µ ∈ [0,1], x 6∈ Kh+ε, where
Kh+ε is a disk, whose center coincides with the center of the circle C and
has radius h+ ε longer than the radius of C.
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4◦. Ga,h,ε(C, 1) = C ′, where C ′ is the circle obtained from C by parallel
translation in the direction of the vector a by length h.

Homotopies of the functions fi, i = 1, . . . , p are implemented according
to the following algorithm:

1. We transform all lines Ω0(fi), the interior or exterior of which does
not contain other lines through the appropriate transformations
Tεi(Ω0(fi), Ci), into the circles Ci of sufficiently small radii. These trans-
formations generate homotopies of the corresponding functions fi to some
functions gi from F0.

2. We transfer and concentrate each group of circles obtained at the
first step and not separated from each other by other lines in pairs, around
certain points by repeatedly applying transformations of the second type
Ta,h,ε(C). These transformations generate homotopies of the functions
gi ∈ F0 obtained at the first step.

3. We repeat the previous steps until all lines Ω0(fi) are converted into
a circle. If necessary, we homotop certain circles to circles of smaller radii.
As a result, the function f = f1 · . . . · fp is homotoping to the function
g = g1 · . . . · gp ∈ F0.

To justify the above algorithm, it is necessary to show the possibility of
constructing the transformations Tε(Γ, C) and Ta,h,ε(C). It is sufficient to
construct these transformations on the plane R2, then they can be trans-
ferred to the sphere S2 by a stereographic mapping S2 with a punctured
point on R2.

Let Γ be an infinitely smooth and closed line on the plane R2, dif-
feomorphic to a circle and being the boundary of a bounded simply con-
nected domain D. Fix the point z0 ∈ D and choose r0 > 0 so that the
disk Kr0(z0) = {z ∈ R2 : |z − z0| < r0} with boundary Cr0(z0) is inside
the domain D.

Let D(Γ, Cr0(z0)) be the domain bounded by the lines Γ and Cr0(z0).
Supplement this domain with the set Πε0(Γ, Cr0(z0)) of points η+ l ·n(η),
where η ∈ Γ ∪ Cr0(z0), l ∈ (0, ε0), n(η) is a unit outer normal vector
at the point η. Here the number ε0 ∈ (0, r0) is so small that in any
point z ∈ Πε0(Γ, Cr0(z0)) has a unit decomposition z = η(z)+ l(z)n(η(z)),
where η(z) ∈ Γ ∪ Cr0(z0), l(z) ∈ [0, ε0]. The functions η(z) and l(z) are
defined on Πε0(Γ, Cr0(z0)) and are smooth due to the fact that the line Γ
is assumed to be infinitely smooth. For any ε ∈ (0, ε0), similarly, we define
Πε/2(Γ, Cε(z0)) and denote Dε(Γ, Cε(z0)) = D(Γ, Cε(z0))∪Πε/2(Γ, Cε(z0)).

The next lemma implies the possibility of constructing the above trans-
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formation Tε(Γ, C) for circles C of small radius.

Lemma 3. There is ε1 ∈ (0, ε0), such that for ε ∈ (0, ε1) one can
construct a family of diffeomorphisms Gε(·, µ) : R2 7→ R2, µ ∈ [0, 1],
continuously depending on µ and satisfying the conditions

1) Gε(z, µ) = z, if µ = 0, z ∈ R2 or µ ∈ [0,1], z 6∈ Dε(Γ, Cε(z0));
2) Gε(Γ, 1) = Cε(z0).

Proof. We construct the family of diffeomorphisms Gε(·, µ) : R2 7→ R2,
µ ∈ [0, 1] along the trajectories of a specially constructed two-dimensional
autonomous system. To construct an autonomous system, we use the
Riemann theorem on the conformal mapping of a two-dimensional simply
connected domain onto a circle and the Kellogg theorem on the smooth
extension of the conformal mapping to the smooth boundary of the do-
main [1, Ch. 10, §1]. According to the Riemann theorem, there is a con-
tinuous mapping Φ: D 7→ Kr0(z0), conformal inside D and satisfying the
conditions Φ(Γ) = Cr0(z0), Φ(z0) = z0. This mapping is continuously
differentiable on D according to the Kellogg theorem.

Consider the function u(z) = |Φ(z) − z0|2, z ∈ D. One can check di-
rectly that u ∈ C1(D;R1), ∇u(z) 6= 0 ∀z ∈ D\{z0}, ∇u(η) ‖ n(η) ∀η ∈ Γ,
where n(η) is a unit outer normal vector at the point η ∈ Γ. Taking into
account that z0 is a minimum point of the function u and the mapping
Φ is conformal in a neighborhood of the point z0, we choose ε1 ∈ (0, ε0)
so that for |z − z0| 6 ε1 the inequality 〈∇u(z),z − z0〉 > α|z − z0|2 holds;
here α > 0 and does not depend on z. For any ε ∈ (0, ε1), we define

Fε(z) =


∇u(z), z ∈ D(Γ, Cε(z0)),

(1− 2ε−1l(z))∇u(η(z)), z ∈ Πε/2(Γ, Cε(z0)) \D,
(1− 2ε−1l(z))∇u(z), z ∈ Πε/2(Γ, Cε(z0)) ∩Kε(z0),

0, z 6∈ Dε(Γ, Cε(z0)).

Consider the following autonomous system:

z′(t) = Fε(z(t)), z(t) ∈ R2.

For any point ξ ∈ R2, there is a unique solution Zε(t, ξ) of the autonomous
system, defined for all t ∈ (−∞,+∞) and satisfying the initial condition
Zε(0, ξ) = ξ. Any non-stationary solution Zε(t, ξ) has the following prop-
erties:

1) the solution trajectory is located inside the domain Dε(Γ, Cε(z0));
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2) the following limits exist: Zε(t, ξ) → P−ε (ξ) as t → −∞ and
Zε(t, ξ) → P+

ε (ξ) as t → +∞, where P−ε (ξ) and P+
ε (ξ) are boundary

points of the inner and outer boundaries of the domain Dε(Γ, Cε(z0));
3) there are unique moments τCε(z0)(ξ) and τΓ(ξ) at which the inclusions

Zε(τCε(z0)(ξ), ξ) ∈ Cε(z0) and Zε(τΓ(ξ), ξ) ∈ Γ take place.
The latter follows from property 2) and the above mentioned properties
of the gradient of the function u:

∇u(η) ‖ n(η) ∀η ∈ Γ,

〈∇u(z), z − z0〉 > α|z − z0|2 for |z − z0| 6 ε1.

The functions τCε(z0)(ξ) and τΓ(ξ) are defined on the domain Dε(Γ, Cε(z0))
and are continuously differentiable by the implicit function theorem. The
limits of these functions when ξ approaches a point of the inner boundary
are equal to +∞, when ξ approaches a point of the outer boundary they
are equal to −∞, and the difference (τCε(z0)(ξ)− τΓ(ξ)) is bounded.

We construct the family of diffeomorphisms Gε(·, µ) : R2 7→ R2,
µ ∈ [0, 1] by the following formula:

Gε(ξ, µ) =

{
Zε
(
λ
[
τCε(z0)(ξ)− τΓ(ξ))

]
, ξ
)
, ξ ∈ Dε(Γ, Cε(z0)),

ξ, ξ 6∈ Dε(Γ, Cε(z0)).

It can be verified directly that this family of diffeomorphisms satisfies the
conditions 1) and 2) of the Lemma 3.

Lemma 3 is proved. �

Now let us explain the possibility of constructing a transformation
Ta,h,ε(C). Let Cr(z0) be a circle of radius r centered at z0 on the plane
R2. Let us set a unit vector a ∈ R2 and positive numbers h, ε. Consider
the following autonomous system

z′(t) = ϕh,ε(|z(t)− z0|)ha, z(t) ∈ R2,

where

ϕh,ε(ρ) =


1, ρ 6 r + h,

0, ρ > r + h+ ε,
2

ε3
(r + h+ ε− ρ)2(ρ− r − h+ ε

2
), r + h < ρ < r + h+ ε.
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We denote by Za,h,ε(t, ξ) the solution of this autonomous system, satisfying
the initial condition Za,h,ε(0, ξ) = ξ. If |ξ − z0| 6 r, then

|Za,h,ε(t, ξ)− z0| 6 r + h for t ∈ [0, 1].

This implies that Za,h,ε(t, ξ) = ξ + hta for |ξ − z0| 6 r, t ∈ [0, 1], in
particular, |Za,h,ε(1, ξ)− (z0 + ha)| = r for |ξ − z0| = r.

Define a family of diffeomorphisms Ga,h,ε(ξ, µ) = Za,h,ε(µ, ξ), ξ ∈ R2,
µ ∈ [0, 1]. It is easy to check that Ga,h,ε(ξ, µ) = ξ for |ξ − z0| > r + h+ ε
and Ga,h,ε(Cr(z0), 1) = Cr(z0+ha). This family of diffeomorphisms defines
the transformation Ta,h,ε(C).

Theorem 2 is proved. �
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